Next Article in Journal
In Vitro Propagation and Phytochemical Composition of Centratherum punctatum Cass—A Medicinal Plant
Previous Article in Journal
Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments
Previous Article in Special Issue
Phytochemical Properties of Silk Floss Tree Stem Bark Extract and Its Potential as an Eco-Friendly Biocontrol Agent against Potato Phytopathogenic Microorganisms
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Global Metabolome Profiles of Four Varieties of Lonicera caerulea, Established via Tandem Mass Spectrometry

by
Mayya P. Razgonova
1,2,*,
Muhammad Amjad Navaz
3,4,
Andrey S. Sabitov
1,
Yulia N. Zinchenko
1,
Elena A. Rusakova
5,
Elena N. Petrusha
5,
Kirill S. Golokhvast
6 and
Nadezhda G. Tikhonova
1
1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
2
Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, Fr. Russian, pos. Ajax, 10, 690922 Vladivostok, Russia
3
Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Russia
4
Centre of Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Russia
5
FSBSI Kamchatsky Scientific Research Institute of Agriculture, Centralnaya, 4, 684033 Sosnovka, Russia
6
Siberian Federal Scientific Center of Agrobiotechnology RAS, Centralnaya, 2b, Presidium, 633501 Krasnoobsk, Russia
*
Author to whom correspondence should be addressed.
Horticulturae 2023, 9(11), 1188; https://doi.org/10.3390/horticulturae9111188
Submission received: 22 August 2023 / Revised: 4 October 2023 / Accepted: 26 October 2023 / Published: 30 October 2023
(This article belongs to the Special Issue Plant Extracts – Importance in Sustainable Horticulture)

Abstract

:
Blue honeysuckle (Lonicera caerulea L.) bears dietary fruits that are rich in bioactive compounds. However, information on the metabolome profiles of honeysuckle varieties grown in Russia is limited. In this study, we employed tandem mass spectrometry to study the metabolome profiles of four L. caerulea varieties (Volhova, Tomichka, Goluboe vereteno, and Amfora) grown in two geographical locations in Russia, i.e., the Russian Far East and St. Petersburg. We observed that the metabolome profiles of the four varieties grown in two locations differ significantly, particularly in the polyphenol’s other compound classes. We were able to identify 122 bioactive compounds in extracts from honeysuckle berries, 75 compounds from the polyphenol group and 47 compounds from other chemical groups. Thirty chemical constituents from the polyphenol group (flavones jaceosidin, cirsiliol, sophoraisoflavone A, chrysoeriol-O-hexoside, flavonols dimethylquercetin-3-O-dehexoside, rhamnocitrin, rhamnetin II, stilbenes pinosylvin, resveratrol, dihydroresveratrol, etc.) and twenty-seven from other chemical groups were identified. The largest number of unique polyphenols is characteristic of the variety Tomichka, the selection of the regional state unitary enterprise “Bakcharskoye”, from the free pollination of L. caerulea, originating in the Primorsky Territory of Russia (L. caerulea subspecies Turczaninow). This genotype has the highest number of similar unique polyphenols, regardless of where it was grown. Blue honeysuckle genotypes originating from Primorsky Krai in Russia can be used in various breeding programs in order to improve and enrich the biochemical composition of fruits. It should also be noted that, regardless of the place of cultivation, the total amount of unique polyphenols remains quite large. Attention should be paid to the Volhova honeysuckle variety, obtained through gamma irradiation of the Pavlovskaya variety (Kamchatka ecotype). This sample is characterized by a stable composition of biologically active substances, regardless of the growing area. These data could support future research on the production of a variety of pharmaceutical products containing ultrapure extracts of L. caerulea.

1. Introduction

Blue honeysuckle (Lonicera caerulea L.) is a young small-fruit crop belonging to the Caprifoliaceae family. The interest in L. caerulea has increased due to its early ripening and, especially in the northern regions, due to its high winter hardiness, palatability, and rich biochemical composition of berries. It is grown in China, Canada, Poland, and other European countries. In Russia, it was grown on >700 hectares (https://haskapru.com/, e.g., accessed on 1 August 2022) in 2022. A significant part of the acreage is occupied by varieties that belong to the first generation selected from wild flora, indicating a huge potential in honeysuckle breeding.
Honeysuckle berries contain a wide variety of polyphenolic compounds, including bioflavonoids, hydroxycinnamic acids, flavonols, polyphenols, anthocyanins, and compounds that are rare for berry crops such as iridoids, the high content of which has a positive effect on human health. The content of iridoids is mainly represented by derivatives of loganic acid and loganin and ranges from 78.0 to 406.4 mg/100 g depending on the genotype [1,2]. Scientific studies report the antimicrobial and anti-inflammatory activity of iridoids [3]. Fresh honeysuckle fruits are classified as dietary fruits, due to the high content of biologically active substances [4,5]. L. caerulea berries are characterized by a high content of dry matter (up to 19%) and sugars (up to 12.5%, represented by sucrose, glucose, and fructose, the content of the latter being higher than 55%). The combined action of ascorbic acid (up to 150 mg/100 g) and P-active substances (total up to 2500 mg/100 g) have a positive effect on the human body [6]. The beneficial effect of L. caerulea berries on reducing the negative effects of ultraviolet radiation and diabetes mellitus, as well as neurodegenerative diseases and atherosclerosis, has been reported [7,8]. The positive effect on human health is associated with a high content of polyphenolic compounds, primarily anthocyanins (anthocyanins, proanthocyanins, and iridoids). The content of these bioactive constituents depends on the variety and genotype [9]. The content of polyphenols is also influenced by the time of harvest, as well as solar radiation and temperature. An earlier study indicated that the geographical location can influence the accumulation of primary and secondary metabolites in the blue honeysuckle L. caerulea subsp. edulis (Turcz. ex Herder) Hultén [10]. However, such information is not available for honeysuckle varieties grown in different territories of Russia. Therefore, the determination of the composition and quantity of metabolome profiles of honeysuckle varieties from Russia will reveal a wealth of knowledge for future health-related studies and breeding strategies.
Plant metabolomic strategies are based on two analytical technologies, namely, MS and nuclear magnetic resonance (NMR). However, NMR-based approaches are inferior to MS-based approaches due to it being able to separate fewer compounds, given its relatively lower sensitivity [11]. Despite continuous progress in MS technology, the study of the plant metabolome is a major challenge in plant metabolomics research. Currently, only a few thousand metabolites (>14,000) can be measured, while in the plant kingdom, 200,000 to 1 million metabolites are expected, and its analysis is concentration dependent. However, it is difficult to predict the full extent of the complete plant metabolome, because, unlike the transcriptome and proteome, it is genome-independent [12,13]. Moreover, due to the wide dynamic range of plant metabolite concentrations and high chemical diversity, no single analytical technology can cover the entire plant metabolome, so various extraction methods and a combination of additional analytical technologies are often used for analysis.
We used tandem mass spectrometry to conduct a metabolomic study involving a detailed analysis of L. caerulea’s bioactive compounds.

2. Materials and Methods

2.1. Materials

The object of this study was the berries of the four L. caerulea varieties (Volhova, Tomichka, Goluboe vereteno, and Amfora), harvested from plantations by N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Primorsky Territory (43°6′34″ N, 131°52′41″ E) and St.-Petersburg (Pushkin, 59°42′51″ N, 30°23′47″ E) (Figure 1).
The varieties of L. caerulea presented in this article were obtained from the following scientific departments: variety “Goluboe vereteno” from the M.A. Lisavenko Scientific-Research Institute of Horticulture of Siberia; variety “Tomichka” from the Regional State Unitary Enterprise “Bakcharskoye”; variety “Amfora” (also known as variety “Roxana” (Kamchatka)) from free pollination; and variety “Volhova” from the N.I. Vavilov All-Russian Institute of Plant Genetic Resources.
The berries were harvested at the end of July 2022 from two-year-old plants. All samples morphologically corresponded to the pharmacopoeial standards of the State Pharmacopoeia of the Russian Federation [14].

2.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was prepared from a SIEMENS ULTRA clear (SIEMENS water technologies, Günzburg, Germany), and all other chemicals were analytical grade.

2.3. Extraction

Fractional maceration technique was applied to obtain highly concentrated extracts [15]. Aqueous ethanol (80%) was selected for the extraction process due to its high efficiency in extracting polyphenol compounds and compounds of other chemical groups from plant samples. From 500 g of the berries, 50 g of berries of each variety were randomly selected for maceration. The total amount of the extractant (aqueous ethanol) was divided into 3 parts, and the plant parts were consistently infused with the first, second, and third parts. The infusion of each part of the extractant lasted seven days at room temperature. Three replicates of the extraction process were carried out on each plant sample. The extract was filtered through Whatman filter paper. The filtrates were diluted with acetonitrile to final working concentration for analysis.

