Evaluation of SPAD Index for Estimating Nitrogen and Magnesium Contents in Three Blueberry Varieties (Vaccinium corymbosum L.) on the Andean Tropics
Abstract
1. Introduction
2. Materials and Methods
2.1. Localization
2.2. Plant Materials
2.3. Crop Management
2.4. Measurement of SPAD, Nitrogen y Magnesium Values
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, T.K. Vaccinium corymbosum. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; pp. 452–464. [Google Scholar] [CrossRef]
- Jaime-Guerrero, M.; Álvarez-Herrera, J.G.; Ruiz-Berrío, H.D. Postharvest application of acibenzolar-S-methyl and plant extracts affect physicochemical properties of blueberry (Vaccinium corymbosum L.) fruits. Agron. Colomb. 2022, 40, 42–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, D.; Wang, B.; Yang, X.; Wu, H.; Qu, P.; Yan, L.; Li, T. Characterization of Highbush Blueberry (Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Curr. Issues Mol. Biol. 2023, 45, 379–399. [Google Scholar] [CrossRef] [PubMed]
- Protzman, E. Blueberries Around the Globe—Past, Present, and Future. In International Agricultural Trade Report; U.S. Department of Agriculture: Washington, DC, USA, 2021; pp. 1–6. Available online: https://www.fas.usda.gov/sites/default/files/2021-10/GlobalBlueberriesFinal_1.pdf (accessed on 8 January 2023).
- Cleves, J. Fundamentos Técnicos del Cultivo del Arándano (Vaccinium corymbosum L.) en la Región Central de Colombia; Editorial de la Universidad Pedagógica y Tecnológica de Colombia-UPTC: Tunja, Colombia, 2021; p. 96. [Google Scholar]
- Fischer, G.; Parra-Coronado, A.; Balaguera-López, H.E. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia—A review. Agron. Colomb. 2022, 40, 70–85. [Google Scholar] [CrossRef]
- Roveda-Hoyos, G.; Venegas-Gómez, J.F.; Moreno-Fonseca, L.P.; Magnitskiy, S.; Ramírez-Gómez, M. Effect of inoculation with Acaulospora and Glomus on the growth and nutrition of blueberries (Vaccinium corymbosum) with different fertilization levels. Rev. Colomb. Cienc. Hortícolas 2022, 16, e13561. [Google Scholar] [CrossRef]
- Tagliavini, M.; Baldi, E.; Lucchi, P.; Antonelli, M.; Sorrenti, G.; Baruzzi, G.; Faedi, W. Dynamics of nutrients uptake by strawberry plants (Fragaria x Ananassa Dutch.) grown in soil and soilless culture. Eur. J. Agron. 2005, 23, 15–25. [Google Scholar] [CrossRef]
- Han, D.G.; Heo, S.; Chio, J.M.; Chung, Y.S. SPAD: Potential phenotyping method for characterization of blueberry. Mol. Biol. Rep. 2022, 49, 5505–5510. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Hu, C. Fruit Crops—Diagnosis and Management of Nutrient Constraints; Elsevier: Amsterdam, The Netherlands, 2020; p. 776. [Google Scholar]
- Prado, R.M.; Rozane, D.E. Chapter 11. Leaf analysis as diagnostic tool for balanced fertilization in tropical fruits. In Fruit Crops—Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 131–143. [Google Scholar]
- Güiza-Castillo, L.; Pinzón-Sandoval, E.H.; Serrano-Reyes, P.A.; Cely-Reyes, G.E.; Serrano-Agudelo, P.C. Estimation and correlation of chlorophyll and nitrogen contents in Psidium guajava L. with destructive and non-destructive methods. Rev. Colomb. Cienc. Hortícolas 2020, 14, 462–470. [Google Scholar] [CrossRef]
- Nestbya, R.; Retamales, J.B. Chapter 40. Diagnosis and management of nutritional constraints in berries. In Fruit Crops—Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 567–582. [Google Scholar]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; p. 668. [Google Scholar]
- Evans, J.R.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Pinzón-Sandoval, E.H.; Almanza-Merchán, P.J.; Cely-Reyes, G.E.; Serrano-Cely, P.A.; Ayala-Martínez, G.A. Correlation between SPAD and chlorophylls a, b and total in leaves from Vaccinium corymbosum L. cv. Biloxi, Legacy and Victoria in the high tropics. Rev. Colomb. Cienc. Hortícolas 2022, 16, e14693. [Google Scholar] [CrossRef]
