Responses of High Carbon Dioxide Concentration on Postharvest Quality of Fresh Fig Fruit during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material and Storage Experiment
2.2. Quality Analyses
2.3. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Weight Loss
3.2. Fruit Firmness
3.3. Decay Rate and Total Microbial Count
3.4. Total Soluble Solids (TSS), Titratable Acidity (TA) and Taste
3.5. Sugar and Organic Acid Contents
3.6. Respiration Rate and Ethylene Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization Statistics Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 December 2022).
- Doğan, A.; Erkan, M. Ficus carica: Production, Cultivation and Uses; Zeynel, D., Ed.; Nova Science Publishers: New York, NY, USA, 2022; pp. 185–208. [Google Scholar]
- Crisosto, H.; Ferguson, L.; Bremer, V.; Stover, E.; Colelli, G. Fig (Ficus carica L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 134–158. [Google Scholar]
- Doster, M.A.; Michailides, T.J. Fungal decay of first-crop and main crop figs. Plant Dis. 2007, 91, 1657–1662. [Google Scholar] [CrossRef] [Green Version]
- Cantín, C.M.; Palou, L.; Bremer, V.; Michailides, T.J.; Crisosto, C.H. Evaluation of the use of sulfur dioxide to reduce postharvest losses on dark and green figs. Postharvest Biol. Technol. 2011, 59, 150–158. [Google Scholar] [CrossRef]
- Dogan, A.; Cat, A.; Catal, M.; Erkan, M. First report of Alternaria alternata causing postharvest decay in fig (Ficus carica L. cv. Bursa Siyahi) fruit in Turkey. J. Biotechnol. 2018, 280, S84. [Google Scholar] [CrossRef]
- Karabulut, O.A.; Ilhan, K.; Arslan, U.; Vardar, C. Evaluation of the use of chlorine dioxide by fogging for decreasing postharvest decay of Fig. Postharvest Biol. Technol. 2009, 52, 313–315. [Google Scholar] [CrossRef]
- Thompson, A.K.; Prange, R.K.; Bancroft, R.D.; Puttongsiri, T.; Beaudry, R.M. Controlled Atmosphere Storage of Fruit and Vegetables, 3rd ed.; CAB International: Oxfordshire, UK, 2008; ISBN 9781786393739. [Google Scholar]
- Cantín, C.M.; Minas, I.S.; Goulas, V.; Jiménez, M.; Manganaris, G.A.; Michailides, T.J.; Crisosto, C.H. Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biol. Technol. 2012, 67, 84–91. [Google Scholar] [CrossRef]
- Colelli, G.; Mitchell, F.G.; Kader, A.A. Extension of postharvest life of Mission figs by CO2 enriched atmospheres. Hortscience 1991, 26, 1193–1195. [Google Scholar] [CrossRef] [Green Version]
- Dogan, A. Effects of different oxygen levels with high-carbon dioxide atmosphere on postharvest quality of fresh fig under palliflex storage systems. Horticulturae 2022, 8, 353. [Google Scholar] [CrossRef]
- Tsantil, E.; Karaiskos, G.; Pontikis, C. Storage of fresh figs in low oxygen atmosphere. J. Hortic. Sci. Biotechnol. 2003, 78, 56–60. [Google Scholar] [CrossRef]
- Türk, R.; Eriş, A.; Özer, M.H.; Tuncelli, E.; Henze, J. Research on the CA storage of Fig cv. Bursa Siyahı. Acta Hortic. 1994, 368, 830–839. [Google Scholar] [CrossRef]
- Crisosto, G.; Bremer, V.; Dollahite, S.; Crisosto, C.H.; Stover, E.; Ferguson, L. Effect of Controlled Atmosphere Storage on the Quality of Three Fresh Fig Cultivars. 2009. Available online: http://figs4fun.com/Links/FigLink291.pdf (accessed on 26 December 2022).