2.4. Liquid Chromatography

The HPLC analyses were performed on a HPLC instrument of Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan), equipped with a UV sensor and C18 silica reverse-phase column (4.6 × 150 mm, particle size: 2.7 μm). The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% (v/v)) was as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min 100% B. The entire HPLC analysis was performed with a UV–vis detector SPD- 20A (Shimadzu, Kyoto, Japan) at a wavelength of 230 nm for identification compounds; the temperature was 50 °C, and the total flow rate was 0.25 mL min−1. The injection volume was 10 μL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

2.5. Mass Spectrometry

Mass spectrometry analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Bremen, Germany), equipped with an ESI source in positive and negative ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 L/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, and collision energy: 60 eV. An ion trap was used in the scan range of m/z 100–1.700 for MS and MS/MS. The chemical constituents were characterized by their retention behavior, molecular formula, MS/MS spectral patterns, and the home-library database built by the Group of Biotechnology, Bioengineering and Food Systems at the Far-Eastern Federal University (Russia), based on data from other spectroscopic techniques, such as nuclear magnetic resonance, ultraviolet spectroscopy, and MS, as well as data from the literature that is continually updated and revised. The capture rate was one spectrum/s for MS and two spectrum/s for MS/MS. Data collection was controlled by Windows software for BRUKER DALTONIKS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

3. Results and Discussion

The HPLC conditions were optimized to obtain maximal resolution and signal within a minimal run time. Various chromatographic conditions such as the mobile phase composition, injection volume, flow rate, column temperature, and gradient program were studied and optimized for the separation of polyphenol compounds. Different mobile phase compositions (ethanol–water, ethanol-0.1% (v/v) formic acid aqueous solution, acetonitrile–water, and acetonitrile –0.1% (v/v) formic acid aqueous solution) were tested in the gradient program at a 0.25 mL/flow rate. A mobile phase composed of 0.1% (v/v) formic acid aqueous solution (A) and acetonitrile (B) at a 0.25 mL/min flow rate and 50 °C column temperature was found optimal for resolution of the maximum number of peaks in extracts of L. caerulea within 60 min.
The purpose of this study was to establish, as fully as possible, the composition of secondary metabolites in L. caerulea extracts from different geographic regions of origin and to further compare these compositions of chemical compounds both across the presented cultivars and across different geographic origins. Chemical compounds were characterized by their retention behavior, molecular formula, MS/MS spectral patterns, and the home-library database built by the Group of Biotechnology, Bioengineering and Food Systems at the Far-Eastern Federal University (Russia), which is based on data from other spectroscopic techniques, such as nuclear magnetic resonance, ultraviolet spectroscopy, and MS, as well as data from the literature and is continually updated and revised.
We were able to identify 122 chemical compounds from extracts of L. caerulea: 75 chemical compounds from the polyphenol group and 47 chemical compounds from other chemical groups. The chemical structures of some of the identified polyphenols are shown in Figure 2. All the identified polyphenols and other compounds, along with molecular formulas and MS/MS data for L. caerulea, are summarized in Table 1. Polyphenols are represented by the following chemical groups: flavones, flavonols, flavan-3-ols, flavanones, phenolic acids, anthocyanidins, lignans, and coumarins. For the first time, thirty-two compounds from the polyphenol group and twenty-seven compounds from other chemical groups were identified in berries of L. caerulea. These are flavones, such as formononetin, acacetin, rhamnocitrin, 5,7-dimethoxyluteolin, and eupatolitin-di-O-hexoside; flavonols, such as herbacetin, rhamnetin I, isorhamnetin, padmatin, myricetin-3-O-glucuronide, rhamnetin-di-O-hexoside, myricetin-O-galloyl-hexoside; flavan-3-ols (epi)-galoocatechin-3-gallate; (epi)-afzelechin derivative; flavanone hemiphloin; lignans, such as secoisolariciresinol, dimethyl-secoisolariciresinol, coumarin fraxin; etc. The chemical compounds from other chemical groups are benzofuran loliolide; aminoalkylindole 5-methoxydimethyltryptamine; sesquiterpenoid caryophyllene oxide; aporphine alkaloid anonaine; etc.
The new tentatively identified polyphenols belonged to six classes, including eleven flavones, three flavonols, two flavan-3-ols, two flavanone, seven phenolic acids and their conjugates, four stilbenes, and two coumarins (Table 1). The new tentatively identified compounds from other chemical groups belonged to 12 classes, including 1 L-alpha-amino acid, 1 cyclohexanecarboxylic acid, 3 alpha, omega dicarboxylic acid, 1 pentahydroxy hexanoic acid, 1 benzofuran, 1 sesquiterpenoid and 1 sesquiterpene lactone, 1 hydroxytetradecanoic acid, 2 omega-3 fatty acids, 1 aporphine alkaloid, 1 oxylipin, 3 iridoids, 1 sterol, and others. An approximate comparison of the chemical constituents identified in the L. caerulea varieties obtained from two different regions is shown in Appendix A, Table A1.

3.1. Flavones

3.1.1. 7-Hydroxy(iso)flavones

We identified flavone calycosin-7-O-β-D-glucoside-6″-O-malonate (compound 13 in Table 1) in extracts from the berries of L. caerulea. The CID spectrum (collision-induced spectrum), in positive ion modes, of flavone calycosin-7-O-β-D-glucoside-6″-O-malonate from the berries of L. caerulea is shown in Figure 3.
The [M+H]+ ion produced two fragment ions with m/z 287.09 and m/z 215.33 (Figure 3). The fragment ion with m/z 287.09 produced two characteristic daughter ions with m/z 273.02 and m/z 236.16. However, this flavone has already been reported from Astragali Radix [29,30]. Calycosin-7-O-β-D-glucoside-6″-O-malonate (flavonoid glycoside) is biosynthesized by the conversion of flavonoid glycoside malonate, as shown in Figure 4 [99,100,101].

3.1.2. Dihydroxyflavones

The flavones acacetin 8-C-glucoside malonylated (compound 12 in Table 1) and chrysin derivative (compound 14 in Table 1) have already been characterized as components of Mexican lupine species [31] and Embelia [32]. These flavones were tentatively identified in extracts from the berries of L. caerulea. The CID spectrum, in positive ion modes, of acacetin 8-C-glucoside malonylated from extracts from the berries of L. caerulea is shown in Figure 5.
The [M+H]+ ion produced three fragment ions with m/z 471.18, m/z 411.05, and m/z 315.08 (Figure 5). The fragment ion with m/z 471.18 produced two characteristic daughter ions with m/z 424.08 and m/z 281.11. The fragment ion with m/z 424.08 produced two characteristic ions with m/z 305.02 and m/z 263.46. The acacetin 8-C-glucoside has been previously reported in the extract from Mexican lupine species [31].

3.1.3. Trihydroxyflavones

The flavones apigenin (compound 1 in Table 1), trihydroxy(iso)flavone (compound 2 in Table 1), luteolin 7-O-glucoside (compound 9 in Table 1), chrysoeriol O-hexoside (compound 10 in Table 1), C-hexosyl-apigenin O-rhamnoside (compound 15 in Table 1), lonicerin (compound 16 in Table 1), luteolin 7-O-(6-O-arabinosyl-glucoside) (compound 17 in Table 1), rhamnocitrin (compound 20 in Table 1), and kaempferol 3-O-rutinoside (compound 27 in Table 1) have already been characterized as a components of Phlomis (Lamiaceae) [16], Olive oil [17], Mentha [18,41], L. henryi [19], Propolis [20], V. macrocarpon [25], L. japonica [26], T. aestivum L. [27], Ipomoea batatas [28], Astragali radix [29], Exocarpium Citri Grandis [34], Strawberry [50], R. meyeri [37], and Spondias purpurea [44]. The trihydroxyflavones were tentatively identified in extracts from the berries of L. caerulea. The CID spectrum, in positive ion modes, of Lonicerin from extracts from the berries of L. caerulea is shown in Figure 6 and Figure 7.
The [M+H]+ ion produced two fragment ions with m/z 449.11 and m/z 287.11 (Figure 7). The fragment ion with m/z 449.11 produced one characteristic daughter ion with m/z 287.12. The fragment ion with m/z 287.12 produced two characteristic daughter ions with m/z 287.08 and m/z 153.14. The Lonicerin was identified, using the bibliography, in extracts from L. japonica [26] and Exocarpium Citri Grandis [34].

