Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Data Collection
2.2. Data Analysis IBM SPSS Statistics for Macintosh, Version 25.0
3. Results
3.1. Distribution of Respondents across Demographic Variables
3.2. Farmers’ Knowledge and Perception of Tomato Production Problems
3.3. Whitefly Management Practices
3.4. Association among the Study Variables by Crosstabulation
4. Discussion
4.1. Farmers’ Knowledge and Perception of Different Aspects of Tomato Pests
4.2. Whitefly Management Practices
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Estrada, A.; Gamboa-Angulo, M.; Borges-Argáez, R.; Ruiz-Sánchez, E. Insecticidal effects of plant extracts on immature whitefly Bemisia tabaci Genn.(Hemiptera: Aleyroideae). Electron. J. Biotechnol. 2013, 16, 6. [Google Scholar]
- Sri, N.R.; Jha, S. Whitefly biology and morphometry on tomato plants. J. Entomol. Zool. Stud. 2018, 6, 2079–2081. [Google Scholar]
- Lee, M.-H.; Lee, H.-K.; Lee, H.-G.; Lee, S.-G.; Kim, J.-S.; Kim, S.-E.; Kim, Y.-S.; Suh, J.-K.; Youn, Y.-N. Effect of cyantraniliprole against of Bemisia tabaci and prevention of tomato yellow leaf curl virus (TYLCV). Korean J. Pestic. Sci. 2014, 18, 33–40. [Google Scholar] [CrossRef]
- Žanić, K.; Dumičić, G.; Mandušić, M.; Vuletin Selak, G.; Bočina, I.; Urlić, B.; Ljubenkov, I.; Bučević Popović, V.; Goreta Ban, S. Bemisia tabaci MED Population Density as Affected by Rootstock-Modified Leaf Anatomy and Amino Acid Profiles in Hydroponically Grown Tomato. Front. Plant Sci. 2018, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Ochilo, W.N.; Nyamasyo, G.N.; Kilalo, D.; Otieno, W.; Otipa, M.; Chege, F.; Karanja, T.; Lingeera, E.K. Ecological limits and management practices of major arthropod pests of tomato in Kenya. J. Agric. Sci. Pract. 2019, 4, 29–42. [Google Scholar] [CrossRef]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Scholthof, K.B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Moriones, E.; Navas-Castillo, J. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 2000, 71, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Kashina, B.D.; Mabagala, R.B.; Mpunami, A.A. Transmission properties of tomato yellow leaf curl virus from Tanzania. J. Plant Prot. Res. 2007, 47, 43–51. [Google Scholar]
- Hussain, I.; Farooq, T.; Khan, S.; Ali, N.; Waris, M.; Jalal, A.; Nielsen, S.; Ali, S. Variability in indigenous Pakistani tomato lines and worldwide reference collection for Tomato Mosaic Virus (ToMV) and Tomato Yellow Leaf Curl Virus (TYLCV) infection. Braz. J. Biol. 2022, 84, e253605. [Google Scholar] [CrossRef] [PubMed]
- Moodley, V.; Gubba, A.; Mafongoya, P.L.J.C.P. A survey of whitefly-transmitted viruses on tomato crops in South Africa. Crop Prot. 2019, 123, 21–29. [Google Scholar] [CrossRef]
- Gauli, K.; Sah, L.; Shrestha, J.; Rajbhandari, B.; Ghimire, A. Major Insect Pests and Pesticide Use Practices among Tomato Growers in Kathmandu and Bhaktapur Districts. J. Plant Prot. Soc. 2020, 6, 202–211. [Google Scholar] [CrossRef]
- Laizer, H.C.; Chacha, M.N.; Ndakidemi, P.A. Farmers’ Knowledge, Perceptions and Practices in Managing Weeds and Insect Pests of Common Bean in Northern Tanzania. Sustainability 2019, 11, 4076. [Google Scholar] [CrossRef] [Green Version]
- Mrosso, S.E.; Ndakidemi, P.A.; Mbega, E.R. Characterization of Secondary Metabolites Responsible for the Resistance of Local Tomato Accessions to Whitefly (Bemisia tabaci, Gennadius 1889) Hemiptera in Tanzania. Crops 2022, 2, 445–460. [Google Scholar] [CrossRef]
