Nitrogen Interactions Cause Soil Degradation in Greenhouses: Their Relationship to Soil Preservation in China
Abstract
:1. Introduction
2. Growing Population and Rising Food Demand
2.1. Application of Nitrogen Fertilizer and (GVPS)
2.2. Plastic Greenhouse Production (PGP)
Greenhouse Vegetable Production in China
3. Soil Acidification as a Result of Nitrogen/Nitrate Leaching Causing Soil Degradation
3.1. Salinization in PVPs
3.2. Problems of Heavy Metals
4. Influence of Synthetic Fertilizer (Nitrogen) on Soil
5. Approaches against Soil Degradation
6. Perspective
- Organic production of leafy green vegetables lowers the nitrate content of the vegetables compared to conventional production, if other variables such as seasonality and production systems are controlled.
- Viable measures include rational fertilization regimens, decreased nitrogen leaching, and boosting soil macro-aggregates to create artificial symbiotic crops through genetic engineering, which are some of the possible ventures that may be undertaken.
- Genetic engineering makes it feasible to develop high-yielding crops that need less nitrogen fertilizer through genetic improvements by incorporating the desired genes. Through genetic engineering, we can change crops to fix nitrogen. Under nitrogen-limited conditions, bacteria (Rhizobia) in the soil produced Nod factor signaling molecules in response to plants exuding flavonoids. Root hairs are transformed by nod factors into nodules, where nitrogen-fixing bacteria resides.
- Bacteria and plant legumes have a symbiotic interaction for the reduction of oxygen levels. Crops can be genetically engineered by inducing the expression of Nod genes in them. QTLs (quantitative trait loci) were mapped to find associated markers with the gene that regulates the NUE characteristic). Whenever the nitrogen level exceeds its limits, leghemoglobin creates signals to the bacteria to fix the excessive nitrogen in the soil and decompose it.
- Reduced soil nitrogen fertilizer loss through crop rotation or intercropping plants to increase NUE production is also compatible with the current trend in ecologically intensive agriculture.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, H.; Wu, X.; Zhu, Y.; Gu, B.; Niu, X.; Liu, A.; Peng, C.; Ge, Y.; Chang, J. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis. Environ. Pollut. 2011, 159, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Peng, P.; Hang, S.; Wang, L.; Zhao, G. Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. J. Clean. Prod. 2019, 208, 285–296. [Google Scholar] [CrossRef]
- Zhao, Z.; Sha, Z.; Liu, Y.; Wu, S.; Zhang, H.; Li, C. Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai. Sci. Total Environ. 2016, 566–567, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Grafton, R.Q.; Daugbjerg, C. Towards food security by 2050. Food Secur. 2015, 7, 179–183. [Google Scholar] [CrossRef]
- Rodriguez, A.; Sanders, I.R.; Nafrica, M.G.F. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 2014, 9, 1053–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazid, M.; Khan, T.A. Future of bio-fertilizers in Indian agriculture: An overview. Int. J. Agric. Food Res. 2015, 3, 10–23. [Google Scholar] [CrossRef]
- Harman, G.E.; Uphoff, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019, 2019, 9106395. [Google Scholar] [CrossRef] [Green Version]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). World Fertilizer Trends Outlook to 2020; FAO: Rome, Italy, 2017. [Google Scholar]
- Karnpanit, W.; Benjapong, W.; Srianujata, S.; Tanaviyutpakdee, P.; Sakolkittinapakul, J.; Poowanasatien, A.; Jatutipsompol, C.; Jayasena, V. Cultivation practice on nitrate, lead and cadmium contents of vegetables and potential health risks in children. Int. J. Veg. Sci. 2018, 25, 514–528. [Google Scholar] [CrossRef]
- León, V.M.; Luzardo, O.P. Evaluation of nitrate contents in regulated and non-regulated leafy vegetables of high consumption in the Canary Islands, Spain: Risk assessment. Food Chem. Toxicol. 2020, 146, 111812. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Sheng, H.; Wang, X.; Zhao, H.; Feng, K. Excessive Nitrogen Fertilizer Application Causes Rapid Degradation of Greenhouse Soil in China. Pol. J. Environ. Stud. 2022, 31, 1527–1534. [Google Scholar] [CrossRef]