3.1.4. Tetrahydroxyflavones

The flavonols kaempferol (compound 18 in Table 1), dihydrokaempferol (compound 19 in Table 1), rhamnetin II (compound 23 in Table 1), isorhamnetin (compound 24 in Table 1), and rutin (compound 29 in Table 1) have already been characterized as components of L. henryi [19], L. japonica [26], P. sibirica [35], Rhus coriaria [36], R. meyeri [37], Andean blueberry [38], Camellia kucha [39], Strawberry [40], Spondias purpurea [44], R. occidentalis [47], and R. magellanicum [52]. These tetrahydroxyflavones were tentatively identified in extracts from the berries of L. caerulea. The CID spectrum, in positive ion modes, of Rhamnetin II from the berries of L. caerulea is shown in Figure 8.
The [M–H] ion produced one fragment ion with m/z 300.11 (Figure 8). The fragment ion with m/z 300.11 produced three characteristic daughter ions with m/z 271.15, m/z 227.19, and m/z 151.23. The fragment ion with m/z 271.15 produced one characteristic daughter ion with m/z 227.16. The rhamnetin II was identified, using the bibliography, in extracts from P. sibirica [35], Rhus coriaria L. [36], and Spondias purpurea [44].

3.1.5. Pentahydroxyflavones

The flavonols quercetin (compound 21 in Table 1), herbacetin (compound 22 in Table 1), and pentahydroxy dimethoxyflavone (compound 7 in Table 1) have already been characterized as components of Propolis [20], G. linguiforme [22], Ocimum [23], V. macrocarpon [25,42], Rhus coriaria [36], R. meyeri [37], and Rhodiola rosea [43]. These pentahydroxyflavones were tentatively identified in extracts from the berries of L. caerulea. The CID spectrum, in positive ion modes, of the herbacetin from berries of L. caerulea is shown in Figure 9.
The [M+H]+ ion produced two fragment ions with m/z 203.13 and m/z 257.10 (Figure 9). The fragment ion with m/z 203.13 produced two characteristic daughter ions with m/z 157.15 and m/z 175.10. The fragment ion with m/z 175.10 produced one characteristic daughter ion with m/z 157.11. The herbacetin was identified, using the bibliography, in extracts from Ocimum [23] and Rhodiola rosea [43].

3.2. Phenolic Acids

3.2.1. Hydroxycinnamic Acids and Cinnamate Esters

The caffeic acid (compound 50 in Table 1), ferulic acid (compound 52 in Table 1), hydroxyferulic acid (compound 55 in Table 1), sinapic acid (compound 56 in Table 1), chlorogenic acid (compound 60 in Table 1), 3-O-hydroxydihydrocaffeoylquinic acid (compound 61 in Table 1), 3,4-O-dicaffeoylquinic acid (compound 64 in Table 1), 4,5-O-dicaffeoylquinic acid (compound 65 in Table 1), and dicaffeoylferuoylquinic acid (compound 67 in Table 1) have already been characterized as components of L. henryi [19], V. macrocarpon [25], L. japonica [26], R. meyeri [37], Andean blueberry [38], Strawberry [40], R. occidentalis [47], V. myrtillus [49], R. nigrum [67], and Stevia rebaudiana [72]. These acids were tentatively identified in the extracts from berries of L. caerulea. The chemical structure analysis of chlorogenic acid is shown in Figure 10.
The CID spectrum, in positive ion modes, of chlorogenic acid from the berries of L. caerulea is shown in Figure 11.
The [M+H]+ ion produced one fragment ion with m/z 203.13 (Figure 11). The fragment ion with m/z 163.16 produced one characteristic daughter ion with m/z 145.16. The chlorogenic acid was tentatively identified, using the bibliography, in extracts from L. henryi [19], L. japonica [26], V. macrocarpon [25,42], Andean blueberry [38], Strawberry [40], Spondias purpurea [44], cranberry [48], V. myrtillus [49], and R. magellanicum [52].

3.2.2. Hydroxybenzoic and Methylbenzoic Acids

The hydroxy methoxy dimethylbenzoic acid (compound 53 in Table 1), 2,3,4,5,6-pentahydroxybenzoic acid (compound 54 in Table 1), methylgallic acid (compound 51 in Table 1), 2,4,6-trihydroxy-3,5-dimethoxybenzoic acid (compound 57 in Table 1), ellagic acid (compound 58 in Table 1), and 6-hydroxy-3-methoxy-4-O-β-D-glucopyranoside (compound 59 in Table 1) have already been characterized as components of F. herrerae, F. glaucescens [22], Rhus coriaria [36], R. occidentalis [47], Papaya [50], Eucalyptus [66], Jatropha [68], and Actinidia [70]. These acids were tentatively identified in the extracts from berries of L. caerulea. The CID spectrum, in positive ion modes, of the methylgallic acid from berries of L. caerulea is shown in Figure 12.
The [M+H]+ ion produced one fragment ion with m/z 139.18 (Figure 12). The fragment ion with m/z 139.18 produced one characteristic daughter ion with m/z 111.2. The methylgallic acid was identified, using the bibliography, in extracts from Rhus coriaria [36]; Papaya [50]; and Eucalyptus [66].
A Vienna diagram showing the similarities and differences in the presence of various chemical groups in the Far Eastern L. caerulea varieties (Amfora; Tomichka; Goluboe vereteno; Volhova) is shown in Figure 13.
Table 2 below shows the distribution of the chemical groups in L. caerulea samples from the Far East presented in this study.
From Table 2, it follows that there are several compounds commonly present in the four different samples. Also, the following chemical compounds have a fairly significant repeatability in varieties from the Far East: hydroxyferulic acid; quercetin; hydroxy dodecanoic acid; rhamnocitrin; jaceosidin; pheophytin A; sebacic acid; fructose-leucine; myristoleic acid; sespendole; fraxetin; stearidonic acid; coumaroyl shiikimic acid; isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); p-coumaroyl malonyldihexose; isorhamnetin; ellagic acid; resveratrol; methylgallic acid; delphinidin 3-O-glucoside; hydroxy methoxy dimethylbenzoic acid; quinic acid; and (epi)-afzelechin derivative.
A Vienna diagram showing the similarities and differences in the presence of various chemical groups in the Saint-Petersburg L. caerulea varieties (Amfora; Tomichka; Goluboe vereteno; Volhova) is shown in Figure 14.
Table 3 below shows the distribution of the chemical groups in L. caerulea samples from the Saint-Petersburg varieties presented in the study.
From Table 3, it follows that in all four different samples, a certain number of chemical compounds is exactly repeated, and these are the following constituents: Petunidin; Sebacic acid; Apigenin; Pentahydroxy dimethoxyflavone; (Epi)-afzelechin derivative; L-Histidine; Anonaine; and Myristoleic acid.
Also, the following chemical compounds have a fairly significant repeatability in varieties from Saint-Petersburg: isorhamnetin; ellagic acid; caffeic acid isoprenyl ester; quercetin; herbacetin; (epi)-afzelechin; (epi)-catechin; 7-(β-D-glucopyranoside/galactopyranoside)-2-oxo-2H-1-benzopyran-4-acetic acid; shikimic acid; cirsiliol; methylgallic acid; hydroxy dodecanoic acid; dihydroxy-tetramethoxy(iso)flavone; p-coumaroyl monotropein hexoside; resveratrol; fructose-leucine; quinic acid; artemisinin C; 5,6,4′-trihydroxy-7,8-dimethoxyflavone; 2,3,4,5,6-pentahydroxybenzoic acid; sespendole; linolenic acid; gallocatechin; 6-trihydroxy-3,5-dimethoxybenzoic acid; 4-dihydroxy-3-methoxy-benzenepropanoic acid; 8,9,10-penthahydroxydibenzo [b d]pyran-6-one; citric acid; and hydroxy methoxydimethylbenzoic acid.
Below are Venn diagrams (Figure 15A,B, Figure 16A,B, Figure 17A,B, and Figure 18A,B showing the similarities and differences in the general complex of isolated chemical compounds from L. caerulea extracts (Amfora, Tomichka, Goluboe vereteno, and Volhova varieties) and specifically in the complex of polyphenolic compounds. Accordingly, the chemical data on secondary metabolites obtained from plantations at widely separated geographic locations are compared.
A general analysis of the degree of similarity and divergence, in particular in terms of the polyphenolic component, with a greater degree of probability, shows approximately the same percentage of occurrence of both polyphenolic compounds and compounds of other chemical classes in the same L. caerulea varieties grown at two geographical points far apart from each other. These diagrams allow us to reach a preliminary conclusion about the large geographical variability in terms of secondary metabolites of the same variety of the presented L. caerulea.