- Saravia, D.; Farfán-Vignolo, E.R.; Gutiérrez, R.; De Mendiburu, F.; Schafleitner, R.; Bonierbale, M.; Khan, M.A. Yield and Physiological Response of Potatoes Indicate Different Strategies to Cope with Drought Stress and Nitrogen Fertilization. Am. J. Potato Res. 2016, 93, 288–295. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Leaf Nitrogen, Based on SPAD Chlorophyll Reading Can Determine Agronomic Parameters of Winter Wheat. Int. J. Plant Prod. 2022, 16, 77–91. [Google Scholar] [CrossRef]
- Zhang, K.; Yuan, Z.; Yang, T.; Lu, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Chlorophyll meter–based nitrogen fertilizer optimization algorithm and nitrogen nutrition index for in-season fertilization of paddy rice. Agron. J. 2020, 112, 288–300. [Google Scholar] [CrossRef]
- Ramos-García, C.A.; Martínez-Martínez, L.J.; Bernal-Riobo, J.H. Estimating chlorophyll and nitrogen contents in maize leaves (Zea mays L.) with spectroscopic analysis. Rev. Colomb. Cienc. Hortícolas 2022, 16, e13398. [Google Scholar] [CrossRef]
- Callejas, R.; Kania, E.; Contreras, A.; Peppi, C.; Morales, L. Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia 2014, 31, 19–26. [Google Scholar] [CrossRef]
- Castañeda, C.; Almanza-Merchán, P.; Pinzón-Sandoval, E.; Cely, G.; Serrano, P. Estimación de la concentración de clorofila mediante métodos no destructivos en vid (Vitis vinifera L.) cv. Riesling Becker. Rev. Colomb. Cienc. Hortícolas 2018, 12, 329–337. [Google Scholar] [CrossRef]
- Cepeda, M.A.; Vélez-Sánchez, J.E.; Balaguera-López, H.E. Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Rev. Colomb. Cienc. Hortícolas 2021, 15, e12508. [Google Scholar] [CrossRef]
- Hirzel, J. Fertilización en el Arándano. In Manual de Arándano; Undurraga, P., Vargas, S., Eds.; Centro Regional de Investigación Quilamapu: Chillán, Chile, 2013; pp. 31–42. [Google Scholar]
- Han, D.G.; Ho Jung, D.; Heo, S.; Suk Chung, Y. SPAD Value Difference between Blueberry Cultivar ‘STAR’ by Planted Ground and Pot. Phyton 2022, 91, 2583–2590. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, fruit yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology. Encyclopedia of Ecology, Five-Volume Set; Springer International Publishing: Cham, Switzerland, 2019; pp. 2744–2751. [Google Scholar] [CrossRef]
- Zydlik, Z.; Zydlik, P.; Kafkas, N.E.; Yesil, B.; Cieśliński, S. Foliar Application of Some Macronutrients and Micronutrients Improves Yield and Fruit Quality of Highbush Blueberry (Vaccinium corymbosum L.). Horticulturae 2022, 8, 664. [Google Scholar] [CrossRef]
- Baek, S.-A.; Im, K.-H.; Park, S.U.; Oh, S.-D.; Choi, J.; Kim, J.K. Dynamics of Short-Term Metabolic Profiling in Radish Sprouts (Raphanus sativus L.) in Response to Nitrogen Deficiency. Plants 2019, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep. 2018, 8, 2327. [Google Scholar] [CrossRef]
- Lukas, S.; Singh, S.; DeVetter, L.W.; Davenport, J.R. Leaf Tissue Macronutrient Standards for Northern Highbush Blueberry Grown in Contrasting Environments. Plants 2022, 11, 3376. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Chen, X.F.; Deng, C.L.; Yang, L.T.; Lai, N.W.; Guo, J.X.; Chen, L.S. Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in citrus sinensis seedlings. Plants 2019, 8, 389. [Google Scholar] [CrossRef]
- Islam, W.; Tauqeer, A.; Waheed, A.; Zeng, F. MicroRNA Mediated Plant Responses to Nutrient Stress. Int. J. Mol. Sci. 2022, 23, 2562. [Google Scholar] [CrossRef]
- Lee, Y.; Kweon, H.J.; Park, M.-Y.; Lee, D. Field Assessment of Macronutrients and Nitrogen in Apple Leaves Using a Chlorophyll Meter. Horttechnology 2019, 29, 300–307. [Google Scholar] [CrossRef]
- Simkó, A.; Veres, S. Evaluation of the correlation between SPAD readings and absolute chlorophyll content of maize under different nitrogen supply conditions. Acta Agrar. Debr. 2019, 2, 121–126. [Google Scholar] [CrossRef]
- Bloom, A.; Smith, S. Nutrição Mineral. In Fisiologia e Desenvolvimento Vegetal; Taiz, L., Zeiger, E., Møller, I., Murphy, A., Eds.; 6a Edição: Porto Alegre, Brazil, 2017; pp. 119–143. [Google Scholar]