- Salomon, M.; Schmid, E.; Volkens, A.; Hey, C.; Holm-Müller, K.; Foth, H. Towards an integrated nitrogen strategy for Germany. Environ. Sci. Policy 2016, 55, 158–166. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Huang, B.; Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.-M.; Yao, J.; Yan, F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutr. Cycl. Agroecosyst. 2009, 83, 73–84. [Google Scholar] [CrossRef]
- Han, J.; Shi, J.; Zeng, L. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ. Sci. Pollut. Res. 2014, 22, 2976–2986. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Tang, J.; Xu, J.; Kou, T.; Huang, H. Accelerated phosphorus accumulation and acidification of soils under plastic greenhouse condition in four representative organic vegetable cultivation sites. Sci. Hortic. 2015, 195, 67–73. [Google Scholar] [CrossRef]
- Ti, C.; Luo, Y.; Yan, X. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environ. Sci. Pollut. Res. 2015, 22, 18508–18518. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Zhao, X.; Shi, W.-M.; Xing, G.-X.; Zhu, Z.-L. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere 2011, 21, 464–472. [Google Scholar] [CrossRef]
- Bai, L.Y.; Zeng, X.B.; Su, S.M.; Duan, R.; Wang, Y.N. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China. Environ. Sci. Pollut. Res. 2014, 22, 5359–5369. [Google Scholar] [CrossRef]
- Yang, L.; Liu, G.; Di, L.; Wu, X.; You, W.; Huang, B. Occurrence, speciation, and risks of trace metals in soils of greenhouse vegetable production from the vicinity of industrial areas in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2019, 26, 8696–8708. [Google Scholar] [CrossRef]
- Yang, L.; Huang, B.; Hu, W.; Chen, Y.; Mao, M.; Yao, L. The impact of greenhouse vegetable farming duration and soil types on phytoavailability of heavy metals and their health risk in eastern China. Chemosphere 2014, 103, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, B.; Hu, W.; Chen, Y.; Mao, M. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China. Ecotoxicol. Environ. Saf. 2013, 97, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, B.; Sun, W.X.; Zong, L.G. Spatial-temporal distribution and prediction of heavy metals under different soil use patterns in an economically developed area. Soils 2011, 43, 210–215. [Google Scholar]
- Bai, L.; Zeng, X.; Li, L.-F.; Pen, C.; Li, S. Effects of land use on heavy metal accumulation in soils and sources analysis. Agric. Sci. China 2010, 9, 1650–1658. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, P.; Li, Y.; Ma, L.; Alva, A.; Dou, Z.; Chen, Q.; Zhang, F. Phosphorus in China’s intensive vegetable production systems: Overfertilization, soil enrichment, and environmental implications. J. Environ. Qual. 2013, 42, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ge, Y.; Wang, Y.; Liu, D.; Gu, B.; Ren, Y.; Yang, G.; Peng, C.; Cheng, J.; Chang, J. Agricultural carbon flux changes driven by intensive plastic greenhouse cultivation in five climatic regions of China. J. Clean. Prod. 2015, 95, 265–272. [Google Scholar] [CrossRef]
- LaPlante, G.; Andrekovic, S.; Young, R.G.; Kelly, J.M.; Bennett, N.; Currie, E.J.; Hanner, R.H. Canadian Greenhouse Operations and Their Potential to Enhance Domestic Food Security. Agronomy 2021, 11, 1229. [Google Scholar] [CrossRef]
- Lv, H.; Lin, S.; Wang, Y.; Lian, X.; Zhao, Y.; Li, Y.; Du, J.; Wang, Z.; Wang, J.; Butterbach-Bahl, K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X.; Masiliūnas, D. Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems. PLoS ONE 2020, 15, e0214041. [Google Scholar] [CrossRef] [Green Version]
- Soto, F.; Gallardo, M.; Thompson, R.B.; Peña-Fleitas, M.T.; Padilla, F.M. Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production. Agric. Ecosyst. Environ. 2015, 200, 62–70. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, K.; Zhang, K.; Jiang, L.; Xu, Y. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate N model. Agric. Water Manag. 2012, 112, 21–32. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, X.L.; Christie, P.; Li, J.L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosyst. Environ. 2005, 111, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Lin, S.; Zhang, X.; Jiang, Z.; Yang, K.; Jian, D.; Chen, Y.; Li, J.; Chen, Q.; Wang, J. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Guo, R.; Qin, W.; Jiang, C.; Kang, L.; Nendel, C.; Chen, Q. Sweet corn significantly increases nitrogen retention and reduces nitrogen leaching as summer catch crop in protected vegetable production systems. Soil Tillage Res. 2018, 180, 148–153. [Google Scholar] [CrossRef]
