Effects of Using Plasma-Activated Water as a Nitrate Source on the Growth and Nutritional Quality of Hydroponically Grown Green Oak Lettuces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Fertilizer Preparation
2.2. Plant Materials and Growth Conditions
2.3. Measurement of Plant Morphology and Growth Characteristics
2.4. Determination of Nitrate Contents in the Plants
2.5. Determination of Total Phenolic Compounds
2.6. Determination of Phosphorus, Potassium, Calcium, and Magnesium
2.7. Determination of Free Amino Acids
2.8. Statistical Analysis
3. Results and Discussions
3.1. Changes in the NO3 Concentration in the Solution
3.2. Growth Characteristics and Yields
3.3. Nutritional Quality Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pornsuriya, C.; Ito, S.; Sunpapao, A. First report of leaf spot on lettuce caused by Curvularia aeria. J. Gen. Plant Pathol. 2018, 84, 296–299. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations (FAOSTAT). Available online: https://www.fao.org/faostat/en/#data/RP (accessed on 15 November 2022).
- Camejo, D.; Frutos, A.; Mestre, T.C.; del Carmen Piñero, M.; Rivero, R.M.; Martínez, V. Artificial light impacts the physical and nutritional quality of lettuce plants. Hortic. Environ. Biotechnol. 2020, 61, 69–82. [Google Scholar] [CrossRef]
- Shohael, A.; Hrisha, A.A.; Ahamed, T.; Khatun, S. An easy and reproducible field to table technology for the production of hydroponics lettuce in Bangladesh International Journal of Agronomy and Agricultural Research (IJAAR). Int. J. Agron. Agric. Res. 2017, 10, 37–47. [Google Scholar]
- Market Analysis Report. Hydroponics Market Size, Share&Trends Analysis Report by Type (Aggregate Systems, Liquid Systems), by Crops (Tomatoes, Lettuce, Peppers, Cucumbers, Herbs), By Region, And Segment Forecasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/hydroponics-market (accessed on 15 November 2022).
- Siringam, K.; Theerawipa, K.; Hlaihakhot, N. Effect of nutrient solution on growth of lettuce (Lactuca sativa L.) cultivated under hydroponic system. Thai Sci. Technol. J. 2014, 22, 828–836. [Google Scholar]
- Hou, C.-Y.; Kong, T.-K.; Lin, C.-M.; Chen, H.-L. The Effects of Plasma-Activated Water on Heavy Metals Accumulation in Water Spinach. Appl. Sci. 2021, 11, 5304. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.-J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- van der Hoeven, M.; Kobayashi, Y.; Diercks, R. Technology roadmap: Energy and GHG reductions in the chemical industry via catalytic processes. Int. Energy Agency 2013, 56, 12–16. [Google Scholar]
- Chen, J.G.; Crooks, R.M.; Seefeldt, L.C.; Bren, K.L.; Bullock, R.M.; Darensbourg, M.Y.; Holland, P.L.; Hoffman, B.; Janik, M.J.; Jones, A.K. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, eaar6611. [Google Scholar] [CrossRef]
- Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 2013, 257, 2551–2564. [Google Scholar] [CrossRef]
- Chu, D.-T.; Vu Ngoc, S.-M.; Vu Thi, H.; Nguyen Thi, Y.-V.; Ho, T.-T.; Hoang, V.-T.; Singh, V.; Al-Tawfiq, J.A. COVID-19 in Southeast Asia: Current status and perspectives. Bioengineered 2022, 13, 3797–3809. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Chittrakul, J.; Sirikul, W.; Kitro, A.; Chaiut, W.; Panya, P.; Amput, P.; Chaipin, E.; Sutalangka, C.; Sidthilaw, S. Impact of COVID-19 Pandemic on Daily Lives, Agricultural Working Lives, and Mental Health of Farmers in Northern Thai-land. Sustainability 2022, 14, 1189. [Google Scholar] [CrossRef]