- Bahar, A.; Lichter, A. Effect of controlled atmosphere on the storage potential of Ottomanit fig fruit. Sci. Hortic. 2018, 227, 196–201. [Google Scholar] [CrossRef]
- Selcuk, N.; Erkan, M. The effects of modified and palliflex controlled atmosphere storage on postharvest quality and composition of ‘Istanbul’ medlar fruit. Postharvest Biol. Technol. 2015, 99, 9–19. [Google Scholar] [CrossRef]
- Sturm, K.; Koron, D.; Stampar, F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Giongo, L.; Poncetta, P.; Loretti, P.; Costa, F. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharvest Biol. Technol. 2013, 76, 34–39. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Z.; Chen, S.; Vainstein, A.; Ma, H. Proteome and transcriptome analyses reveal key molecular differences between quality parameters of commercial-ripe and tree-ripe fig (Ficus carica L.). BMC Plant Biol. 2019, 19, 146. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.H.A.; Júnior, L.C.C.; Ferraudo, A.S.; Durigan, J.F. Quality of guava (Psidium guajava L. cv. Pedro Sato) fruit stored in low-O2 controlled atmospheres is negatively affected by increasing levels of CO2. Postharvest Biol. Technol. 2016, 111, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, M.C.; Serradilla, M.J.; Martín, A.; López, C.M.; Pereira, C.; Córdoba, M.D.G. Preservation of different fig cultivars (Ficus carica L.) under modified atmosphere packaging during cold storage. J. Sci. Food Agric. 2016, 96, 2103–2115. [Google Scholar] [CrossRef]
- Üstün, H.; Doğan, A. The effect of different UV-C illumination doses on postharvest quality of fresh Fig. Gıda 2022, 47, 744–753. [Google Scholar]
- Allende, A.; Marín, A.; Buendía, B.; Tomás-Barberán, F.; Gil, M.I. Impact of combined postharvest treatments (UV-C light, gaseous O3, super atmospheric O2 and high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest Biol. Technol. 2007, 46, 201–211. [Google Scholar] [CrossRef]
- Serradilla, M.J.; Villalobos, M.C.; Hernández, A.; Martín, A.; Lozano, M.; de Guía Córdoba, M. Study of microbiological quality of controlled atmosphere packaged ‘Ambrunés’ sweet cherries and subsequent shelf-life. Int. J. Food Microbiol. 2013, 166, 85–92. [Google Scholar] [CrossRef]
- Villalobos, M.C.; Ansah, F.; Amodio, M.L.; Serradillas, M.J.; Colelli, G. Application of modified atmosphere packaging with moisture absorber to extend the shelf life of ‘Domenico Tauro’ breba fruit. Acta Hortic. 2017, 1173, 365–370. [Google Scholar] [CrossRef]
- Villalobos, M.C.; Serradilla, M.J.; Martín, A.; Ruiz-Moyano, S.; Pereira, C.; Córdoba, M.G. Use of equilibrium modified atmosphere packaging for preservation of ‘San Antonio’ and ‘Banane’ breba crops (Ficus carica L.). Postharvest Biol. Technol. 2014, 98, 14–22. [Google Scholar] [CrossRef]