- Rahn, C.R.; Zhang, K.; Ramos, C.; Doltra, J.; De-Paz, J.M.; Riley, H.; Fink, M.; Nendel, C.; Thorup-Kristensen, K.; Pedersen, A. EU-Rotate_N—A decision support system–to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations. Eur. J. Hortic. Sci. 2010, 75, 20–32. [Google Scholar]
- Sun, J.; Pan, L.; Zhan, Y.; Lu, H.; Tsang, D.C.W.; Liu, W.; Wang, X.; Li, X.; Zhu, L. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Sci. Total Environ. 2016, 544, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Luo, Y.; Yang, L.; Liu, X. Acidification and salinization of soils with different initial pH under greenhouse vegetable cultivation. J. Soils Sediments 2014, 14, 1683–1692. [Google Scholar] [CrossRef]
- Zikeli, S.; Deil, L.; Möller, K. The challenge of imbalanced nutrient flows in organic farming systems: A study of organic greenhouses in Southern Germany. Agric. Ecosyst. Environ. 2017, 244, 1–13. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Y.; Hess, F.; Huang, B.; Chen, Z. Nutrient balance and soil changes in plastic greenhouse vegetable production. Nutr. Cycl. Agroecosyst. 2020, 117, 77–92. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, D.; Tang, Y.; Zhu, R.; Li, X.; Gruda, N. Plastic shed soil salinity in China: Current status and next steps. J. Clean. Prod. 2021, 296, 126453. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Pinckaers, P.J.M.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults 1–3. J. Nutr. 2016, 146, 986–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Lu, A.; Wang, J.; Ma, Z.; Pan, L.; Feng, X.; Luan, Y. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 122, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lin, S.; Wan, L.; Qasim, W.; Hu, J.; Xue, T.; Lv, H.; Butterbach-Bahl, K. Anaerobic soil disinfestation with incorporation of straw and manure significantly increases greenhouse gases emission and reduces nitrate leaching while increasing leaching of dissolved organic N. Sci. Total Environ. 2021, 785, 147307. [Google Scholar] [CrossRef] [PubMed]
- Cuesta Roble. Cuesta Roble Releases 2019 Global Greenhouse Statistics. 2019. Available online: https://www.producegrower.com/news/cuesta-roble-2019-global-greenhouse-statistics/ (accessed on 12 December 2022).
- Fei, C.; Zhang, S.R.; Liang, B.; Li, J.L.; Jiang, L.H.; Xu, Y.; Ding, X.D. Characteristics and correlation analysis of soil microbial biomass phosphorus in greenhouse vegetable soil with different planting years. Acta Agric. Boreali-Sin. 2018, 33, 195–202. [Google Scholar]
- Yu, H.-Y.; Li, T.-X.; Zhang, X.-Z. Nutrient Budget and Soil Nutrient Status in Greenhouse System. Agric. Sci. China 2010, 9, 871–879. [Google Scholar] [CrossRef]
- Maguire, T.J.; Wellen, C.; Stammler, K.L.; Mundle, S.O.C. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture. Sci. Total Environ. 2018, 633, 433–440. [Google Scholar] [CrossRef]
- Wang, C.-N.; Wu, R.-L.; Li, Y.-Y.; Qin, Y.-F.; Li, Y.-L.; Meng, F.-Q.; Wang, L.-G.; Xu, F.-L. Effects of pesticide residues on bacterial community diversity and structure in typical greenhouse soils with increasing cultivation years in Northern China. Sci. Total Environ. 2020, 710, 136321. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2013, 14, 415–422. [Google Scholar] [CrossRef]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.S.; Xu, Y.; Mandal, S.; Gleeson, D.B.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 2016, 139, 1–71. [Google Scholar]
- Gondal, A.H.; Hussain, I.; Ijaz, A.B.; Zafar, A.; Ch, B.I.; Zafar, H.; Sohail, M.D.; Niazi, H.; Touseef, M.; Khan, A.A. Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. Int. J. Agric. Biol. Sci. 2021, 5, 71–81. [Google Scholar]
