Nutrient Changes in Berries of “Anab-e-Shahi” and “Perllete” Varieties of Grapes with Advancing Phenology in the Growing Season
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Macronutrient Changes in Developing Berries of Different Cultivars of Grapes
3.1.1. Nitrogen
3.1.2. Phosphorus
3.1.3. Potassium
3.1.4. Calcium
3.1.5. Magnesium
3.2. Micronutrient Changes in Developing Berries of Grapes
3.2.1. Zinc
3.2.2. Copper
3.2.3. Manganese
3.2.4. Boron
3.2.5. Iron
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hawke, M.A.; Maun, M.A. Some aspects of nitrogen, phosphorus, and potassium nutrition of three colonizing beach species. Can. J. Bot. 1988, 66, 1490–1496. [Google Scholar] [CrossRef]
- Zaman, M.; Kurepin, L.V.; Catto, W.; Pharis, R.P. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators. J. Sci. Food Agric. 2014, 95, 1777–1785. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, G.; Chen, J. Effect of different fertilizations on the quantitative characters and yield of adzuki bean. J. Beijing Univ. Agric. 2012, 27, 4–6. [Google Scholar]
- Malik, A.R.; Ahmad, M.F.; Raja, R.H.S.; Bangroo, S.A.; Kirmani, S.; Mushtaq, R. Seasonality of nutrients in the leaves of apple trees cultivars Red Delicious and Benoni. J. Pharmacogn. Phytochem. 2018, 7, 3185–3188. [Google Scholar]
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.L.; Viret, O.; Marin-Carbonne, J.; van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- Holzapfel, B.P.; Smith, J.P.; Field, S.K. Seasonal vine nutrient dynamics and distribution of Shiraz grapevines: This article is published in cooperation with the 21th GIESCO International Meeting, Thessaloniki, Greece. Guests editors: Stefanos Koundouras and Laurent Torregrosa. OENO One 2019, 53, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.; Cunha, A.; Gerós, H.; Hanana, M.; Blumwald, E. Mineral compounds in grape berry. In The Biochemistry of the Grape Berry; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 23–43. [Google Scholar]
- Welch, R.M. Effects of nutrient deficiencies on seed production and quality. Adv. Plant Nutr. 1986, 2, 205–247. [Google Scholar]
- Anonymous 2021, Grapes. In Package of Practice: Temperate Fruits; Extension Pub No.: DEx/B/2021/26A.SKU; AST Press: Moscow, Russia, 2021; Volume 1, pp. 141–145.
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1983. [Google Scholar]
- Nitch, J.P. Growth and development of in vitro excised ovaries. Am. J. Bot. 1951, 38, 566–577. [Google Scholar] [CrossRef]
- Karimi, R.; Koulivand, M.; Ollat, N. Soluble sugars, phenolic acids and antioxidant capacity of grape berries as affected by iron and nitrogen. Acta Physiol. Plant 2019, 41, 117. [Google Scholar] [CrossRef]
- Conradie, W.J. Translocation and Storage of Nitrogen by Grapevines as Affected by Time of Application. In Proceedings of the International Symposium on Nitrogen in Grapes and Wine, Seattle, WA, USA, 18–19 June 1991; pp. 32–42. [Google Scholar]
- Conradie, W.J. Partitioning of nitrogen in grapevines during autumn and the utilisation of nitrogen reserves during the following growing season. S. Afr. J. Enol. Vitic. 1992, 13, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Hale, C.R.; Weaver, R.J. The effect of developmental stages on the direction of translocation of photosynthates in Vitis vinifera. Hilgardia 1962, 33, 89–131. [Google Scholar] [CrossRef] [Green Version]