- Adiletta, G.; Zampella, L.; Coletta, C.; Petriccione, M. Chitosan coating to preserve the qualitative traits and improve antioxidant system in fresh figs (Ficus carica L.). Agriculture 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Waghmare, R.B.; Annapure, U.S. Integrated effect of radiation processing and modified atmosphere packaging (MAP) on shelf-life of fresh Fig. J. Food Sci. Technol. 2018, 55, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, Z.; Karaçay, E. Preservation of the Bursa Siyahı fresh fig under modified atmosphere packaging (MAP) and cold storage. Int. J. AgriSci. 2011, 1, 1–9. [Google Scholar]
- Martínez-Damián, M.T.; Cruz-Arvizu, O.; Cruz-Alvarez, O. Effect of modified atmosphere packaging on nutraceutical quality and overall appearance of figs stored at 1 °C. Not. Bot. Horti. Agrobot. Cluj-Napoca 2020, 48, 2292–2305. [Google Scholar] [CrossRef]
- Çalişkan, O.; Polat, A.A. Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Sci Hortic. 2011, 128, 473–478. [Google Scholar] [CrossRef]
- Byeon, S.E.; Lee, J. Differential responses of fruit quality and major targeted metabolites in three different cultivars of cold-stored figs (Ficus carica L.). Sci. Hortic. 2020, 260, 108877. [Google Scholar] [CrossRef]
- Trad, M.; Bourvellec, L.B.; Gaaliche, B.; Renard, C.M.G.C.; Mars, M. Nutritional compounds in figs from the Southern Mediterranean region. Int. J. Food Prop. 2014, 17, 491–499. [Google Scholar] [CrossRef]
- Allegra, A.; Sortino, G.; Inglese, P.; Settanni, L.; Todaro, A.; Gallotta, A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packag. Shelf Life 2017, 12, 135–141. [Google Scholar] [CrossRef]
- Almenar, E.; Hernández-Muñoz, P.; Lagarón, J.M.; Catalá, R.; Gavara, R. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J. Agric. Food Chem. 2006, 54, 86–91. [Google Scholar] [CrossRef]
- Falagan, N.; Miclo, T.; Terry, L.A. Graduated controlled atmosphere: A novel approach to increase “Duke” blueberry storage life. Front. Plant Sci. 2020, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- Bouzo, C.A.; Travadelo, M.; Gariglio, N.F. Effect of different packaging materials on postharvest quality of fresh fig fruit. Int. J. Agric. Biol. 2012, 14, 821–825. [Google Scholar]
- Mathooko, F.M.; Sotokawa, T.; Kubo, Y.; Inaba, A.; Nakamura, R. Retention of freshness in fig fruit by CO2 enriched atmosphere treatment or modified atmosphere packaging under ambient temperature. J. Jpn. Soc. Hortic. Sci. 1993, 62, 661–667. [Google Scholar] [CrossRef] [Green Version]
Atmospheric Compositions | Tested Parameters | Storage Time (days) | ||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | ||
PA-1 | Decay rate (%) | ** | ** | ** | 6.06 bB | 18.18 bA * |
PA-2 | ** | ** | ** | 7.58 bB | 13.64 bcA | |
PA-3 | ** | ** | ** | 1.52 cB | 9.09 cA | |
RA | ** | ** | ** | 18.18 aB | 30.30 aA | |
PA-1 | Microbial count (cfu) | 0.95 aE | 2.60 bD | 7.16 bC | 9.47 bB | 12.12 aA |
PA-2 | 0.95 aB | 2.78 bB | 5.60 cA | 6.16 cA | 7.13 bA | |
PA-3 | 0.95 aD | 2.68 bC | 6.22 cB | 5.63 cB | 8.90 bA | |
RA | 0.95 aE | 6.66 aD | 9.77 aC | 11.85 aB | 14.87 aA |