- Couto-Vázquez, A.; Gonzalez-Prieto, S.J. Fate of 15N-fertilizers in the soil-plant system of a forage rotation under conservation and plough tillage. Soil Tillage Res. 2016, 161, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.P.; Bruulsema, T.W.; Gehl, R.J.; Kanter, D.; Mauzerall, D.L.; Rotz, C.A.; Williams, C.O. Nitrogen–climate interactions in US agriculture. Biogeochemistry 2013, 114, 41–70. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Shi, W. Nitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control it. Sci. Total Environ. 2018, 613–614, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Delin, S.; Stenberg, M. Effect of nitrogen fertilization on nitrate leaching in relation to grain yield response on loamy sand in Sweden. Eur. J. Agron. 2014, 52, 291–296. [Google Scholar] [CrossRef]
- Barzegari, M.; Reza, A.; Ahmadi, S.H. Irrigation and nitrogen managements affect nitrogen leaching and root yield of sugar beet. Nutr. Cycl. Agroecosyst. 2017, 108, 211–230. [Google Scholar] [CrossRef]
- Randall, P.J.; Abaidoo, R.C.; Hocking, P.J.; Sanginga, N. Mineral nutrient uptake and removal by cowpea, soybean and maize cultivars in West Africa, and implications for carbon cycle effects on soil acidification. Exp. Agric. 2006, 42, 475–494. [Google Scholar] [CrossRef]
- Guo, A.J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2018, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.D.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Barnes, B.D.; Iseyemi, O.; Mann, A.M.; Reba, M.L.; Robertson, W.J.; Massey, J.H.; Teague, T.G. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas. Sci. Total Environ. 2018, 613–614, 81–87. [Google Scholar] [CrossRef]
- Huang, T.; Ju, X.; Yang, H. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Sci. Rep. 2017, 7, 42247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Luo, W.; Yuan, J.; Li, G.; Luo, Y. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting. Waste Manag. 2017, 68, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Butterbach-Bahl, K.; Vereecken, H.; Brüggemann, N. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Glob. Change Biol. 2017, 23, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Chi, Y.; Chen, X.; Wang, J.; Wang, R.; Li, R.; Chu, S.; Yang, X.; Zhang, D.; Zhou, P. A sustainable approach for bioremediation of secondary salinized soils: Studying remediation efficiency and soil nitrate transformation by bioaugmentation. Chemosphere 2022, 300, 134580. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Zhang, H.; Christie, P.; Li, X.; Horlacher, D.; Liebig, H. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutr. Cycl. Agroecosys. 2004, 69, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Sun, H.; Xue, J.; Yan, D. Acceleration of soil salinity accumulation and soil degradation due to greenhouse cultivation: A survey of farmers’ practices in China. Environ. Monit. Assess. 2020, 192, 399. [Google Scholar] [CrossRef] [PubMed]
- Atallah, T.; Darwish, T.; Ward, R. La serriculture de la côte nord du Liban: Entre tradition et intensification. Cah. Agric. 2000, 9, 135–139. [Google Scholar]
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Ros, G.H.; Temminghoff, E.J.M.; Hoffland, E. Nitrogen mineralization: A review and meta-analysis of the predictive value of soil tests. Eur. J. Soil Sci. 2011, 62, 162–173. [Google Scholar] [CrossRef]
- Liu, R.; Hu, H.; Suter, H.; Hayden, H.L.; He, J.; Mele, P.; Chen, D.; Morley, N. Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils. Front. Microbiol. 2016, 7, 1373. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Lv, H.; Qasim, W.; Xia, L.; Yao, Z.; Hu, J.; Zhao, Y.; Ding, X.; Zheng, X.; Li, G. Heavy metal and nutrient concentrations in top-and sub-soils of greenhouses and arable fields in East China–Effects of cultivation years, management, and shelter. Environ. Pollut. 2022, 307, 119494. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-B.; Li, L.-F.; Mei, X.-R. Heavy Metal Content in Chinese Vegetable Plantation Land Soils and Related Source Analysis. Agric. Sci. China 2008, 7, 1115–1126. [Google Scholar] [CrossRef]