4. Conclusions

In summary, the present study described a systematic comparative screening of phenolics and other chemical groups in L. caerulea extracts using a HPLC-ESI—ion trap. A total of 122 compounds, including 75 polyphenols and 47 chemical constituents from other chemical groups were identified from L. caerulea extracts of four blue honeysuckle species. They were characterized by their retention behavior, molecular formula, MS/MS spectral patterns, and using the home-library database built by the Group of Biotechnology, Bioengineering and Food Systems at the Far-Eastern Federal University (Russia), which is based on data from other spectroscopic techniques, such as nuclear magnetic resonance, ultraviolet spectroscopy, and MS, as well as data from the literature, and is continually updated and revised. For the first time, thirty chemical constituents from the polyphenol group (flavones Jaceosidin, Cirsiliol, Sophoraisoflavone A, Chrysoeriol-O-hexoside, stilbenes Pinosylvin, Resveratrol, Dihydroresveratrol, etc.) and twenty-seven chemical constituents from other chemical groups were identified in the berries of L. caerulea.
The largest number of unique polyphenols is found in the variety Tomichka, the selection of the regional state unitary enterprise “Bakcharskoye”, obtained from the free pollination of L. caerulea and originating from the Primorsky Territory of Russia (L. caerulea subspecies Turczaninow). This genotype has the highest number of similar unique polyphenols, regardless of where it was grown. Blue honeysuckle genotypes originating from Primorsky Krai in Russia can be used in various breeding programs in order to improve and enrich the biochemical composition of fruits. It should also be noted that, regardless of the place of cultivation, the total amount of unique polyphenols remains quite significant. Attention should be paid to the Volhova honeysuckle variety, obtained through gamma irradiation of the Pavlovskaya variety (Kamchatka ecotype). This sample is characterized by a stable composition of biologically active substances, regardless of the growing area. These data could support future research on the production of a variety of pharmaceutical products containing ultrapure extracts of L. caerulea. The richness of various biologically active compounds, including compounds of the polyphenol group and compounds of other chemical groups (oxylipins, Omega- fatty acids, sterols, iridoids, etc.), provides great opportunities for the design of new nutritional and dietary supplements based on supercritical extracts from the leaves, stems, and berries of L. caerulea.

Author Contributions

Conceptualization, N.G.T., A.S.S., K.S.G. and M.P.R.; methodology, M.P.R., M.A.N. and Y.N.Z.; software, M.P.R.; validation, M.P.R. and K.S.G.; formal analysis, M.A.N., A.S.S. and M.P.R.; investigation, K.S.G., N.G.T., and M.P.R.; resources, K.S.G. and M.P.R.; data curation, N.G.T., A.S.S., E.A.R. and E.N.P.; writing—original draft preparation, N.G.T., M.A.N. and M.P.R.; writing—review and editing M.A.N., M.P.R. and N.G.T.; visualization, M.P.R. and N.G.T.; supervision, N.G.T.; project administration, K.S.G. and M.P.R. All authors have read and agreed to the published version of the manuscript.

Funding

This study was carried out at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources at the expense of the Russian Science Foundation Grant No. 23-74-00044, https://rscf.ru/en/project/23-74-00044/.

Data Availability Statement

Not applicable.

Acknowledgments

The work was supported financially by the Russian Ministry of Education and Science (Agreement No. 23-74-00044 dated 13 April 2023).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Approximate comparison of chemical constituents identified in L. caerulea varieties obtained from two different regions.
Table A1. Approximate comparison of chemical constituents identified in L. caerulea varieties obtained from two different regions.
Class of CompoundsIdentificationAmfora Far EastAmfora SPbTomichka Far EastTomichka SPbGoluboe Far EastGoluboe SPbVolhova Far EastVolnova SPb
FlavoneApigenin
FlavoneTrihydroxy(iso)flavone
Flavone5,6,4′-Trihydroxy-7,8-dimethoxyflavone
FlavoneJaceosidin
FlavoneCirsiliol
FlavoneSophoraisoflavone A
FlavonePentahydroxy dimethoxyflavone
FlavoneDihydroxy-tetramethoxy(iso)flavone
FlavoneLuteolin 7-O-glucoside
FlavoneChrysoeriol O-hexoside
FlavoneFormononetin-7-O-glucoside-6″-O-malonate
FlavoneAcacetin 8-C-glucoside malonylated
FlavoneCalycosin-7-O-beta-D-glucoside-6″-O-malonate
FlavoneChrysin derivative
FlavoneC-hexosyl-apigenin O-rhamnoside
FlavoneLonicerin
FlavoneLuteolin 7-O-(6-O-arabinosyl-glucoside)
FlavonolKaempferol
FlavonolDihydrokaempferol
FlavoneRhamnocitrin
FlavonolQuercetin
FlavoneHerbacetin
FlavonolRhamnetin II
FlavonolIsorhamnetin
FlavonolKaempferol-3-O-α-L-rhamnoside
FlavonolQuercetin 3-O-glucoside
FlavonolKaempferol 3-O-rutinoside
FlavonolQuercetin 3-O-pentosyl hexoside
FlavonolRutin
FlavonolIsorhamnetin 3-O-(6″-O-rhamnosyl-hexoside)
FlavonolDimethylquercetin-3-O-dehexoside
FlavonolDerivative of Quercetin rhamnosyl hexoside
Flavan-3-olEpiafzelechin
Flavan-3-ol(Epi)-catechin
Flavan-3-olGallocatechin
Flavan-3-ol(Epi)-afzelechin derivative
Flavan-3-ol(Epi)-catechin derivative
Flavan-3-ol(−)-Epicatechin Gallate
FlavanoneNaringenin
FlavanoneButin
AnthocyaninAnthocyanidin
AnthocyaninPetunidin
AnthocyaninPelargonidin-3-O-glucoside
AnthocyaninDelphinidin 3-O-glucoside
AnthocyaninPelargonidin 3-O-(6-O-malonyl-β-D-glucoside)
AnthocyaninDelphinidin 3-O-β-D-sambubioside
AnthocyaninDelphinidin 3-O-rutinoside
AnthocyaninPetunidin-3-rutinoside
Hydroxybenzoic acid (Phenolic acid)Protocatechuic acid
Hydroxycinnamic acidCaffeic acid
Methylbenzoic acidMethylgallic acid
Trans-cinnamic acidFerulic acid
Phenolic acidHydroxy methoxy dimethylbenzoic acid
Phenolic acid2,3,4,5,6-pentahydroxybenzoic acid
Hydroxycinnamic acidHydroxyferulic acid
Hydroxycinnamic acidSinapic acid
Phenolic acid2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid
Hydroxybenzoic acid (Phenolic acid)Ellagic acid
Phenolic acid6-Hydroxy-3-methoxy-4-O-β-D-glucopyranoside
Hydroxycinnamic acidChlorogenic acid
Hydroxycinnamic acid3-O-Hydroxydihydrocaffeoylquinic acid
Phenolic acidCaffeoylquinic acid derivative
Flavonoidp-Coumaroylhexose-4-O-hexoside
Phenolic acid3,4-O-dicaffeoylquinic acid
Phenolic acid4,5-O-dicaffeoylquinic acid
Phenolic acidp-Coumaroyl malonyldihexose
Phenolic acidDicaffeoylferuoylquinic acid
StilbenePinosylvin
StilbeneResveratrol
StilbeneDihydroresveratrol
HydroxycoumarinUmbelliferone
CoumarinFraxetin
Coumarin3,4/6,8-Dihydro-5,7-dihydroxy-2-oxo-2H-1-benzopyran-3-acetic acid
CoumarinUmbelliferone hexoside
Coumarin7-(β-D-Glucopyranoside/galactopyranoside)-2-oxo-2H-1-benzopyran-4-acetic acid
OTHERS
Amino acidL-Proline
Non-proteinogenic L-alpha-amino acidL-Pyroglutamic acid
Amino acidL-Histidine
Amino acidL-threanine
Amino acidL-Arginine
Cyclohexenecarboxylic acidShikimic acid
Tricarboxylic acidCitric acid
Polyhydroxycarboxylic acidQuinic acid
Pentahydroxyhexanoic acidGluconic acid
BenzofuranLoliolide
Alpha, omega dicarboxylic acidSebacic acid
4-Dihydroxy-3-methoxy-benzenepropanoic acid
SesquiterpenoidCaryophyllene oxide
Carboxylic acidMyristoleic acid
Pyrimidine nucleosideCytidine
Glycosylated pyrimidine analogUridine
Hydroxytetradecanoic acidHydroxy myristic acid
Medium-chain fatty acidHydroxy dodecanoic acid
Caffeic acid isoprenyl ester
Sesquiterpene lactoneArtemisinin C
Aporphine alkaloidAnonaine
Ribonucleoside composite of adenine (purine)Adenosine
3,4,8,9,10-Penthahydroxydibenzo [b,d]pyran-6-one
Omega-3-fatty acidStearidonic acid
Omega-3-fatty acidLinolenic acid
Mixture of diastereomersFructose-leucine
Cyclohexenecarboxylic acidCoumaroyl shiikimic acid
Oxylipin13-Trihydroxy-Octadecenoic acid
Alpha, omega-dicarboxylic acidEicosatetraenedioic acid
Cyclohexenecarboxylic acidCaffeoyl shikimic acid
Alpha, omega-dicarboxylic acidTrihydroxy eicosatetraenoic acid
Dicarboxylic acid sugarCaffeoyl gluconic acid
Iridoid glucosideSweroside
CyclopentapyranLoganin acid
7-(β-D-Galactopyranosyloxy)-6,8-dimethoxy-2H-1-benzopyran-2-one
IridoidMonotropein
SterolBeta-Sitostenone
Anabolic steroidVebonol
Phenylpropanoid glucosideGrayanoside A
Thromboxane receptor antagonistVapiprost
Indole sesquiterpene alkaloidSespendole
Iridoid glucosidep-Coumaroyl monotropein
Iridoid glucosidep-coumaroyl-6,7-dihydromonotropein
CarotenoidZeaxanthin
Carotenoid(all-E)-lutein 3-O-C(4:0)
Iridoidp-Coumaroyl monotropein hexoside
Product of chlorophyll degradationPheophytin A

