Triploid Hybrids of 2x Lingonberry (Vaccinium vitis-idaea) by 2x Black Highbush Blueberry (V. fuscatum) and 2x Elliott’s Blueberry (V. elliottii) as Evidence of a Genome Balance Requirement for Hybridization Success
Abstract
:1. Introduction
2. Results
2.1. Primary Hybrids
2.2. Flow Cytometry/Ploidy Levels
2.3. SSR Hybrid Identification
2.4. Hybrid Morphology
2.5. General Morphology of V. vitis-idaea × V. fuscatum Hybrids
2.6. General Morphology of V. vitis-idaea × V. elliottii Hybrids
2.7. Hybrid Fertility
2.8. Specific Observations of Ploidy and Fertility for Individual Hybrids
2.8.1. V. vitis-idaea ‘Red Sunset’ × V. fuscatum US 2028 Hybrids
2.8.2. V. vitis-idaea ‘Sanna’ × V. fuscatum US 2028 Hybrids
2.8.3. V. vitis-idaea ‘Red Sunset’ × V. elliottii NJ 88-04-10 Hybrids
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Pollinations
4.3. Ploidy Determinations
4.4. Plant Material and DNA Isolation
4.5. DNA Amplification, Fragment Analysis, and Validation of SSR Polymorphisms
4.6. Male Fertility
4.7. Female Fertility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camp, W.H. The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 1945, 5, 203–275. [Google Scholar] [CrossRef]
- Hall, I.V.; Shay, J.M. The biological flora of Canada. 3. Vaccinium vitis-idaea L. var. minus Lodd. supplementary account. Canad. Field-Nat. 1981, 95, 434–464. [Google Scholar]
- Vander Kloet, S.P. The genus Vaccinium in North America 1988, (No. 1828). Agriculture Canada. Available online: https://publications.gc.ca/collections/collection_2014/aac-aafc/agrhist/A43-1828-1988-eng.pdf (accessed on 27 November 2023).
- Hjalmarsson, I.; Ortiz, R. Lingonberry: Botany and Horticulture; John Wiley & Sons, Inc.: New York, NY, USA, 2001; Volume 27, pp. 79–123. [Google Scholar] [CrossRef]
- Polashock, J.J.; Caruso, F.L.; Averill, A.L.; Schilder, A.C. Compendium of Blueberry, Cranberry, and Lingonberry Diseases and Pests, 2nd ed.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2017; p. 231. [Google Scholar]
- Zeldin, E.L.; McCown, B.H. Intersectional hybrids of lingonberry (Vaccinium vitis-idaea, section Vitis-idaea) and cranberry (V. macrocarpon, section Oxycoccus) to Vaccinium reticulatum (section Macropelma). Acta Hortic. 1997, 446, 235–238. [Google Scholar] [CrossRef]
- Morozov, O.V. The prospects for using Vaccinium uliginosum L. × Vaccinium vitis-idaea L. hybrids in breeding. Int. J. Fruit Sci. 2007, 6, 43–56. [Google Scholar] [CrossRef]
- Edger, P.P.; Iorizzo, M.; Bassil, N.V.; Benevenuto, J.; Ferrão, L.F.V.; Giongo, L.; Hummer, K.; Lawas, L.M.F.; Leisner, C.P.; Li, C.; et al. There and back again; Historical perspective and future directions for Vaccinium breeding and research studies. Hortic. Res. 2022, 9, uhac083. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Polashock, J.J.; Rowland, L.J.; Ogden, E.; Luteyn, J.L. Fertile intersectional hybrids of 4x Andean blueberry (Vaccinium meridionale) and 2x lingonberry (V. vitis-idaea). HortScience 2022, 57, 525–531. [Google Scholar] [CrossRef]
- Song, G.Q.; Hancock, J.F. Vaccinium. In Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits; Springer: Berlin/Heidelberg, Germany, 2010; pp. 197–221. [Google Scholar] [CrossRef]