- Randeniya, L.K.; de Groot, G.J. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Plasma Process. Polym. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Starič, P.; Vogel-Mikuš, K.; Mozetič, M.; Junkar, I. Effects of Nonthermal Plasma on Morphology, Genetics and Physiology of Seeds: A Review. Plants 2020, 9, 1736. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Raghavan, V. Nonthermal plasma–liquid interactions in food processing: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1985–2008. [Google Scholar] [CrossRef] [PubMed]
- Park, D.P.; Davis, K.; Gilani, S.; Alonzo, C.-A.; Dobrynin, D.; Friedman, G.; Fridman, A.; Rabinovich, A.; Fridman, G. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr. Appl. Phys. 2013, 13, S19–S29. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhou, L.; Xie, J.; He, C. Plasma-activated water production and its application in agriculture. J. Sci. Food Agric. 2021, 101, 4891–4899. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J. Sterilization Efficiency of a Novel Electrochemical Dis-infectant against Staphylococcus aureus. Environ. Sci. Technol. 2016, 50, 3184–3192. [Google Scholar] [CrossRef]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lan, Q.; Pritchard, H.W.; Xue, H.; Wang, X. Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol. Biochem. 2016, 109, 406–415. [Google Scholar] [CrossRef]
- Mitra, A.; Li, Y.-F.; Klämpfl, T.G.; Shimizu, T.; Jeon, J.; Morfill, G.E.; Zimmermann, J.L. Inactivation of surface-borne microorgan-isms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol. 2014, 7, 645–653. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Sinclair, A.J.; Cahill, D.M.; Wang, X.; Dai, X.J. Nitrate and hydrogen peroxide generated in water by electrical discharges stimulate wheat seedling growth. Plasma Chem. Plasma Process. 2017, 37, 1393–1404. [Google Scholar] [CrossRef]
- Sarinont, T.; Katayama, R.; Wada, Y.; Koga, K.; Shiratani, M. Plant growth enhancement of seeds immersed in plasma activated water. MRS Adv. 2017, 2, 995–1000. [Google Scholar] [CrossRef]
- Graves, D.B.; Bakken, L.B.; Jensen, M.B.; Ingels, R. Plasma Activated Organic Fertilizer. Plasma Chem. Plasma Process. 2019, 39, 1–19. [Google Scholar] [CrossRef]
- Wu, S.; Thapa, B.; Rivera, C.; Yuan, Y. Nitrate and nitrite fertilizer production from air and water by continuous flow liq-uid-phase plasma discharge. J. Environ. Chem. Eng. 2021, 9, 104761. [Google Scholar] [CrossRef]
- Carmassi, G.; Cela, F.; Trivellini, A.; Gambineri, F.; Cursi, L.; Cecchi, A.; Pardossi, A.; Incrocci, L. Effects of Nonthermal Plasma (NTP) on the Growth and Quality of Baby Leaf Lettuce (Lactuca sativa var. acephala Alef.) Cultivated in an Indoor Hydroponic Growing System. Horticulturae 2022, 8, 251. [Google Scholar] [CrossRef]
- Jamie. Algae in Hydroponics: Types, Causes, Effects, Treating & More. Available online: https://whyfarmit.com/algae-in-hydroponics/ (accessed on 16 November 2022).
- Stephens, O. Algae in Hydroponics: How to Get Rid of and Prevent Its Growth. Available online: https://thehydroponicsplanet.com/how-to-get-rid-of-algae-in-hydroponics-for-good/ (accessed on 15 November 2022).