References

  1. Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [PubMed]
  2. Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iriodoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef] [PubMed]
  3. Negreanu-Pirjol, B.-S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.-M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [PubMed]
  4. Streltsina, S.A.; Plekhanova, M.N.; Tikhonova, O.A.; Sabitov, A.S.H.; Arsenyeva, T.V.; Pupkova, N.A. Comparative evaluation of wild-growing species of berry crops in terms of composition and content of biologically active phenolic compounds. Proc. Appl. Bot. Genet. Breed. 2007, 161, 155–162. [Google Scholar]
  5. Perova, I.B.; Rylina, E.V.; Eller, K.I.; Akimov, M.Y. The study of the polyphenolic complex and iridoid glycosides in various cultivars of edible honeysuckle fruits Lonicera edulis Turcz. ex Freyn. Vopr. Pitan. 2019, 88, 88–99. (In Russian) [Google Scholar] [CrossRef]
  6. Kozak, N.V.; Imamkulova, Z.A.; Kulikov, I.M.; Medvedev, S.M. Sources of economically valuable characteristics of collection samples of honeysuckle blue (Lonicera caerulea L.). Hortic. Vitic. 2018, 16–23. (In Russian) [Google Scholar] [CrossRef]
  7. Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An Update on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef]
  8. Perova, I.B.; Eller, K.I.; Gerasimov, M.A.; Baturina, V.A.; Akimov, M.Y.; Akimova, O.M.; Mironov, A.M.; Koltsov, V.A. A study of a complex of bioactive compounds in the fruits of promising blue honeysuckle (Lonicera caerulea L.) cultivars. Proc. Appl. Bot. Genet. Breed. 2023, 184, 53–69. [Google Scholar] [CrossRef]
  9. Wang, S.Y.; Chen, C.; Wang, C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009, 112, 676–684. [Google Scholar] [CrossRef]
  10. Senica, M.; Bavec, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 2018, 98, 3333–3342. [Google Scholar] [CrossRef]
  11. Hull, E.W. The Atom and the Ocean, Understanding the Atom Series; ERIC: Washington, DC, USA, 1968. Available online: https://files.eric.ed.gov/fulltext/ED042651.pdf (accessed on 1 January 2022).
  12. Hossain, M.K.; Dayem, A.A.; Han, J.; Yin, Y.; Kim, K.; Saha, S.K.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int. J. Mol. Sci. 2016, 17, 569. [Google Scholar] [CrossRef] [PubMed]
  13. Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
  14. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated August 11, 2020. Available online: https://eec.eaeunion.org/upload/medialibrary/37c/PHARMACOPOEIA-of-the-Eurasian-Economic-Union.pdf (accessed on 11 August 2020).
  15. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
  16. Aghakhani, F.; Kharazin, N.; Gooini, Z.L. Flavonoid Constituents of Phlomis (Lamiaceae) Species Using Liquid Chromatography Mass Spectrometry. Phytochem. Anal. 2018, 29, 180–195. [Google Scholar] [CrossRef]
  17. Suarez, M.; Macia, A.; Romero, M.-P.; Motilva, M.-J. Improved liquid chromatography tandem mass spectrometry method for the determination of phenolic compounds in virgin olive oil. J. Chromatogr. A 2008, 1214, 90–99. [Google Scholar] [CrossRef]
  18. Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashty, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116–122. [Google Scholar]
  19. Jaiswal, R.; Muller, H.; Muller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
  20. Belmehdi, O.; Bouyahya, A.; József, J.E.K.Ő.; Cziáky, Z.; Zengin, G.; Sotkó, G.; Elbaaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  21. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
  22. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS–Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
  23. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  24. Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef] [PubMed]
  25. Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef] [PubMed]
  26. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  27. Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
  28. Wang, A.; Li, R.; Ren, L.; Gao, X.; Zhang, Y.; Ma, Z.; Ma, D.; Luo, Y. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chem. 2018, 260, 124–134. [Google Scholar] [CrossRef]
  29. Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.; Qiu, X.-H. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef]
  30. Huang, X.; Liu, Y.; Song, F.; Liu, Z.; Liu, S. Studies on principal components and antioxidant activity of different Radix Astragali samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry. Talanta 2009, 78, 1090–1101. [Google Scholar] [CrossRef]
  31. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
  32. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  33. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry. Wiley Anal. Sci. 2005, 19, 3143–3158. [Google Scholar]
  34. Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef] [PubMed]
  35. Song, Y.L.; Zhou, G.S.; Zhou, S.X.; Jiang, Y.; Tu, P.F. Polygalins D–G, four new flavonol glycosides from the aerial parts of Polygala sibirica L. (Polygalaceae). Nat. Prod. Res. Former. Nat. Prod. Lett. 2013, 27, 1220–1227. [Google Scholar]
  36. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
  37. Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef] [PubMed]
  38. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  39. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef]
  40. Hanhineva, K.; Karenlampi, S.O.; Aharoni, A. Recent Advances in Strawberry Metabolomics. In Genomics, Transgenics, Molecular Breeding and Biotechnology of Strawberry; Husaini, A.M., Mercado, J.A., Eds.; Global Science Books, UK: Ikenobe, Japan, 2011; pp. 56–64. [Google Scholar]
  41. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound with Organ-on-a-Chip. Front. Pharm. 2018, 9, 1067. [Google Scholar] [CrossRef]
  42. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
  43. Zapesochnaya, G.G.; Kurkin, V.A.; Shchavlinskii, A.N. Flavonoids of the above-ground part of Rhodiola rosea. II. Structure of novel glycosides of herbacetin and gossypetin. Chem. Nat. Connect. 1985, 4, 496–507. [Google Scholar]
  44. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
  45. Hassan, W.; Abdelaziz, S.; Yousef, H. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonea aculeata L. Growing in Saudi Arabia. Arab. J. Chem. 2019, 12, 377–387. [Google Scholar] [CrossRef]
  46. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
  47. Paudel, L.; Wyzgovski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin Secondary Metabolites of Black Raspberry (Rubus occidentalis L.) Fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS Analyses. J. Agric. Food. Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef]
  48. Wang, Y.; Vorsa, N.; Harrington, P.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM–HRMS. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
  49. Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.; Yang, B. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef]
  50. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
  51. Bujor, O.-C. Extraction, Identification and Antioxidant Activity of the Phenolic Secondary Metabolites Isolated from the Leaves, Stems and Fruits of Two Shrubs of the Ericaceae Family. Ph.D. Thesis, Université d’Avignon, Avignon, France, 2016. [Google Scholar]
  52. Burgos-Edwards, A.; Jimenez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes. Food Chem. 2018, 258, 144–155. [Google Scholar] [CrossRef]
  53. Mosic, M.; Trifkovic, J.; Vovk, I.; Gasic, U.; Tesic, Z.; Sikoparija, B.; Milojkovic-Opsenica, D. Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef]
  54. Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef]