- Fiedor, L.; Zbyradowski, M.; Pilch, M. Tetrapyrrole pigments of photosynthetic antennae and reaction centers of higher plants: Structures, biophysics, functions, biochemistry, mechanisms of regulation, applications. In Advances in Botanical Research, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 90, pp. 1–33. [Google Scholar] [CrossRef]
- Zeng, Z.; Lin, T.; Zhao, J.; Zheng, T.; Xu, L.; Wang, Y.; Liu, L.; Jiang, L.; Chen, S.; Wan, J. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa). J. Integr. Agric. 2020, 19, 612–623. [Google Scholar] [CrossRef]
- Lin, F.F.; Qiu, L.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Comput. Electron. Agric. 2010, 71, 60–65. [Google Scholar] [CrossRef]
- Willows, R.D. The Mg Branch of Chlorophyll Synthesis: Biosynthesis of Chlorophyll a from Protoporphyrin IX. In Advances in Botanical Research, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 90, pp. 141–182. [Google Scholar] [CrossRef]
- Tränkner, M.; Jamali, S. Minimum magnesium concentrations for photosynthetic efficiency in wheat and sunflower seedlings. Plant Physiol. Biochem. 2019, 144, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Bashir, S.; Raza, H.; Shah, A.N.; Iqbal, J.; Arif, M.; Bukhari, M.A.; Muhammad, S.; Hashim, S.; Alkahtani, J.; et al. Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi J. Biol. Sci. 2021, 28, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
- Wadas, W.; Dziugieł, T. Changes in assimilation area and chlorophyll content of very early potato (Solanum tuberosum L.) cultivars as influenced by biostimulants. Agronomy 2020, 10, 387. [Google Scholar] [CrossRef]
February | March | April | May | June | July | August | |
---|---|---|---|---|---|---|---|
Temperature (°C) | 13.2 | 15.4 | 15.0 | 14.5 | 14 | 14.2 | 13.7 |
RH (%) | 88.8 | 77.6 | 79.9 | 81.1 | 83.8 | 80.4 | 79.8 |
Variety | Variable | Parameters Linear Regression | |||||
---|---|---|---|---|---|---|---|
Intercept | p-Value | Slope | p-Value | R2 Adjusted | Equation Lineal Model | ||
Biloxi | Nitrogen | −1.1535 | <0.001 | 0.05269 | <0.001 | 0.91 | N = 0.0569 × SPAD − 1.1535 |
Magnesium | −1.1637 | <0.001 | 0.02172 | <0.001 | 0.87 | Mg = 0.02172 × SPAD − 1.1637 | |
Legacy | Nitrogen | −0.7309 | <0.001 | 0.03846 | <0.001 | 0.9 | N = 0.03846 × SPAD − 0.7309 |
Magnesium | −0.3226 | <0.001 | 0.00674 | <0.001 | 0.89 | Mg = 0.00674 × SPAD − 0.3226 | |
Victoria | Nitrogen | −1.0261 | <0.001 | 0.05313 | <0.001 | 0.94 | N = 0.05313 × SPAD − 1.0261 |
Magnesium | −0.1448 | <0.001 | 0.005218 | <0.001 | 0.82 | Mg = 0.005218 × SPAD − 0.1448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzón-Sandoval, E.H.; Balaguera-López, H.E.; Almanza-Merchán, P.J. Evaluation of SPAD Index for Estimating Nitrogen and Magnesium Contents in Three Blueberry Varieties (Vaccinium corymbosum L.) on the Andean Tropics. Horticulturae 2023, 9, 269. https://doi.org/10.3390/horticulturae9020269
Pinzón-Sandoval EH, Balaguera-López HE, Almanza-Merchán PJ. Evaluation of SPAD Index for Estimating Nitrogen and Magnesium Contents in Three Blueberry Varieties (Vaccinium corymbosum L.) on the Andean Tropics. Horticulturae. 2023; 9(2):269. https://doi.org/10.3390/horticulturae9020269
Chicago/Turabian StylePinzón-Sandoval, Elberth Hernando, Helber Enrique Balaguera-López, and Pedro José Almanza-Merchán. 2023. "Evaluation of SPAD Index for Estimating Nitrogen and Magnesium Contents in Three Blueberry Varieties (Vaccinium corymbosum L.) on the Andean Tropics" Horticulturae 9, no. 2: 269. https://doi.org/10.3390/horticulturae9020269
APA StylePinzón-Sandoval, E. H., Balaguera-López, H. E., & Almanza-Merchán, P. J. (2023). Evaluation of SPAD Index for Estimating Nitrogen and Magnesium Contents in Three Blueberry Varieties (Vaccinium corymbosum L.) on the Andean Tropics. Horticulturae, 9(2), 269. https://doi.org/10.3390/horticulturae9020269