- Rogiers, S.Y.; Greer, D.H.; Hatfield, J.M.; Orchard, B.A.; Keller, M. Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis 2006, 45, 115–123. [Google Scholar]
- Greenspan, M.D.; Shackel, K.A.; Matthews, M.A. Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ. 1994, 17, 811–820. [Google Scholar] [CrossRef]
- Doneche, B.; Chardonnet, C. Evolution and localization or the main cations during grape berry development. Vitis 1992, 31, 175–181. [Google Scholar]
- Xiao, J.X.; Yan, X.; Peng, S.A.; Fang, Y.W. Seasonal changes of mineral nutrients in fruit and leaves of ‘Newhall’and ‘Skagg’s Bonanza’navel oranges. J. Plant Nutr. 2007, 30, 671–690. [Google Scholar] [CrossRef]
- Very, A.A.; Sentenac, H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol. 2003, 54, 575–603. [Google Scholar] [CrossRef]
- Stiles, K.A.; Van Volkenburgh, E. Role of K+ in leaf growth: K+ uptake is required for light-stimulated H+ efflux but not solute accumulation. Plant Cell Environ. 2004, 27, 315–325. [Google Scholar] [CrossRef]
- Malik, A.R.; Ahmad, M.F.; Ganai, M.A.; Bangroo, S.A.; Nazir, N.; Khalik, A.; Raja, R.H.S. Seasonal variation in leaf mineral nutrient and optimization of sampling dates for better indexing of pear leaf. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1152–1157. [Google Scholar] [CrossRef]
- Nachtigall, G.R.; Dechen, A.R. Seasonality of nutrients in leaves and fruits of apple trees. Sci. Agric. 2006, 63, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Cabanne, C.; Doneche, B. Calcium accumulation and redistribution during the development of the grape berry. Vitis 2003, 42, 19–21. [Google Scholar]
- Etchebarne, F.; Ojeda, H.; Deloire, A. Grape Berry Mineral Composition in Relation to Vine Water Status & Leaf Area/Fruit Ratio. In Grapevine Molecular Physiology & Biotechnology; Roubelakis-Angelakis, K.A., Ed.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Possner, D.R.E.; Kliewer, W.M. The localization of acids, sugars, potassium and calcium in developing grape berries. Vitis 1985, 24, 229–240. [Google Scholar]
- Lang, A.; During, H. Partitioning control by water potential gradient; evidence for compartmentation breakdown in grape berries J. Exp. Bot. 1991, 42, 1117–1122. [Google Scholar] [CrossRef]
- Bondada, R.B.; Matthews, M.A.; Shackel, A.K. Fuctional xylem in the post-veraison grape berry. J. Exp. Bot. 2005, 56, 2949–2957. [Google Scholar] [CrossRef] [PubMed]
Sampling Dates | N (%) | P (ppm) | K (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Perlette | Anab-e-Shahi | Mean | Perlette | Anab-e-Shahi | Mean | Perlette | Anab-e-Shahi | Mean | |
D1 | 1.77 | 1.74 | 1.76 | 283.19 | 272.70 | 277.95 | 0.12 | 0.11 | 0.12 |
D2 | 1.63 | 1.63 | 1.63 | 251.12 | 256.63 | 253.88 | 0.17 | 0.19 | 0.18 |
D3 | 1.75 | 1.72 | 1.74 | 309.98 | 303.91 | 306.95 | 0.21 | 0.22 | 0.22 |
D4 | 1.57 | 1.58 | 1.58 | 342.14 | 334.71 | 338.42 | 0.24 | 0.26 | 0.25 |
D5 | 1.54 | 1.51 | 1.53 | 314.82 | 308.02 | 311.42 | 0.29 | 0.31 | 0.30 |
D6 | 1.04 | 1.14 | 1.09 | 325.14 | 322.54 | 323.84 | 0.33 | 0.38 | 0.36 |
Mean | 1.55 | 1.55 | 0.95 | 304.40 | 299.80 | 196.70 | 0.23 | 0.25 | 0.15 |
C.D(p ≤ 0.05) | Dates = 0.010 Varieties = 0.08 Dates × Varieties = 0.012 | Dates = 38.102 Varieties = 32.120 Dates × Varieties = 39.212 | Dates = 0.035 Varieties = 0.024 Dates × Varieties = 0.041 |
Sampling Dates | Ca (ppm) | Mg (ppm) | ||||
---|---|---|---|---|---|---|
Perlette | Anab-e-Shahi | Mean | Perlette | Anab-e-Shahi | Mean | |