Atmospheric Compositions | Tested Parameters | Storage Time (days) | ||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | ||
PA-1 | TSS (%) | 15.03 aB | 15.07 abB | 16.50 aA | 13.83aC | 12.83 abD * |
PA-2 | 15.03 aB | 14.63 bBC | 16.17 abA | 14.17 aCD | 13.73 aD | |
PA-3 | 15.03 aB | 14.83 bB | 15.90 abA | 12.77 bC | 12.53 bcC | |
RA | 15.03 aB | 15.67 aA | 15.50 bAB | 11.67 cC | 11.73 cC | |
PA-1 | TA (%) | 0.24 aBC | 0.26 bB | 0.28 aA | 0.24 bBC | 0.23 bD |
PA-2 | 0.24 aB | 0.28 aA | 0.29 aA | 0.25 aB | 0.25 aB | |
PA-3 | 0.24 aB | 0.29 aA | 0.28 aA | 0.26 abBC | 0.25 aBC | |
RA | 0.24 aA | 0.25 bA | 0.24 bA | 0.21 cB | 0.19 cB | |
PA-1 | Taste 1 | 5.00 aA | 5.00 aA | 4.94 aA | 4.83 aA | 4.67 aA |
PA-2 | 5.00 aA | 5.00 aA | 4.94 aA | 4.83 aA | 4.67 aA | |
PA-3 | 5.00 aA | 5.00 aA | 4.89 aAB | 4.78 aAB | 4.61 aB | |
RA | 5.00 aA | 4.67 bA | 3.89 bB | 3.61 bB | 3.50 bB |
Atmospheric Compositions | Tested Parameters | Storage Time (Days) | ||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | ||
PA-1 | Fructose (g 100 g−1) | 9.65 aA | 8.09 bB | 9.85 aA | 7.69 aB | 8.08 aB * |
PA-2 | 9.65 aA | 10.29 aA | 9.43 aA | 6.52 bB | 6.49 bB | |
PA-3 | 9.65 aA | 9.91 aA | 8.06 bB | 7.14 abB | 7.86 aB | |
RA | 9.65 aA | 8.41 bB | 9.03 abAB | 6.49 bC | 6.43 bC | |
PA-1 | Glucose (g 100 g−1) | 7.43 aB | 8.38 bcA | 8.02 aA | 5.92 aC | 5.72 aC |
PA-2 | 7.43 aB | 10.22 aA | 7.66 aB | 5.32 aC | 5.58 aC | |
PA-3 | 7.43 aB | 9.44 abA | 6.47 bC | 5.98 aC | 5.42 abD | |
RA | 7.43 aA | 7.34 cA | 7.92 aA | 5.52 aB | 5.19 bB | |
PA-1 | Citric acid (mg 100 g−1) | 340.8 aA | 343.0 aA | 354.6 aA | 345.3 abA | 324.8 bA |
PA-2 | 340.8 aA | 350.7 aA | 363.3 aA | 372.7 aA | 359.4 aA | |
PA-3 | 340.8 aB | 344.3 aB | 348.5 aAB | 373.3 aA | 351.3 abAB | |
RA | 340.8 aA | 356.8 aA | 327.3 aA | 324.3 bA | 266.3 cB | |
PA-1 | Malic acid (mg 100 g−1) | 161.0 aC | 180.5 aB | 195.5 aA | 158.0 aC | 139.7 bD |
PA-2 | 161.0 aC | 171.8 aBC | 193.0 aA | 178.2 aB | 168.9 aBC | |
PA-3 | 161.0 aBC | 175.3 aB | 194.4 aA | 170.2 aB | 149.7 bC | |
RA | 161.0 aB | 176.5 aA | 180.8 bA | 163.6 aB | 122.4 cC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, A.; Erkan, M. Responses of High Carbon Dioxide Concentration on Postharvest Quality of Fresh Fig Fruit during Storage. Horticulturae 2023, 9, 293. https://doi.org/10.3390/horticulturae9030293
Dogan A, Erkan M. Responses of High Carbon Dioxide Concentration on Postharvest Quality of Fresh Fig Fruit during Storage. Horticulturae. 2023; 9(3):293. https://doi.org/10.3390/horticulturae9030293
Chicago/Turabian StyleDogan, Adem, and Mustafa Erkan. 2023. "Responses of High Carbon Dioxide Concentration on Postharvest Quality of Fresh Fig Fruit during Storage" Horticulturae 9, no. 3: 293. https://doi.org/10.3390/horticulturae9030293
APA StyleDogan, A., & Erkan, M. (2023). Responses of High Carbon Dioxide Concentration on Postharvest Quality of Fresh Fig Fruit during Storage. Horticulturae, 9(3), 293. https://doi.org/10.3390/horticulturae9030293