- Redpath, L.E.; Aryal, R.; Lynch, N.; Spencer, J.A.; Hulse-Kemp, A.M.; Ballington, J.R.; Green, J.; Bassil, N.; Hummer, K.; Ranney, T.; et al. Nuclear DNA contents and ploidy levels of North American Vaccinium species and interspecific hybrids. Sci. Hortic. 2022, 297, 110955. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Stretch, A.W.; Vorsa, N.; Draper, A.D. ‘Hannah’s Choice’ highbush blueberry. HortScience 2005, 40, 1558–1560. [Google Scholar] [CrossRef]
- Ballington, J.R.; Rooks, S.D. Blueberry Plant Named ‘Carteret’. U.S. Plant Patent 19,903, 14 April 2009. [Google Scholar]
- Cooper, D.C.; Brink, R.A. Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 1945, 30, 376–401. [Google Scholar] [CrossRef]
- Haig, D.; Westoby, M. Genomic imprinting in endosperm: Its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos. Trans. R. Soc. B Biol. Sci. 1991, 333, 1–13. [Google Scholar]
- Satina, S.; Blakeslee, A.F. Chromosome behavior in triploids of Datura stramonium. I. The male gametophyte. Am. J. Bot. 1937, 24, 518–527. [Google Scholar] [CrossRef]
- Johnston, S.A.; Hanneman, R.E., Jr. Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am. Potato J. 1980, 57, 7–14. [Google Scholar] [CrossRef]
- Johnston, S.A.; Hanneman, R.E., Jr. Manipulations of Endosperm Balance Number overcome crossing barriers between diploid Solanum species. Science 1982, 217, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Ehlenfeldt, M.K.; Hanneman, R.E. Genetic control of Endosperm Balance Number (EBN): Three additive loci in a threshold-like system. Theor. Appl. Genet. 1988, 75, 825–832. [Google Scholar] [CrossRef]
- Christ, E. Crossbreedings between cranberries (Vaccinium macrocarpon Ait.) and cowberries (Vaccinium vitis-idaea L.). Acta Hort. 1977, 61, 285–294. [Google Scholar] [CrossRef]
- Ritchie, J.C. A natural hybrid in Vaccinium. I. The structure, performance and chorology of the cross Vaccinium intermedium Ruthe. New Phytol. 1955, 54, 49–67. [Google Scholar] [CrossRef]
- Ritchie, J.C. A natural hybrid in Vaccinium II. Genetic studies in Vaccinium intermedium Ruthe. New Phytol. 1955, 54, 320–335. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Bassil, N.; King, R.; Zalapa, J.; de la Torre, F.; Luteyn, J.L. An intersectional hybrid between Darrow’s blueberry (V. darrowii Camp) and lingonberry (V. vitis-idaea L.). Plants 2023. in preparation. [Google Scholar]
- Eckerbom, C. Sanna, BV35—Ny Lingonsort ifrån Balsgård. In Sveriges Lantbruksuniversitet, Växtförädling av frukt och bär, Balsgård, Verksamhetsberättelse 1986–1987; Swedish University of Agriculture: Uppsala, Sweden, 1988; pp. 74–75. [Google Scholar]
- Draper, A.; Hancock, J. The ‘Bluecrop’ highbush blueberry. Fruit Var. J. 1990, 44, 2–3. [Google Scholar]
- Ehlenfeldt, M.K.; Luteyn, J.L. Fertile intersectional F1 hybrids of 4x Vaccinium meridionale (section Pyxothamnus) and Highbush blueberry, V. corymbosum (section Cyanococcus). HortScience 2021, 56, 318–323. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, M.J.; Carpten, J.D.; Smith, J.R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. BioTechniques 1996, 20, 954–1103. [Google Scholar] [CrossRef] [PubMed]
- Jensen, W.A. Botanical Histochemistry; W.H. Freeman and Company: San Francisco, CA, USA, 1962; p. 408. [Google Scholar]