- Acharya, R.; Shrestha, Y.K.; Sharma, S.R.; Lee, K.-Y. Genetic diversity and geographic distribution of Bemisia tabaci species complex in Nepal. J. Asia Pac. Entomol. 2020, 23, 509–515. [Google Scholar] [CrossRef]
- Gill, H.K.; Garg, H.; Gill, A.K.; Gillett-Kaufman, J.L.; Nault, B.A. Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. J. Integr. Pest Manag. 2015, 6, pmv006. [Google Scholar] [CrossRef]
- Alam, M.; Islam, M.; Haque, M.; Humayun, R.; Khalequzzaman, K.M. Bio-rational management of whitefly (Bemisia tabaci) for suppressing tomato yellow leaf curl virus. Bangladesh J. Agric. Res. 2016, 41, 583–597. [Google Scholar] [CrossRef]
- Ghelani, M.; Kabaria, B.; Ghelani, Y.; Shah, K.; Acharya, M. Biology of whitefly, Bemisia tabaci (Gennadius) on tomato. J. Entomol. Zool. Stud. 2020, 8, 1596–1599. [Google Scholar]
- Ghosh, S.; Ghanim, M. Factors determining transmission of persistent viruses by Bemisia tabaci and emergence of new virus–vector relationships. Viruses 2021, 13, 1808. [Google Scholar] [CrossRef]
- URT. National Sample Census of Agriculture 2019/20. 2021. Available online: https://www.nbs.go.tz/index.php/en/census-surveys/agriculture-statistics (accessed on 15 December 2022).
- Palacios-Lopez, A.; Christiaensen, L.; Kilic, T. How much of the labor in African agriculture is provided by women? Food Policy 2017, 67, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Kongela, S.M. Gender Equality in Ownership of Agricultural Land in Rural Tanzania: Does Matrilineal Tenure System Matter? Afric. J. Land Policy Geospat. Sci. 2020, 3, 13–27. [Google Scholar]
- Mwatawala, H.W.; Mponji, R.; Sesela, M. Factors Influencing Profitability of Small-Scale Tomato (Lycopersicon esculentum) Production in Mvomero District, Tanzania. Int. J. Progress. Sci. Technol. 2019, 14, 114–121. [Google Scholar]
- Masunga, A.W. Assessment of Socio-Economic and Institutional Factors Influencing Tomato Productivity Amongst Smallholder Farmers: A Case Study of Musoma Municipality, Tanzania. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2014. Available online: https://www.suaire.sua.ac.tz/handle/123456789/599 (accessed on 12 September 2022).
- Anang, B.T.; Zulkarnain, Z.A.; Yusif, S. Production constraints and measures to enhance the competitiveness of the tomato industry in Wenchi Municipal District of Ghana. Am. J. Exp. Agric. 2013, 3, 824. [Google Scholar] [CrossRef]
- Hlouskova, Z.; Prasilova, M. Economic outcomes in relation to farmers’ age in the Czech Republic. Agric. Econ. 2020, 66, 149–159. [Google Scholar] [CrossRef]
- Rapsomanikis, G. The Economic Lives of Smallholder Farmers. An Analysis Based on Household Data from Nine Countries; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Moranga, L.O.; Otieno, D.J.; Oluoch-Kosura, W. Analysis of Factors Influencing Tomato Farmers’ Willingness to Adopt Innovative Timing Approaches for Management of Climate Change Effects in Taita Taveta County, Kenya. Doctoral Dissertation, University of Nairobi, Nairobi, Kenya, 2016. [Google Scholar]
- Peng, L.; Zhou, X.; Tan, W.; Liu, J.; Wang, Y. Analysis of dispersed farmers’ willingness to grow grain and main influential factors based on the structural equation model. J. Rural Stud. 2022, 93, 375–385. [Google Scholar] [CrossRef]
- Singh, A.K.; Shikha, K.; Shahi, J.P. Hybrids and abiotic stress tolerance in horticultural crops. In Stress Tolerance in Horticultural Crops; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–50. [Google Scholar]
- Bala, K.; Sood, A.; Pathania, V.S.; Thakur, S. Effect of plant nutrition in insect pest management: A review: A review. J. Pharmacogn. Phytochem. 2018, 7, 2737–2742. [Google Scholar]