- Date, M.B.; Rivero, W.C.; Tan, J.; Specca, D.; Simon, J.; Salvi, D.; Karwe, M.V. Effect of Plasma-Activated Nutrient Solution (Pans) on Sweet Basil (O. basilicum L.) Grown Using an Ebb and Flow Hydroponic System. Soc. Sci. Res. Netw. 2022. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y. Nitrate Assay for Plant Tissues. Bio-Protoc. J. 2017, 7, e2029. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Miller, D.D.; Rutzke, M. Atomic absorption and emission spectroscopy. In Food Analysis, 3rd ed.; Kluwer: New York, NY, USA, 2003; pp. 401–421. [Google Scholar]
- Bisergaeva, R.A.; Sirieva, Y.N. Determination of calcium and magnesium by atomic absorption spectroscopy and flame pho-tometry. J. Phys. Conf. Ser. 2020, 1691, 012055. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Shuang, F.-F.; Yang, J.-X.; Jv, Y.-X.; Hu, R.-Z.; Chen, T.; Yao, X.-H.; Zhao, W.-G.; Liu, L.; Zhang, D.-Y. A rapid and efficient method of microwave-assisted extraction and hydrolysis and automatic amino acid analyzer determination of 17 amino acids from mulberry leaves. Ind. Crops Prod. 2022, 186, 115271. [Google Scholar] [CrossRef]
- Bradu, C.; Kutasi, K.; Magureanu, M.; Puač, N.; Živković, S. Reactive nitrogen species in plasma-activated water: Generation, chemistry and application in agriculture. J. Phys. D Appl. Phys. 2020, 53, 223001. [Google Scholar] [CrossRef]
- Al-Sharify, Z.T.; Al-Sharify, T.A.; al-Obaidy, B.W.; al-Azawi, A.M. Investigative Study on the Interaction and Applications of Plasma Activated Water(PAW). IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012042. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A. Root or shoot nitrate assimilation in terrestrial vascular plants—Does it matter? Plant Soil 2022, 476, 31–62. [Google Scholar] [CrossRef]
- Jia, Z.; Giehl, R.F.H.; von Wirén, N. The Root Foraging Response under Low Nitrogen Depends on DWARF1-Mediated Brassi-nosteroid Biosynthesis. Plant Physiol. 2020, 183, 998–1010. [Google Scholar] [CrossRef] [PubMed]
- Noh, S.W.; Park, J.S.; Kim, S.J.; Kim, D.-W.; Kang, W.S. Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System. Prot. Hortic. Plant Fact. 2020, 29, 464–472. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Shen, M.; Hou, J.; Shao, H.; Dong, Y.; Jiang, J. Improving Seed Germination and Peanut Yields by Cold Plasma Treatment. Plasma Sci. Technol. 2016, 18, 1027–1033. [Google Scholar] [CrossRef]
- Ndiffo Yemeli, G.B.; Švubová, R.; Kostolani, D.; Kyzek, S.; Machala, Z. The effect of water activated by nonthermal air plasma on the growth of farm plants: Case of maize and barley. Plasma Process. Polym. 2021, 18, 2000205. [Google Scholar] [CrossRef]
- Than, H.A.Q.; Pham, T.H.; Nguyen, D.K.V.; Pham, T.H.; Khacef, A. Non-thermal Plasma Activated Water for Increasing Ger-mination and Plant Growth of Lactuca sativa L. Plasma Chem. Plasma Process. 2022, 42, 73–89. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