- Schlautman, B.; Fajardo, D.; Bougie, T.; Wiesman, E.; Polashock, J.; Vorsa, N.; Steffan, S.; Zalapa, J. Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.). Molecules 2015, 20, 2001–2013. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Bonilla, L.; Rohde, J.; Matusinec, D.; Zalapa, J. Cross-transferability analysis of SSR markers developed from the American Cranberry (Vaccinium macrocarpon Ait.) to other Vaccinium species of agricultural importance. Genet. Resour. Crop Evol. 2019, 66, 1713–1725. [Google Scholar] [CrossRef]
Cross | Seed Quality | Extant | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Female | Male | Pollinations | Fruit | G | GF | F | FP | P | Hybrids | |
V. vitis-idaea ‘Red Sunset’ | × | V. fuscatum US 2028 | 86 | 38 | 45 * | 3 | 10 | 10 | 4 | 4 |
V. vitis-idaea ‘Red Sunset’ | × | V. fuscatum US 2029 | 40 | 13 | 33 | - | - | - | 1 | - |
V. vitis-idaea ‘Sanna’ | × | V. fuscatum US 2028 | 46 | 22 | 21 | 7 | 6 | 1 | - | 2 |
V. vitis-idaea ‘Sanna’ | × | V. fuscatum US 2029 | 57 | 15 | 7 | 14 | 1 | 1 | - | - |
Totals | 229 | 88 | 106 | 24 | 17 | 12 | 5 | 6 | ||
V. fuscatum US 2028 | × | V. vitis-idaea ‘Red Sunset’ | 31 | 2 | - | - | - | - | - | - |
V. fuscatum US 2029 | × | V. vitis-idaea ‘Red Sunset’ | 29 | - | - | - | - | - | - | - |
Totals | 60 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | ||
V. vitis-idaea ‘Red Sunset’ | × | V. elliottii NJ 88-04-10 | 38 | 28 | 112 ** | 2 | 7 | 7 | 1 | 2 |
DNA | ||||
---|---|---|---|---|
Actual (Regressed) | ||||
Group | Genotype | (pg) | Ploidy | Comments |
Standards | ||||
V. darrowii ‘Fla 4B’ | 1.17 (1.13) | 2x | ||
(1.72) | 3x | by regression | ||
V. corymbosum ‘Duke’ | 2.22 (2.30) | 4x | ||
(2.89) | 5x | by regression | ||
V. virgatum ‘Powderblue’ | 3.51 (3.47) | 6x | ||
Parents | ||||
V. vitis-idaea ‘Red Sunset’ | 1.05 | 2x | ||
V. vitis-idaea ‘Sanna’ | 1.10 | 2x | ||
V. fuscatum US 2028 | 1.11 | 2x | ||
V. elliottii NJ 88-04-10 | 1.05 | 2x | ||
Hybrids | ||||
V. vitis-idaea ‘Red Sunset’ × V. fuscatum US 2028 | ||||
US 2524-A | 1.50 | 3x | from 2n + n | |
US 2524-B | 1.59 | 3x | from 2n + n | |
US 2524-C | 1.62 | 3x | from 2n + n | |
US 2524-D | 2.36 | 4x | from 2n + 2n | |
V. vitis-idaea ‘Sanna’ × V. fuscatum US 2028 | ||||
US 2526-A | 1.70 | 3x | from 2n + n | |
US 2526-B | 1.65 | 3x | from 2n + n | |
V. vitis-idaea ‘Red Sunset’ × V. elliottii NJ 88-04-10 | ||||
US 2525-A | 1.60 | 3x | from 2n + n | |
US 2525-B | 1.54 | 3x | from 2n + n |
Plant ID | SCF275d | SCF804 | SCF9815 | SCF37628 | SCF132922 | 172672K70 |
---|---|---|---|---|---|---|
V. fuscatum US 2028 | 153, 157 | 234 | 179 | 271 | 183 | 349 |
V. elliottii NJ 88-04-10 | 141, 143 | 218, 224 | 179 | 263, 265 | 174 | 355, 355 |
V. vitis-idaea | ||||||
‘Red Sunset’ (RS) | 151, 169 | 244 | 187, 189 | 253 | 169, 171 | 331, 333 |
V. vitis-idaea | ||||||
‘Sanna’ (SAN) | 171, 173 | 223, 225 | 187, 195 | 253 | 176 | 331, 333 |
RS × US 2028 | ||||||
US 2524-A | 151, 153, 169 | 234, 244 | 179, 187, 189 | 253 * | 169, 171, 183 | 331, 333, 349 |
US 2524-B | 151, 157 | 234, 244 | 179, 187, 189 | 253, 271 | 169, 171 * | 333, 349 |
US 2524-C | 151, 157 | 234, 244 | 179, 187 | 253, 271 | 171, 183 | 331, 347 * |
US 2524-D (4x) | 151, 153, 169 | 234, 244 | 179, 187, 189 | 253 * | 169, 171 * | 333, 347 * |
SAN × US 2028 | ||||||