- Vosman, B.; van’t Westende, W.P.; Henken, B.; van Eekelen, H.D.; de Vos, R.C.; Voorrips, R.E. Broad spectrum insect resistance and metabolites in close relatives of the cultivated tomato. Euphytica 2018, 214, 46. [Google Scholar] [CrossRef] [Green Version]
- Bihon, W.; Ognakossan, K.E.; Tignegre, J.-B.; Hanson, P.; Ndiaye, K.; Srinivasan, R. Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae 2022, 8, 579. [Google Scholar] [CrossRef]
- Gangwar, R.; Gangwar, C. Lifecycle, distribution, nature of damage and economic importance of whitefly, Bemisia tabaci (Gennadius). Acta Sci. Agric. 2018, 2, 36–39. [Google Scholar]
- Khan, I.; Wan, F. Life history of Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) biotype B on tomato and cotton host plants. J. Entomol. Zool. Stud. 2015, 3, 117–121. [Google Scholar]
- Perring, T.M.; Stansly, P.A.; Liu, T.; Smith, H.A.; Andreason, S.A. Whiteflies: Biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato; Elsevier: Amsterdam, The Netherlands, 2018; pp. 73–110. [Google Scholar]
- Nwezeobi, J.; Onyegbule, O.; Nkere, C.; Onyeka, J.; van Brunschot, S.; Seal, S.; Colvin, J. Cassava whitefly species in eastern Nigeria and the threat of vector-borne pandemics from East and Central Africa. PLoS ONE 2020, 15, e0232616. [Google Scholar] [CrossRef]
- Hasanuzzaman, A.T.M.; Islam, M.N.; Zhang, Y.; Zhang, C.-Y.; Liu, T.-X. Leaf morphological characters can be a factor for intra-varietal preference of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among eggplant varieties. PLoS ONE 2016, 11, e0153880. [Google Scholar] [CrossRef]
- Fiallo-Olivé, E.; Navas-Castillo, J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol. Plant Pathol. 2019, 20, 1307–1320. [Google Scholar] [CrossRef]
- Dube, J.; Ddamulira, G.; Maphosa, M. Tomato breeding in sub-Saharan Africa-Challenges and opportunities: A review. Afr. Crop Sci. J. 2020, 28, 131–140. [Google Scholar]
- Naveen, N.; Chaubey, R.; Kumar, D.; Rebijith, K.; Rajagopal, R.; Subrahmanyam, B.; Subramanian, S. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Shankarappa, A.; Marulasidappa, K.C.; Venkataravanappa, V.; Chandrashekar, S. Validation of IPM modules for the management of whitefly, Bemisia tabaci and Mungbean Yellow Mosaic Virus disease in greengram. J. Entomol. Res. Soc. 2022, 24, 245–255. [Google Scholar]
- Patra, B.; Hath, T.K. Insecticide Resistance in Whiteflies Bemisia tabaci (Gennadius): Current Global Status. In Insecticides—Impact and Benefits of Its Use for Humanity; Ranz, R.E.R., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Castle, S.J.; Merten, P.; Prabhaker, N. Comparative susceptibility of Bemisia tabaci to imidacloprid in field-and laboratory-based bioassays. Pest Manag. Sci. 2014, 70, 1538–1546. [Google Scholar] [CrossRef]
- Abtew, A.; Niassy, S.; Affognon, H.; Subramanian, S.; Kreiter, S.; Garzia, G.T.; Martin, T. Farmers’ knowledge and perception of grain legume pests and their management in the Eastern province of Kenya. Crop Prot. 2016, 87, 90–97. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ behaviour in pesticide use: A key concept for improving environmental safety. Curr. Opin. Environ. Sci. Health 2018, 4, 27–30. [Google Scholar] [CrossRef]
- Rother, H.-A. Pesticide labels: Protecting liability or health?–Unpacking “misuse” of pesticides. Curr. Opin. Environ. Sci. Health 2018, 4, 10–15. [Google Scholar] [CrossRef]
- Vryzas, Z.; Health. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 2018, 4, 5–9. [Google Scholar] [CrossRef]
Data Group | Description |