  55. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K.S. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  56. Singh, J.; Kumar, S.; Rathi, B.; Bhrara, K.; Chhikara, B.S. Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles. J. Mater. NanoSci. 2015, 2, 1–7. [Google Scholar]
  57. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agricult. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef] [PubMed]
  58. Said, R.B.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef] [PubMed]
  59. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef]
  60. Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef]
  61. Pradhan, P.C.; Saha, S. Anthocyanin profiling of Berberis lycium Royle berry and its bioactivity evaluation for its nutraceutical potential. J. Food Sci. Technol. 2016, 53, 1205–1213. [Google Scholar] [CrossRef]
  62. Ruiz, A.; Hermosin-Gutierrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfild, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  63. Ruiz, A.; Hermosin-Gutierrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. Agric. Food Chem. 2010, 51, 706–713. [Google Scholar] [CrossRef]
  64. Diretto, G.; Jin, X.; Capell, T.; Zhu, C.; Gomez-Gomez, L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gential (Gentiana lutea L. var. aurantiaca). PLoS ONE 2019, 14, e0212062. [Google Scholar]
  65. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  66. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef] [PubMed]
  67. Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic Distribution in Liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef] [PubMed]
  68. Zengin, G.; Mahomoodally, F.; Ibrahime, S.; Ak, G.; Etienne, O.; Jugreet, S.; Brunetti, L.; Leone, S.; Cristina, S.; Di Simone, S. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef] [PubMed]
  69. Razgonova, M.P.; Bazhenova, B.A.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Tree Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  70. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomedical Chromatography. Wiley Anal. Sci. 2021, 35, e5103. [Google Scholar]
  71. N’gaman-Kouassi, K.C.C.; Kabran, G.R.M.; Kadja, A.B.; Mamyrbékova-Békro, J.A.; Pirat, J.L.; Békro, Y.A. Phenolic phytoconstituents from Gmelina arborea leaves hydroacetonic crude extract: ULPC-MS/MS analysis. Der Chem. Sin. 2016, 7, 1–4. [Google Scholar]
  72. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Anal. 2021, 33, 249–261. [Google Scholar] [CrossRef]
  73. Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef]
  74. Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. [Google Scholar] [CrossRef]
  75. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef] [PubMed]
  76. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 162–166. [Google Scholar] [CrossRef] [PubMed]
  77. Fedoreyev, S.A.; Pokushalova, T.V.; Veselova, M.V.; Glebko, L.I.; Kulesh, N.I.; Muzarok, T.I.; Seletskaya, L.D.; Bulgakov, V.P.; Zhuravlev, Y.N. Isoflavonoid production by callus cultures of Maackia amurensis. Fitoterapia 2000, 71, 365–372. [Google Scholar] [CrossRef]
  78. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Mol. 2018, 23, 3001. [Google Scholar] [CrossRef] [PubMed]
  79. Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef] [PubMed]
  80. Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.; Cerretani, L.; García-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L.(potato) leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef]
  81. Razgonova, M.; Boiko, A.; Zinchenko, Y.; Tikhonova, N.G.; Sabitov, A.S.; Zakharenko, A.; Golokhvast, K.S. Actinidia deliciosa: A high-resolution mass spectrometric approach for the comprehensive characterization of bioactive compounds. Turk. J. Agric. For. 2023, 47, 155–169. [Google Scholar] [CrossRef]
  82. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef]
  83. Gulsoy-Toplan, G.; Goger, F.; Yildiz-Pekoz, A.; Gibbons, S.; Sariyar, G.; Mat, A. Chemical Constituents of the Different Parts of Colchicum micranthum and C. chalcedonicum and their Cytotoxic Activities. Nat. Prod. Commun. 2018, 13, 535–538. [Google Scholar]
  84. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
  85. Razgonova, M.P.; Cherevach, E.I.; Tekutyeva, L.A.; Fedoreev, S.A.; Mishchenko, N.P.; Tarbeeva, D.V.; Demidova, E.N.; Kirilenko, N.S.; Golokhvast, K.S. Maackia amurensis Rupr. et Maxim.: Supercritical CO2-extraction and Mass Spectrometric Characterization of Chemical Constituents. Molecules 2023, 28, 2026. [Google Scholar] [CrossRef]
  86. Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef] [PubMed]
  87. Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Wozniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
  88. Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharm. Biomed. Anal. 2019, 170, 153–160. [Google Scholar] [CrossRef] [PubMed]
  89. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef]
  90. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS Analysis for Identification of Hydrophilic Phenolics and Lipophilic Diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef]
  91. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1–42-Induced Learning and Memory Impairment. J. Agric. Food Chem. 2016, 64, 3353–3361. [Google Scholar]
  92. Heffels, P.; Muller, L.; Schieber, A.; Weber, F. Profiling of iridoid glycosides in Vaccinium species by UHPLCMS. Food Res. Int. 2017, 100, 462–468. [Google Scholar] [CrossRef]
  93. Salih, E.Y.A.; Julkunen-Tiitto, R.; Lampi, A.-M.; Kanninen, M.; Luukkanen, O.; Sipi, M.; Lehtonen, M.; Vuorela, H.; Fyhrquist, P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol. 2018, 227, 82–96. [Google Scholar] [CrossRef]
  94. Delgado-Pelayo, R.; Hornero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef]
  95. Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofre, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2018, 1032, 40–47. [Google Scholar] [CrossRef]
  96. Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.G.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef] [PubMed]
  97. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar] [CrossRef] [PubMed]
  98. Penagos-Calvete, D.; Guauque-Medina, J.; Villegas-Torres, M.F.; Montoya, G. Analysis of triacylglycerides, carotenoids and capsaicinoids as disposable molecules from Capsicum agroindustry. Hortic. Environ. Biotechnol. 2019, 60, 227–238. [Google Scholar] [CrossRef]
  99. Zheng, Y.; Duan, W.; Sun, J.; Zhao, C.; Cheng, Q.; Li, C.; Peng, G. Structural Identification and Conversion Analysis of Malonyl Isoflavonoid Glycosides in Astragali Radix by HPLC Coupled with ESI-Q TOF/MS. Molecules 2019, 24, 3929. [Google Scholar] [CrossRef]
  100. Li, Y.; Huang, S.; Sun, J.; Duan, W.; Li, C.; Peng, G.; Zheng, Y. RRLC-QTOF/MS-Based Metabolomics Reveal the Mechanism of Chemical Variations and Transformations of Astragali Radix as a Result of the Roasting Process. Front. Chem. 2022, 10, 903168. [Google Scholar] [CrossRef]
  101. Li, S.; Han, Q.; Qiao, C.; Song, J.; Cheng, C.L.; Xu, H. Chemical markers for the quality control of herbal medicines: An overview. Chin. Med. 2008, 10, 7. [Google Scholar] [CrossRef]
Figure 1. (A) Berries of L. caerulea. A. Variety “Atlant”; (B) Variety “Vilyuyka” (Photo by E. Rusakova).
Figure 1. (A) Berries of L. caerulea. A. Variety “Atlant”; (B) Variety “Vilyuyka” (Photo by E. Rusakova).
Horticulturae 09 01188 g001
Figure 2. Chemical structure of some identified polyphenols in extracts of L. caerulea.
Figure 2. Chemical structure of some identified polyphenols in extracts of L. caerulea.
Horticulturae 09 01188 g002
Figure 3. CID spectrum of calycosin-7-O-β-D-glucoside-6″-O-malonate from L. caerulea (variety Goluboe vereteno from Saint-Petersburg), m/z 533.80.