- Hernández, T.; Chocano, C.; Moreno, J.; García, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil Tillage Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- Shahena, S.; Rajan, M.; Chandran, V.; Mathew, L. Conventional methods of fertilizer release. In Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–24. [Google Scholar]
- He, X.; Qiao, Y.; Liu, Y.; Dendler, L.; Yin, C.; Martin, F. Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China. J. Clean. Prod. 2016, 134, 251–258. [Google Scholar] [CrossRef]
- Zhu, Z.; Jia, Z.; Peng, L.; Chen, Q.; He, L.; Jiang, Y.; Ge, S. Life cycle assessment of conventional and organic apple production systems in China. J. Clean. Prod. 2018, 201, 156–168. [Google Scholar] [CrossRef]
- Qasim, W.; Xia, L.; Lin, S.; Wan, L.; Zhao, Y.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, Y.; Wang, Y.; Wan, L.; Wang, J.; Butterbach-Bahl, K.; Lin, S. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top-but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma 2020, 363, 114156. [Google Scholar] [CrossRef]
- Tang, D.; Mao, L.; Zhi, Y.E.; Zhang, J.-Z.; Zhou, P.; Chai, X.-T. Investigation and canonical correspondence analysis of salinity contents in secondary salinization greenhouse soils in Shanghai suburb. Huan Jing Ke Xue Huanjing Kexue 2014, 35, 4705–4711. [Google Scholar] [PubMed]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Gu, B. Indexes of nitrogen management. Acta Pedol. Sin. 2017, 54, 281–296. [Google Scholar]
- Liang, Y.; Lin, X.; Yamada, S.; Inoue, M.; Inosako, K. Soil degradation and prevention in greenhouse production. SpringerPlus 2013, 2, S10. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Li, N.; Zhao, Q.; Xie, S. Bioremediation using Novosphingobium strain DY4 for 2, 4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 2015, 26, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, W.; Yang, D.; Zhang, K.; Zhao, L.; Xie, Z.; Xu, T.; Zhao, Y.; Wang, X.; Pan, X.; et al. Mitigation of soil salinization and alkalization by bacterium-induced inhibition of evaporation and salt crystallization. Sci. Total Environ. 2021, 755, 142511. [Google Scholar] [CrossRef] [PubMed]
- Motaleb, N.A.A.; Elhady, S.A.A. AMF and Bacillus megaterium Neutralize the Harmful Effects of Salt Stress on Bean Plants. Gesunde Pflanz. 2019, 72, 29–39. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Joshi, S.; Kant, S. Water availability and nitrogen use in plants: Effects, interaction, and underlying molecular mechanisms. In Plant Macronutrient Use Efficiency; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–243. [Google Scholar]
- Yang, G.D.; Zhou, Y.F.; Huang, R.; Lin, F.; Hu, Z.Y.; Hao, Z.Y.; Liang, C.B.; Wang, Q.; Meng, X.X.; Dong, L.D. Identification of differentially expressed genes of Sorghum [Sorghum Bicolor (L.) Moench] seedlings under nitrogen stress by RNA-Seq. Appl. Ecol. Environ. Res 2019, 17, 11525–11536. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Ibort, P.; Imai, H.; Uemura, M.; Aroca, R. Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. J. Plant Physiol. 2018, 220, 43–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.J.; Bai, X.L.; Zhou, B.; Zhou, J.B.; Chen, Z.J. Soil nutrient content and nutrient balances in newly-built solar greenhouses in northern China. Nutr. Cycl. Agroecosyst. 2012, 94, 63–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadelkareem, W.; Haroun, M.; Wang, J.; Qian, X. Nitrogen Interactions Cause Soil Degradation in Greenhouses: Their Relationship to Soil Preservation in China. Horticulturae 2023, 9, 340. https://doi.org/10.3390/horticulturae9030340
Awadelkareem W, Haroun M, Wang J, Qian X. Nitrogen Interactions Cause Soil Degradation in Greenhouses: Their Relationship to Soil Preservation in China. Horticulturae. 2023; 9(3):340. https://doi.org/10.3390/horticulturae9030340
Chicago/Turabian StyleAwadelkareem, Waleed, Mohammed Haroun, Juanjuan Wang, and Xiaoqing Qian. 2023. "Nitrogen Interactions Cause Soil Degradation in Greenhouses: Their Relationship to Soil Preservation in China" Horticulturae 9, no. 3: 340. https://doi.org/10.3390/horticulturae9030340
APA StyleAwadelkareem, W., Haroun, M., Wang, J., & Qian, X. (2023). Nitrogen Interactions Cause Soil Degradation in Greenhouses: Their Relationship to Soil Preservation in China. Horticulturae, 9(3), 340. https://doi.org/10.3390/horticulturae9030340