- Hachiya, T.; Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 2016, 68, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Francesconi, S.; Balestra, G.M. The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat. PLoS ONE 2020, 15, e0235482. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Kusumi, K.; Iba, K.; Terashima, I. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell Environ. 2020, 43, 1230–1240. [Google Scholar] [CrossRef]
- Saberi, M.; Modarres Sanavy, M.A.; Zare, R.; Ghomi, H. Improvement of Photosynthesis and Photosynthetic Productivity of Winter Wheat by Cold Plasma Treatment under Haze Condition. J. Agric. Sci. Technol. 2019, 21, 1889–1904. [Google Scholar]
- Rahman, M.M.; Sajib, S.A.; Rahi, M.S.; Tahura, S.; Roy, N.C.; Parvez, S.; Reza, M.A.; Talukder, M.R.; Kabir, A.H. Mechanisms and Signaling Associated with LPDBD Plasma Mediated Growth Improvement in Wheat. Sci. Rep. 2018, 8, 10498. [Google Scholar] [CrossRef] [PubMed]
- Mujahid, Z.; Tounekti, T.; Khemira, H. Cold plasma treatment to release dormancy and improve growth in grape buds: A promising alternative to natural chilling and rest breaking chemicals. Sci. Rep. 2020, 10, 2667. [Google Scholar] [CrossRef]
- Fan, L.; Liu, X.; Ma, Y.; Xiang, Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. J. Taibah Univ. Sci. 2020, 14, 823–830. [Google Scholar] [CrossRef]
- Stoleru, V.; Burlica, R.; Mihalache, G.; Dirlau, D.; Padureanu, S.; Teliban, G.-C.; Astanei, D.; Cojocaru, A.; Beniuga, O.; Patras, A. Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Sci. Rep. 2020, 10, 20920. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-W.; Sung, Y.; Chen, B.-C.; Lai, H.-Y. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health 2014, 11, 4427–4440. [Google Scholar] [CrossRef]
- Henry-Kirk, R.A.; Plunkett, B.; Hall, M.; McGhie, T.; Allan, A.C.; Wargent, J.J.; Espley, R.V. Solar UV light regulates flavonoid metabolism in apple (Malus × domestica). Plant Cell Environ. 2018, 41, 675–688. [Google Scholar] [CrossRef]
- Zhou, W.; Liang, X.; Zhang, Y.; Li, K.; Jin, B.; Lu, L.; Jin, C.; Lin, X. Reduced nitrogen supply enhances the cellular antioxidant potential of phenolic extracts through alteration of the phenolic composition in lettuce (Lactuca sativa L.). J. Sci. Food Agric. 2019, 99, 4761–4771. [Google Scholar] [CrossRef] [PubMed]
- Tappi, S.; Ramazzina, I.; Rizzi, F.; Sacchetti, G.; Ragni, L.; Rocculi, P. Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples. Appl. Sci. 2018, 8, 1939. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Liu, S.; Ma, Y.; Xu, C.; Bai, Y. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innov. Food Sci. Emerg. Technol. 2019, 52, 49–56. [Google Scholar] [CrossRef]
- Laurita, R.; Gozzi, G.; Tappi, S.; Capelli, F.; Bisag, A.; Laghi, G.; Gherardi, M.; Cellini, B.; Abouelenein, D.; Vittori, S.; et al. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value. Innov. Food Sci. Emerg. Technol. 2021, 73, 102805. [Google Scholar] [CrossRef]