---|---|
Respondents’ demographic data and farm characteristics | Gender, age, marital status, education, farm size, yield |
Farmers’ knowledge and perception of tomato pests | Common tomato production problems, critical tomato production problems, a common insect pest of tomato, if tomato producers are aware of whitefly, whether whitefly is a common insect pest in the respondent’s area, destruction stage of whitefly, damage symptoms of whiteflies and whitefly peak time, perceptions of the impact of whitefly on tomato yields and whether whitefly is a populous insect pest in tomato production in the respondents’ area. |
Whitefly management practices perception | Whitefly control methods, control method that works better, pesticide use; pesticide products; pesticide spraying frequency in the field |
Variable | Frequency | Percentage | |
---|---|---|---|
Gender | Male Female Total | 116 34 150 | 77.3 22.7 100 |
Age | 15–24 25–34 35–44 45–55 55–64 65+ Total | 4 24 69 37 14 2 150 | 2.7 16.0 46.0 24.7 9.3 1.3 100 |
Marital status | Married Single Total | 133 17 150 | 88.7 11.3 100 |
Education level | Primary Secondary Tertiary Total | 121 21 8 150 | 82.0 14.0 4.0 100 |
Farm size in Ha | 0.2–0.4 0.6–0.8 >0.8 Total | 99 42 9 150 | 66.7 28.7 4.6 100 |
Farming experience in years | 2 4 5+ Total | 31 57 62 150 | 20.7 38.0 41.3 100 |
Tomato harvest/Ha | 6–9 9.5–11 11.5–15 15.5–19 Total | 9 23 62 56 150 | 6.1 15.3 41.3 37.3 100.0 |
Variable | Frequency | Percentage | |
---|---|---|---|
Tomato varieties cultivated | OPV Hybrid OPV and Hybrid Total | 30 82 38 150 | 20.0 54.7 25.3 100 |
Common tomato production problems | Insect pest Diseases Bad weather Poor soil fertility Insect pests and disease Total | 107 8 9 2 24 150 | 71.3 5.3 6.0 1.3 16.0 100 |
If the respondent is aware of whiteflies | Yes No Total | 112 38 150 | 74.7 25.3 100 |
Common insect pests of tomato in the area of respondent | Tomato leaf miner American Ball worm Whiteflies Tomato leaf miner and American ball worm Total | 18 2 98 32 150 | 12.1 1.3 65.3 21.3 100 |
Destruction stage of whiteflies | Adult Nymph Both adult and nymph Total | 100 27 23 150 | 66.7 18.0 15.3 100 |
Whiteflies damage symptoms | Leaf yellowing and curling Plant stunting Plant wilting Do not know Total | 61 26 31 32 150 | 40.7 17.3 20.7 21.3 100 |
Peak whiteflies population in tomato growing season | In the nursery The first month after transplanting Flowering stage All the production season Total | 1 36 61 52 150 | 0.7 24.0 40.7 34.7 100 |
Variable | Frequency | Percentage | |
---|---|---|---|
Respondents Whitefly management practices | Chemical method Cultural method IPM Field and surroundings sanitation Total | 118 3 14 15 150 | 78.7 2.0 9.3 10.0 100.0 |
Whitefly management option(s) that work(s) better | Chemical method Cultural method IPM Total | 124 14 12 150 | 82.7 9.3 8.0 100.0 |
If respondents have pesticide application knowledge | Yes No Total | 23 127 150 | 13.3 84.7 100 |
If respondents use synthetic pesticides to control whiteflies | Yes No Total | 124 26 150 | 82.7 17.3 100.0 |
Type of synthetic pesticide a respondent use | Snow tiger-Chlorfenapyr10% Snow thunder-Thiamethoxam3% + Emamectin Benzoate 1% Profecron- Profecros750G/L Dudu will—Cypermethrin Snow thunder and snow tiger Profecron and snow tiger Snow tiger and Duduwill Total | 26 41 22 20 18 20 3 150 | 17.3 27.3 14.7 13.3 12.0 13.3 2.0 100.0 |
Source of extension services in tomato production | Government Private Both government and private Total | 64 56 30 150 | 42.7 37.3 20.0 100.0 |