D1 | 517.70 | 505.74 | 511.72 | 72.18 | 69.17 | 70.67 |
D2 | 610.53 | 601.92 | 606.23 | 92.77 | 87.89 | 90.33 |
D3 | 421.80 | 402.87 | 412.34 | 185.74 | 170.38 | 178.06 |
D4 | 304.18 | 316.69 | 310.44 | 131.66 | 129.80 | 130.73 |
D5 | 259.69 | 255.18 | 257.60 | 121.78 | 114.29 | 118.04 |
D6 | 229.73 | 225.18 | 227.46 | 119.27 | 112.90 | 116.08 |
Mean | 390.60 | 384.60 | 258.4 | 120.60 | 114.10 | 78.20 |
C.D(p ≤ 0.05) | Dates = 30.912 Varieties = 28.276 Dates × Varieties = 35.125 | Dates = 15.172 Varieties = 12.211 Dates × Varieties = 20.192 |
Sampling Dates | Zn (ppm) | Mn (ppm) | Cu (ppm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Perlette | Anab-e-Shahi | Mean | Perlette | Anab-e-Shahi | Mean | Perlette | Anab-e-Shahi | Mean | |
D1 | 2.44 | 2.42 | 2.43 | 4.05 | 4.08 | 4.07 | 0.92 | 0.94 | 0.93 |
D2 | 2.41 | 2.41 | 2.41 | 4.11 | 4.34 | 4.23 | 1.03 | 1.01 | 1.02 |
D3 | 2.34 | 2.32 | 2.33 | 3.27 | 3.59 | 3.43 | 1.40 | 1.42 | 1.41 |
D4 | 1.50 | 1.45 | 1.48 | 2.24 | 2.18 | 2.21 | 1.53 | 1.53 | 1.53 |
D5 | 1.27 | 1.23 | 1.25 | 1.97 | 1.88 | 1.93 | 1.71 | 1.71 | 1.71 |
D6 | 1.13 | 1.05 | 1.09 | 1.65 | 1.60 | 1.63 | 1.82 | 1.82 | 1.82 |
Mean | 1.85 | 1.81 | 1.22 | 2.88 | 2.95 | 1.94 | 1.40 | 1.40 | 0.93 |
C.D(p ≤ 0.05) | Dates = 0.152 Varieties = 0.142 Dates × varieties = 0.155 | Dates = 0.302 Varieties = 0.212 Dates × varieties = 0.335 | Dates = 0.126 Varieties = 0.103 Dates × varieties = 0.129 |
Sampling Dates | B (ppm) | Fe (ppm) | ||||
---|---|---|---|---|---|---|
Perlette | Anab-e-Shahi | Mean | Perlette | Anab-e-Shahi | Mean | |
D1 | 3.57 | 3.57 | 3.57 | 3.72 | 3.85 | 3.78 |
D2 | 4.06 | 4.05 | 4.06 | 4.58 | 4.40 | 4.49 |
D3 | 5.34 | 5.32 | 5.33 | 5.22 | 5.27 | 5.25 |
D4 | 6.25 | 6.22 | 6.24 | 3.00 | 3.16 | 3.08 |
D5 | 7.05 | 7.04 | 7.05 | 2.92 | 2.89 | 2.91 |
D6 | 8.15 | 8.13 | 8.14 | 3.97 | 3.83 | 3.90 |
Mean | 5.74 | 5.72 | 3.82 | 3.90 | 3.90 | 2.60 |
C.D(p ≤ 0.05) | Dates = 0.313 Varieties = 0.202 Dates × varieties = 0.293 | Dates = 0.185 Varieties = 0.098 Dates × varieties = 0.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, A.R.; Mushtaq, R.; Kirmani, S.N.; Bhat, K.M.; Ganie, M.A.; Wani, S.M.; Bhat, R.; Soundri, A.S.; Banday, S.; El-Serehy, H. Nutrient Changes in Berries of “Anab-e-Shahi” and “Perllete” Varieties of Grapes with Advancing Phenology in the Growing Season. Horticulturae 2023, 9, 178. https://doi.org/10.3390/horticulturae9020178
Malik AR, Mushtaq R, Kirmani SN, Bhat KM, Ganie MA, Wani SM, Bhat R, Soundri AS, Banday S, El-Serehy H. Nutrient Changes in Berries of “Anab-e-Shahi” and “Perllete” Varieties of Grapes with Advancing Phenology in the Growing Season. Horticulturae. 2023; 9(2):178. https://doi.org/10.3390/horticulturae9020178
Chicago/Turabian StyleMalik, Abdul R., Rafiya Mushtaq, Shoaib N. Kirmani, Khalid M. Bhat, Mumtaz A. Ganie, Sajad M. Wani, Rifat Bhat, Amarjeet S. Soundri, Saba Banday, and Hamed El-Serehy. 2023. "Nutrient Changes in Berries of “Anab-e-Shahi” and “Perllete” Varieties of Grapes with Advancing Phenology in the Growing Season" Horticulturae 9, no. 2: 178. https://doi.org/10.3390/horticulturae9020178
APA StyleMalik, A. R., Mushtaq, R., Kirmani, S. N., Bhat, K. M., Ganie, M. A., Wani, S. M., Bhat, R., Soundri, A. S., Banday, S., & El-Serehy, H. (2023). Nutrient Changes in Berries of “Anab-e-Shahi” and “Perllete” Varieties of Grapes with Advancing Phenology in the Growing Season. Horticulturae, 9(2), 178. https://doi.org/10.3390/horticulturae9020178