- Liu, C.; Chen, C.; Jiang, A.; Sun, X.; Guan, Q.; Hu, W. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innov. Food Sci. Emerg. Technol. 2020, 59, 102256. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Lu, X.; Cullen, P.J.; Ostrikov, K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- Han, Y.; Cheng, J.-H.; Sun, D.-W. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 794–811. [Google Scholar] [CrossRef]
- Wilson, T.L.; Guttieri, M.J.; Nelson, N.O.; Fritz, A.; Tilley, M. Nitrogen and sulfur effects on hard winter wheat quality and as-paragine concentration. J. Cereal Sci. 2020, 93, 102969. [Google Scholar] [CrossRef]
Treatment | Macronutrients (mg/L) | Micronutrients Concentration (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N Source | P | K | Ca | Mg | B | Mn | Zn | Cu | Mo | Fe | |||
NO3− | Plasma- NO3− | NH4 | |||||||||||
T1 | 0 | 0 | 234.97 | 161.15 | 48.86 | 0.50 | 0.50 | 0.05 | 0.02 | 0.01 | 5.05 | 0.01 | 5.05 |
T2 | 871.11 | 0 | 234.75 | 161.20 | 48.86 | 0.50 | 0.50 | 0.05 | 0.02 | 0.01 | 5.05 | 0.01 | 5.05 |
T3 | 0 | 883.59 | 234.97 | 161.15 | 48.86 | 0.50 | 0.50 | 0.05 | 0.02 | 0.01 | 5.05 | 0.01 | 5.05 |
Treatments | Nitrate Content in Nutrient Solution (mg/L) | |||
---|---|---|---|---|
Day 1 | 7 DAT | 14 DAT | 21 DAT | |
T1 | 0 | 0 | 0 | 0 |
T2 | 871.11 | 780.08 | 752.45 | 572.19 |
T3 | 883.59 | 585.35 | 566.49 | 449.82 |
%CV | 17.44 | 3.02 | 10.97 | |
LSD0.05 | 158.57 | 26.52 | 74.69 |
Treatments | Plant Height (cm) | Root Length (cm) | Canopy Width (cm) | Leaf Width (cm) | Leaves Number | Leaves Area (cm2) |
---|---|---|---|---|---|---|
T1 | 13.00 ± 2.90 b | 24.57 ± 3.65 a | 15.67 ± 5.39 b | 7.17 ± 2.50 b | 6.67 ± 1.03 b | 548.05 ± 37.27 c |
T2 | 19.42 ± 1.50 a | 18.55 ± 3.93 b | 29.17 ± 2.16 a | 14.50 ± 0.89 a | 14.50 ± 2.26 a | 1631.87 ± 135.74 b |
T3 | 18.00 ± 2.00 a | 16.37 ± 2.89 b | 28.33 ± 2.66 a | 14.75 ± 4.00 a | 17.00 ± 2.68 a | 2228.44 ± 167.40 a |
%CV | 13.15 | 17.75 | 15.12 | 22.83 | 16.59 | 8.59 |
LSD0.05 | 2.72 | 4.33 | 4.53 | 3.41 | 2.60 | 155.40 |
Treatments | Leaves Color Intensity (SPAD Unit) | Photosynthesis Rate (µmol/m2/s) | Stomatal Conductance (µmol/m2/s) |
---|---|---|---|
T1 | 19.93 ± 1.35 c | 0.72 ± 0.33 b | 0.10 ± 0.02 b |
T2 | 21.98 ± 0.88 b | 2.09 ± 0.92 a | 0.20 ± 0.05 a |
T3 | 25.43 ± 0.94 a | 3.02 ± 0.56 a | 0.14 ± 0.03 a |
%CV | 4.81 | 33.67 | 24.40 |
LSD0.05 | 1.33 | 0.80 | 0.04 |
Treatments | Total Plant Fresh Weight (g) | Total Plant Dry Weight (g) |
---|---|---|
T1 | 12.14 ± 2.92 b | 0.45 ± 0.04 b |
T2 | 77.67 ± 4.72 a | 3.62 ± 0.06 a |
T3 | 81.20 ± 13.54 a | 3.60 ± 0.60 a |
%CV | 14.50 | 15.20 |
LSD0.05 | 16.52 | 0.78 |
Treatments | Nitrate Concentration in Plant (mg/kg) FW | Total Phenolic (mg GAE/g FW) | |
---|---|---|---|
Aboveground | Underground | ||
T1 | 97.27 ± 6.43 c | 83.41 ± 12.86 c | 3.16 c ± 0.76 c |
T2 | 5370.00 ± 109.28 a | 7256.4 ± 604.25 a | 27.67 a ± 0.42 a |
T3 | 1674.54 ± 205.70 b | 3456.4 ± 154.28 b | 22.74 ± 3.79 b |
%CV | 5.22 | 10.01 | 12.58 |
LSD0.05 | 44.40 | 1146.10 | 4.49 |
Amino Acid | Treatments | %CV | LSD0.05 | ||
---|---|---|---|---|---|