Guidance on the pesticide rate of application | As per label instruction Experience As per the extension officer’s advice None Total | 74 22 31 23 150 | 49.3 14.7 20.7 15.3 100.0 |
Frequency of pesticide application in the tomato growing season | Once Twice Three times More than three times None Total | 33 8 61 26 22 150 | 22.0 5.3 40.7 17.3 14.7 100.0 |
Amount of crop loss due to whiteflies infestation if not controlled | Total crop loss 20% More than 20% Do not know Total | 65 7 48 30 150 | 43.3 4.7 32.0 20.0 100.0 |
Tomato Harvest | Total | ||||||
---|---|---|---|---|---|---|---|
6–9 | 9.5–11 | 11.5–15 | 15.5–19 | ||||
Respondent education level | Primary | Count | 14 | 34 | 58 | 15 | 121 |
Expected Count | 11.3 | 29.0 | 52.4 | 28.2 | 121.0 | ||
Secondary | Count | 0 | 1 | 6 | 14 | 21 | |
Expected Count | 2.0 | 5.0 | 9.1 | 4.9 | 21.0 | ||
Tertiary | Count | 0 | 1 | 1 | 6 | 8 | |
Expected Count | 0.7 | 1.9 | 3.5 | 1.9 | 8.0 | ||
Total | Count | 14 | 36 | 65 | 35 | 150 | |
Expected Count | 14.0 | 36.0 | 65.0 | 35.0 | 150.0 | ||
X2 = 43.54, df = 6, p = 0.000 |
Tomato Harvest | Total | ||||||
---|---|---|---|---|---|---|---|
6–9 | 9.5–11 | 11.5–15 | 15.5–19 | ||||
Years you have been in tomato production | 2 | Count | 3 | 9 | 12 | 7 | 31 |
Expected Count | 1.7 | 5.0 | 12.7 | 11.7 | 31.0 | ||
4 | Count | 3 | 12 | 29 | 13 | 57 | |
Expected Count | 3.1 | 9.2 | 23.3 | 21.4 | 57.0 | ||
5+ | Count | 2 | 3 | 20 | 36 | 61 | |
Expected Count | 3.3 | 9.8 | 25.0 | 22.9 | 61.0 | ||
Total | Count | 8 | 24 | 61 | 56 | 149 | |
Expected Count | 8.0 | 24.0 | 61.0 | 56.0 | 149.0 | ||
X2 = 25.4, df = 6, p = 0.000 |
Years You Have Been in Tomato Production | Total | |||||
---|---|---|---|---|---|---|
2 | 4 | 5+ | ||||
Age of respondent | 15–24 | Count | 4 | 0 | 0 | 4 |
Expected Count | 0.8 | 1.5 | 1.6 | 4.0 | ||
25–34 | Count | 18 | 6 | 0 | 24 | |
Expected Count | 5.0 | 9.2 | 9.8 | 24.0 | ||
35–44 | Count | 9 | 47 | 12 | 68 | |
Expected Count | 14.1 | 26.0 | 27.8 | 68.0 | ||
45–54 | Count | 0 | 4 | 33 | 37 | |
Expected Count | 7.7 | 14.2 | 15.1 | 37.0 | ||
55–64 | Count | 0 | 0 | 14 | 14 | |
Expected Count | 2.9 | 5.4 | 5.7 | 14.0 | ||
65 and above | Count | 0 | 0 | 2 | 2 | |
Expected Count | 0.4 | 0.8 | 0.8 | 2.0 | ||
Total | Count | 31 | 57 | 61 | 149 | |
Expected Count | 31.0 | 57.0 | 61.0 | 149.0 | ||
X2 = 1.47, df = 10, p = 0.000 |
Count | ||||||
---|---|---|---|---|---|---|
Rate of Application of Pesticides in Tomato Production | Total | |||||
As per Label Instruction | Experience | As per Extension Officer’s Advice | None | |||
Education level of the respondent | Primary | 59 | 20 | 22 | 20 | 121 |
Secondary | 10 | 2 | 7 | 2 | 21 | |
Tertiary | 5 | 0 | 2 | 1 | 8 | |
Total | 74 | 22 | 31 | 23 | 150 | |
X2 = 4.82, df = 6, p = 0.567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrosso, S.E.; Ndakidemi, P.A.; Mbega, E.R. Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania. Horticulturae 2023, 9, 253. https://doi.org/10.3390/horticulturae9020253
Mrosso SE, Ndakidemi PA, Mbega ER. Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania. Horticulturae. 2023; 9(2):253. https://doi.org/10.3390/horticulturae9020253
Chicago/Turabian StyleMrosso, Secilia E., Patrick Alois Ndakidemi, and Ernest R. Mbega. 2023. "Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania" Horticulturae 9, no. 2: 253. https://doi.org/10.3390/horticulturae9020253
APA StyleMrosso, S. E., Ndakidemi, P. A., & Mbega, E. R. (2023). Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania. Horticulturae, 9(2), 253. https://doi.org/10.3390/horticulturae9020253