US 2526-A | 157, 173 | 223, 247 * | 179, 195 | 253 * | 183 * | 333, 349 |
US 2526-B | 153, 171 | 223, 247 * | 179, 195 | 253, 271 | F | F |
RS × NJ 88-04-10 | ||||||
US 2525-A | 143, 151, 169 | 224, 244 | 179, 187, 189 | 253, 263 | 169, 171, 185 * | 333, 355 |
US 2525-B | 143, 151, 169 | 224, 244 | 179, 187, 189 | 253, 265 | 169, 171, 174 | 333, 355 |
Total | ||||||
---|---|---|---|---|---|---|
Ploidy | Female | Male | Pollinations | Fruit | Seed | |
3x | US 2524-A | × | ARS 07-97 | 52 | 1 | 1g |
3x | US 2524-A | × | ARS 07-97 | 13 + GA | 11 | - |
3x | US 2524-A | × | Nocturne | 26 | - | - |
3x | US 2524-B | × | 6x various | 13 | - | - |
3x | US 2524-C | × | ARS 07-97 | 75 | - | - |
3x | US 2524-C | × | ARS 07-97 | 8 + GA | 20 | 1g, 1f |
3x | US 2524-C | × | Nocturne | 51 | - | - |
4x | US 2524-D | × | ARS 07-97 | 8 | - | - |
4x | US 2524-D | × | ARS 07-97 | 4 + GA | 4 | 1g, 1p |
4x | US 2524-D | × | Nocturne | 6 | 1 | 1g |
4x | US 2524-D | × | Bluecrop | 5 | 1 | 2g |
3x | US 2526-A | × | ARS 07-97 | 74 | - | - |
3x | US 2526-A | × | ARS 07-97 | 2 + GA | 1 | - |
3x | US 2525-A | × | 6x various | 41 | - | - |
Genotype | Ploidy | Source/Pedigree |
---|---|---|
V. vitis-idaea ‘Red Sunset’ | 2x | Hartmans Plant Nursery, Lakota, MI/‘Koralle’ O.P. |
V. vitis-idaea ‘Sanna’ | 2x | wild selection, Sweden [24] |
V. fuscatum US 2028, US 2029 | 2x | wild selections, Burlington County, NJ |
V. elliottii NJ 88-04-10 | 2x | wild selection, Rutgers University |
US 2524-A to -D | 3x, 4x | ‘Red Sunset’ × US 2028 |
US 2525-A to -B | 3x | ‘Red Sunset’ × NJ 88-04-10 |
US 2526-A to -B | 3x | ‘Sanna’ × US 2028 |
V. × virgatum ‘Nocturne’ | 6x | US 874 × ‘Premier’ |
V. × virgatum ARS 07-97 | 6x | T 451 × ‘Nocturne’ |
V. corymbosum ‘Bluecrop’ | 4x | USDA cultivar, GM-37 × CU-5 [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehlenfeldt, M.; Luteyn, J.L.; de la Torre, F.; Zalapa, J. Triploid Hybrids of 2x Lingonberry (Vaccinium vitis-idaea) by 2x Black Highbush Blueberry (V. fuscatum) and 2x Elliott’s Blueberry (V. elliottii) as Evidence of a Genome Balance Requirement for Hybridization Success. Horticulturae 2023, 9, 1308. https://doi.org/10.3390/horticulturae9121308
Ehlenfeldt M, Luteyn JL, de la Torre F, Zalapa J. Triploid Hybrids of 2x Lingonberry (Vaccinium vitis-idaea) by 2x Black Highbush Blueberry (V. fuscatum) and 2x Elliott’s Blueberry (V. elliottii) as Evidence of a Genome Balance Requirement for Hybridization Success. Horticulturae. 2023; 9(12):1308. https://doi.org/10.3390/horticulturae9121308
Chicago/Turabian StyleEhlenfeldt, Mark, James L. Luteyn, Fernando de la Torre, and Juan Zalapa. 2023. "Triploid Hybrids of 2x Lingonberry (Vaccinium vitis-idaea) by 2x Black Highbush Blueberry (V. fuscatum) and 2x Elliott’s Blueberry (V. elliottii) as Evidence of a Genome Balance Requirement for Hybridization Success" Horticulturae 9, no. 12: 1308. https://doi.org/10.3390/horticulturae9121308
APA StyleEhlenfeldt, M., Luteyn, J. L., de la Torre, F., & Zalapa, J. (2023). Triploid Hybrids of 2x Lingonberry (Vaccinium vitis-idaea) by 2x Black Highbush Blueberry (V. fuscatum) and 2x Elliott’s Blueberry (V. elliottii) as Evidence of a Genome Balance Requirement for Hybridization Success. Horticulturae, 9(12), 1308. https://doi.org/10.3390/horticulturae9121308