No Nitrate (T1) | Normal Nitrate (T2) | Plasma Nitrate (T3) | |||
Aspartic acid (Asp) | 17.06 ± 0.15 b | 47.43 ± 1.22 a | 50.17 ± 0.21 a | 1.88 | 2.28 |
Threonine (Thr) | 9.65 ± 0.18 c | 20.40 ± 1.22 b | 28.97 ± 0.32 a | 4.15 | 2.60 |
Serine (Ser) | 10.93 ± 0.04 c | 24.5 ± 0.79 b | 31.41 ± 0.18 a | 2.11 | 1.50 |
Glutamic acid (Glu) | 22.00 ± 0.06 c | 58.20 ± 0.46 b | 69.82 ± 0.01 a | 0.54 | 0.85 |
Proline (Pro) | 9.65 ± 0.37 c | 31.74 ± 0.52 a | 29.16 ± 0.23 b | 1.66 | 1.24 |
Glycine (Gly) | 19.02 ± 0.04 c | 58.50 ± 0.11 a | 57.56 ± 0.09 b | 0.18 | 0.26 |
Alanine (Ala) | 18.96 ± 0.02 c | 52.07 ± 0.27 b | 54.30 ± 0.01 a | 0.37 | 0.50 |
Cysteine (Cys) | 1.04 ± 1.26 a | 0.82 ± 0.91 a | 0.31 ± 0.05 a | 125.15 | 2.87 |
Valine (Val) | 13.09 ± 0.03 b | 37.96 ± 0.28 a | 37.44 ± 0.06 a | 0.55 | 0.51 |
Methionine (Met) | 0.58 ± 0.06 c | 2.88 ± 0.10 a | 2.14 ± 0.00 b | 3.35 | 0.20 |
Isoleucine (Lie) | 9.17 ± 0.01 c | 27.15 ± 0.20 a | 25.29 ± 0.01 b | 0.56 | 0.37 |
Leucine (Leu) | 16.99 ± 0.09 c | 47.90 ± 0.20 a | 47.24 ± 0.06 b | 0.35 | 0.41 |
Tyrosine (Tyr) | 3.66 ± 0.07 c | 5.05 ± 0.46 b | 10.99 ± 0.06 a | 4.18 | 0.87 |
Phenylalanine (Phe) | 7.63 ± 0.03 b | 23.56 ± 0.46 a | 23.78 ± 0.08 a | 1.47 | 0.86 |
Lysine (Lys) | 7.82 ± 0.00 c | 23.66 ± 0.23 b | 24.96 ± 0.08 a | 0.76 | 0.45 |
Histidine (His) | 2.69 ± 0.03 c | 9.32 ± 0.05 a | 9.10 ± 0.03 b | 0.52 | 0.12 |
Arginine (Arg) | 5.98 ± 0.07 c | 17.67 ± 0.06 b | 18.54 ± 0.13 a | 0.67 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruamrungsri, S.; Sawangrat, C.; Panjama, K.; Sojithamporn, P.; Jaipinta, S.; Srisuwan, W.; Intanoo, M.; Inkham, C.; Thanapornpoonpong, S.-n. Effects of Using Plasma-Activated Water as a Nitrate Source on the Growth and Nutritional Quality of Hydroponically Grown Green Oak Lettuces. Horticulturae 2023, 9, 248. https://doi.org/10.3390/horticulturae9020248
Ruamrungsri S, Sawangrat C, Panjama K, Sojithamporn P, Jaipinta S, Srisuwan W, Intanoo M, Inkham C, Thanapornpoonpong S-n. Effects of Using Plasma-Activated Water as a Nitrate Source on the Growth and Nutritional Quality of Hydroponically Grown Green Oak Lettuces. Horticulturae. 2023; 9(2):248. https://doi.org/10.3390/horticulturae9020248
Chicago/Turabian StyleRuamrungsri, Soraya, Choncharoen Sawangrat, Kanokwan Panjama, Phanumas Sojithamporn, Suchanuch Jaipinta, Wimada Srisuwan, Malinee Intanoo, Chaiartid Inkham, and Sa-nguansak Thanapornpoonpong. 2023. "Effects of Using Plasma-Activated Water as a Nitrate Source on the Growth and Nutritional Quality of Hydroponically Grown Green Oak Lettuces" Horticulturae 9, no. 2: 248. https://doi.org/10.3390/horticulturae9020248
APA StyleRuamrungsri, S., Sawangrat, C., Panjama, K., Sojithamporn, P., Jaipinta, S., Srisuwan, W., Intanoo, M., Inkham, C., & Thanapornpoonpong, S. -n. (2023). Effects of Using Plasma-Activated Water as a Nitrate Source on the Growth and Nutritional Quality of Hydroponically Grown Green Oak Lettuces. Horticulturae, 9(2), 248. https://doi.org/10.3390/horticulturae9020248