Figure 3. CID spectrum of calycosin-7-O-β-D-glucoside-6″-O-malonate from L. caerulea (variety Goluboe vereteno from Saint-Petersburg), m/z 533.80.
Horticulturae 09 01188 g003
Figure 4. Chemical structure analysis of conversion of flavonoid glycoside malonate to their related flavonoid glycoside (1. calycosin-7-O-β-D-glucoside-6″-O-malonate; 2. calycosin-7-O-β-D-glucoside; 3. ononin).
Figure 4. Chemical structure analysis of conversion of flavonoid glycoside malonate to their related flavonoid glycoside (1. calycosin-7-O-β-D-glucoside-6″-O-malonate; 2. calycosin-7-O-β-D-glucoside; 3. ononin).
Horticulturae 09 01188 g004
Figure 5. CID spectrum of acacetin 8-C-glucoside from L. caerulea (variety Goluboe vereteno from Saint-Petersburg), m/z 533.63.
Figure 5. CID spectrum of acacetin 8-C-glucoside from L. caerulea (variety Goluboe vereteno from Saint-Petersburg), m/z 533.63.
Horticulturae 09 01188 g005
Figure 6. CID spectrum of lonicerin from L. caerulea (variety Tomichka from Far East), m/z 594.56.
Figure 6. CID spectrum of lonicerin from L. caerulea (variety Tomichka from Far East), m/z 594.56.
Horticulturae 09 01188 g006
Figure 7. CID spectrum of lonicerin from L. caerulea (variety Amfora from Saint-Petersburg), m/z 595.22.
Figure 7. CID spectrum of lonicerin from L. caerulea (variety Amfora from Saint-Petersburg), m/z 595.22.
Horticulturae 09 01188 g007
Figure 8. CID spectrum of rhamnetin II from berries of L. caerulea (variety Amfora from Saint-Petersburg), m/z 315.23.
Figure 8. CID spectrum of rhamnetin II from berries of L. caerulea (variety Amfora from Saint-Petersburg), m/z 315.23.
Horticulturae 09 01188 g008
Figure 9. CID spectrum of herbacetin from berries of L. caerulea (variety Amfora from Saint-Petersburg), m/z 303.11.
Figure 9. CID spectrum of herbacetin from berries of L. caerulea (variety Amfora from Saint-Petersburg), m/z 303.11.
Horticulturae 09 01188 g009
Figure 10. The chemical structure analysis of chlorogenic acid.
Figure 10. The chemical structure analysis of chlorogenic acid.
Horticulturae 09 01188 g010
Figure 11. CID spectrum of chlorogenic acid from berries of L. caerulea (variety Tomichka from Far East), m/z 355.16.
Figure 11. CID spectrum of chlorogenic acid from berries of L. caerulea (variety Tomichka from Far East), m/z 355.16.
Horticulturae 09 01188 g011
Figure 12. CID spectrum of methylgallic acid from berries of L. caerulea (variety Volhova from Far East), m/z 185.17.
Figure 12. CID spectrum of methylgallic acid from berries of L. caerulea (variety Volhova from Far East), m/z 185.17.
Horticulturae 09 01188 g012
Figure 13. Vienna diagram showing similarities and differences in the presence of various chemical groups in Far Eastern L. caerulea varieties.
Figure 13. Vienna diagram showing similarities and differences in the presence of various chemical groups in Far Eastern L. caerulea varieties.
Horticulturae 09 01188 g013
Figure 14. Vienna diagram showing similarities and differences in the presence of various polyphenolic groups in Saint-Petersburg L. caerulea varieties.
Figure 14. Vienna diagram showing similarities and differences in the presence of various polyphenolic groups in Saint-Petersburg L. caerulea varieties.
Horticulturae 09 01188 g014
Figure 15. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Amfora); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Amfora).
Figure 15. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Amfora); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Amfora).
Horticulturae 09 01188 g015
Figure 16. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Tomichka); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Tomichka).
Figure 16. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Tomichka); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Tomichka).
Horticulturae 09 01188 g016
Figure 17. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Goluboe vereteno); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Goluboe vereteno).
Figure 17. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Goluboe vereteno); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Goluboe vereteno).
Horticulturae 09 01188 g017
Figure 18. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Volhova); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Volhova).
Figure 18. (A) The similarities and differences in the overall complex of isolated chemical constituents from extracts of L. caerulea (variety Volhova); (B) The similarities in the complex of polyphenolic compounds of L. caerulea (variety Volhova).
Horticulturae 09 01188 g018
Table 1. Characterization of the constituents of the extracts of L. caerulea in positive and negative ionization modes via HPLC-ion trap-MS/MS.
Table 1. Characterization of the constituents of the extracts of L. caerulea in positive and negative ionization modes via HPLC-ion trap-MS/MS.
Class of CompoundsIdentificationFormulaRetention TimeObserved Mass [M-H]-Observed Mass [M+H]+MS/MS Stage 1 FragmentationMS/MS Stage 2 FragmentationMS/MS Stage 3 FragmentationReferences
1FlavoneApigeninC15H10O520.2 271225179 Phlomis (Lamiaceae) [16]; Olive oil [17]; Mentha [18]; L. henryl [19]
2FlavoneTrihydroxy(iso)flavoneC15H10O525.6 271197129 Propolis [20]
3Flavone5,6,4′-Trihydroxy-7,8-dimethoxyflavoneC17H14O724.4 331303; 185203157Mentha [21]; F. glaucescens; F. herrerae [22]
4FlavoneJaceosidin [5,7,4′-trihydroxy-6′,5′-dimetoxyflavone] *C17H14O733.2 331303; 203203; 157175Mentha [18,21]
5FlavoneCirsiliol *C17H14O734.0329 229; 311211211Ocimum [23]
6FlavoneSophoraisoflavone A *C20H16O633.7 353335; 294; 235; 195317; 277; 229 Chinese herbal formula Jian-Pi-Yi-Shen pill [24]
7FlavonePentahydroxy dimethoxyflavone *C17H14O935.6 363344; 300; 256238; 146 G. linguiforme [22]
8FlavoneDihydroxy-tetramethoxy(iso)flavone *C19H18O827.5 375345245175; 227Propolis [20]
9FlavoneLuteolin 7-O-glucoside [Cynaroside]C21H20O1127.1 449297269241L. henryi [19]; V. macrocarpon [25]; L. japonica [26]
10FlavoneChrysoeriol O-hexoside *C22H22O117.3 463445; 243 T. aestivum L. [27]; Ipomoea batatas [28]
11FlavoneFormononetin-7-O-glucoside-6″-O-malonate *C25H24O1218.7 517271243 Astragali radix [29,30]
12FlavoneAcacetin 8-C-glucoside malonylated *C25H24O1344.6 533471; 411; 315424; 281305; 263Mexican lupine species [31]
13FlavoneCalycosin-7-O-β-D-glucoside-6″-O-malonate *C25H24O137.5 533287273; 236 Radix astragali [29,30]
14FlavoneChrysin derivativeC26H24O1444.8559 277233; 177 Embelia [32]
15FlavoneC-hexosyl-apigenin O-rhamnoside *C27H30O1436.2 579561; 337; 317319; 262161T. aestivum [33]
16FlavoneLonicerin [Luteolin-7-O-Rhamnoside; Veronicastroside; Scolymoside; Luteolin-7-Rhamnoglucoside]C27H30O1522.8 595449; 287287287; 153L. japonica [26]; Exocarpium Citri Grandis [34]
17FlavoneLuteolin 7-O-(6-O-arabinosyl-glucoside)C26H28O1522.9 581287153; 241; 287 L. henryi [19]
18FlavonolKaempferolC15H10O623.0 287269; 149239; 181 L. japonica [26]; P. sibirica [35]; Rhus coriaria [36]; R. meyeri [37]; Andean blueberry [38]
19FlavonolDihydrokaempferolC15H12O625.4287 259215173Andean blueberry [38]; Camellia kucha [39]; Strawberry [40]
20FlavonolRhamnocitrin *C16H12O627.5 301273245217; 177; 131Astragali radix [29]; Mentha [41]
21FlavonolQuercetinC15H10O731.3 303257; 146229201; 145Propolis [20]; Ocimum [23]; V. macrocarpon [25,42]; Rhus coriaria [36]; R. meyeri [37]
22FlavonolHerbacetin [3,5,7,8-Tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] * C15H10O726.6 303203175 Rhodiola rosea [43]
23FlavonolRhamnetin II *C16H12O732.9 317302274; 153; 121229; 153; 121P. sibirica [35]; Rhus coriaria L. (Sumac) [36]; Spondias purpurea [44]
24FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin]C16H12O724.4315 283255; 211227Andean blueberry [38]; V. macrocarpon [42]; Spondias purpurea [44]
25FlavonolKaempferol-3-O-α-L-rhamnoside * C21H20O10 22.9 433287187 C.edulis; F. glaucescens [22]; Rhus coriaria [36]; P. aculeata [45]; Cassia abbreviata [46]
26FlavonolQuercetin 3-O- glucoside [Isoquercitrin; Hirsutrin; Quercetin-3-O-Glucopyranoside; 3-Glucosylquercetin]C21H20O1223.4 465303229; 165201; 161L. henryi [19]; L. japonica [26]; Ribes meyeri [37]; Andean blueberry [38]; Spondias purpurea [44]; R. occidentalis [47]; Cranberry [48]; V. myrtillus [49]
27FlavonolKaempferol 3-O-rutinosideC27H30O1522.6 595449; 287287287L. japonica [26]; R. meyeri [37]; Spondias purpurea [44]; Strawberry [50]
28FlavonolQuercetin 3-O-pentosyl hexosideC26H28O1621.9 597303; 257; 211257; 195; 165229F. pottsii [22]; Spondias purpurea [44]; V. myrtillus [51]
29FlavonolRutin (Quercetin 3-O-rutinoside)C27H30O1622.1 611303257; 165229L. henryi [19]; L. japonica [26]; Ribes meyeri [37]; Spondias purpurea [44]; R. occidentalis [47]; R. magellanicum [52]
30FlavonolIsorhamnetin 3-O-(6″-O-rhamnosyl-hexoside)C28H32O1624.3 625317302 L. henryi [19]; Bee-pollen [53]
31FlavonolDimethylquercetin-3-O-dehexoside *C29H34O1738.4653 507; 353; 311329287; 190Capsicum annuum [54]
32FlavonolDerivative of Quercetin rhamnosyl hexosideC36H46O228.5829 609301300Pubchem
33Flavan-3-olEpiafzelechin [(epi)Afzelechin] *C15H14O519.4 275245; 219; 175215; 193; 175; 157; 127175; 157; 145A. cordifolia; F. glaucescens; F. herrerae [22]; Cassia abbreviata [46]
34Flavan-3-ol(Epi)-catechinC15H14O622.6 291273; 137 V. macrocarpon [25]; Andean blueberry [38]; Rubus occidentalis [47]; Cranberry [48]; V. myrtillus [49,51]
35Flavan-3-olGallocatechin [+(−)Gallocatechin]C15H14O755.3 307261; 243; 163; 137187; 159131G. linguiforme [22]; Embelia [32]; R. meyeri [37]; V. myrtillus [51]
36Flavan-3-ol(Epi)-afzelechin derivativeC18H16O1019.1 393275; 245; 215245; 175175; 127Zostera marina [55]
37Flavan-3-ol(Epi)-catechin derivativeC18H16O1119.4 409291; 275261; 242; 208; 173244; 214; 191; 173; 160; 124Pubchem
38Flavan-3-ol(−)-Epicatechin Gallate [(−)-Epicatechin-3-O-Gallate; L-Epicatechin Gallate] *C22H18O1023.3441 330; 139150 Chinese herbal formula Jian-Pi-Yi-Shen pill [24]; R. meyeri [37]; Camellia kucha [39]; Cassia abbreviates [46]; Terminalia arjuna [56]
39FlavanoneNaringenin [Naringetol; Naringenine] *C15H12O531.3 273153; 189111 G. linguiforme [22]; Mexican lupine species [31]; Exocarpium Citri Grandis [33]; Andean blueberry [38]; Rapeseed petals [57]
40FlavanoneButin [7,3′,4′-Trihydroxyflavanone] *C15H12O531.7 273153171153Ribes meyeri [38]
41AnthocyaninAnthocyanidin [cyanidin chloride; Cyanidin]C15H11O6+7.9 287286; 270; 247; 205221 F. herrerae [22]; Andean blueberry [38]; Phoenix dactylifera [58]
42AnthocyaninPetunidinC16H13O7+35.6 318256238; 113238A. cordifolia; C. edulis [22]
43AnthocyaninPelargonidin-3-O-glucoside (callistephin)C21H21O1025.9 431257; 331227215R. ulmifolius [59]; Black currant, Elderberry [60]
44AnthocyaninDelphinidin 3-O-glucosideC21H21O12+23.3 465303257; 165229; 201R. magellanicum [52]; Black currant [60]; B. lycium [61]; B. ilicifolia; B.s empetrifolia; R. maellanicum; R. cucullatum; M. nummalaria [62]; B. microphylla [63]
45AnthocyaninPelargonidin 3-O-(6-O-malonyl-β-D-glucoside)C24H23O1311.8 519271243197Gentiana lutea [64]; T. aestivum [65]
46AnthocyaninDelphinidin 3-O-β-D-sambubiosideC26H29O1621.6 597303; 465; 229229; 165201; 172Red currant [60]; B. microphylla [63]; T. aestivum [65]
47AnthocyaninDelphinidin 3-O-rutinoside [Tulipanin; Delphinidin 3-Rhamnosyl-Glucoside]C27H31O1622.4 611303257; 165229Black currant [60]; B. ilicifolia; B. empetrifolia; R. maellanicum; R. cucullatum [62]; B. microphylla [63]
48AnthocyaninPetunidin-3-rutinosideC28H33O1624.2 625317; 479302; 139274; 229; 153Black currant [60]; B. ilicifolia; B. empetrifolia [62]; B. microphylla [63]
49Hydroxybenzoic acid (Phenolic acid)Protocatechuic acidC7H6O429.8 155127 V. macrocarpon [25]; L. japonica [26]; R. meyeri [37]
50Hydroxycinnamic acidCaffeic acid [(2E)-3-(3,4-Dihydroxyphenyl)acrylic acid]C9H8O413.3 181135119 V. macrocarpon [25]; L. japonica [26]; R. meyeri [37]; Strawberry [40]; R. occidentalis [47]; V. myrtillus [49]
51Methylbenzoic acidMethylgallic acid [Methyl gallate] *C8H8O515.3 185139111 Rhus coriaria [36]; Papaya [50]; Eucalyptus [66]
52Trans-cinnamic acidFerulic acidC10H10O47.3193 176132 V. macrocarpon [25]; L. japonica [26]; Andean blueberry [38]; R. nigrum [67];
53Phenolic acidHydroxy methoxy dimethylbenzoic acid *C10H12O420.4 197188179 F. herrerae; F. glaucescens [22]
54Phenolic acid2,3,4,5,6-pentahydroxybenzoic acid *C7H6O78.6 203156129 Jatropha [68]
55Hydroxycinnamic acidHydroxyferulic acid *C10H10O58.1 21119375; 147157; 129Andean blueberry [38]; Strawberry [40]; Rosa davurica [69]
56Hydroxycinnamic acidSinapic acid [trans-Sinapic acid]C11H12O529.2 225207; 179151; 123123V. macrocarpon [25]; Cranberry [48]; Andean blueberry [38]
57Phenolic acid2,4,6-Trihydroxy-3,5-dimethoxybenzoic acid *C9H10O735.6 230212195 Actinidia [70]
58Hydroxybenzoic acid (Phenolic acid)Ellagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]C14H6O821.7301 257229201Rubus occidentalis [47]; Eucalyptus [66]
59Phenolic acid6-Hydroxy-3-methoxy-4-O-β-D-glucopyranoside *C14H20O108.4347 301; 165165; 137 Actinidia [70]
60Phenylpropanoid (cinnamic acid derivative glycoside); Hydroxycinnamic acid; Chlorogenic acid [3-O-Caffeoylquinic acid]C16H18O918.5353 191127 L. henryi [19]; L. japonica [26]; V. macrocarpon [25,42]; Andean blueberry [38]; Strawberry [40]; Spondias purpurea [44]; Cranberry [48]; V. myrtillus [49]; R. magellanicum [52]
61Hydroxycinnamic acid; 3-O-Hydroxydihydrocaffeoylquinic acidC16H20O106.76.7 191173; 127 L. henryi [19]
62Phenolic acidCaffeoylquinic acid derivative 25.5381 179; 135135 V. myrtillus [51]
63Flavonoidp-Coumaroylhexose-4-O-hexoside *C25H28O1023.3 489327299; 253253; 225Strawberry [40]; Gmelina arborea [71]
64Phenolic acid3,4-O-dicaffeoylquinic acid [Isochlorogenic acid B]C25H24O1223.7515 353191173L. henryi [19]; L. japonica [26]; Stevia rebaudiana [72]
65Phenolic acid4,5-O-dicaffeoylquinic acid [Isochlorogenic acid C]C25H24O1224.7515 353191171L. henryi [19]; L. japonica [26]; Lemon [50]
66Phenolic acidp-Coumaroyl malonyldihexose 23.8 575413; 335; 188395; 340; 226; 188346; 290; 211V. myrtillus [51]
67Phenolic acidDicaffeoylferuoylquinic acid * 42.5 693353; 261335; 261; 135243; 149Artemisia annua [73]
68StilbenePinosylvin [3,5-Stilbenediol; Trans-3,5-Dihydroxystilbene] *C14H12O232.7 213167; 139139 P. resinosa [74]; P. sylvestris [75]
69StilbeneResveratrol [trans-Resveratrol; 3,4′,5-Trihydroxystilbene; Stilbentriol] *C14H12O320.3 229211183; 127138A. cordifolia; F. glaucescens; F. herrerae [22]; Embelia [32]; Radix polygoni multiflori [76]
70StilbeneDihydroresveratrol [Alpha, Beta-Dihydroresveratrol] *C14H14O319.4 231214; 158196; 168 Maackia amurense [77]
71HydroxycoumarinUmbelliferone [Skimmetin; Hydragin] *C9H6O316.5 163145117 F. glaucescens [22]; Actinidia [70]; Zostera marina [55]; S. officinalis [78]
72CoumarinFraxetin *C10H8O523.7 209191117 Embelia [32]; Actinidia [70]; Jatropha [68]
73Coumarin3,4/6,8-Dihydro-5,7-dihydroxy-2-oxo-2H-1-benzopyran-3-acetic acidC11H10O67.3 239221203185Actinidia [70]
74CoumarinUmbelliferone hexoside *C15H16O852.8 325289; 127271; 127253; 146G. linguiforme [22]
75Coumarin7-(β-D-Glucopyranoside/galactopyranoside)-2-oxo-2H-1-benzopyran-4-acetic acidC17H18O106.7 383163; 365145 Actinidia [70]
OTHERS
76Amino acidL-Proline [(2-Pyrrolidinecarboxylic acid]C5H9NO216.3 11670 L. japonica [26]; V. unguiculata [79]
77Non-proteinogenic L-alpha-amino acidL-Pyroglutamic acid [Pidolic acid; 5-Oxo-L-Proline] *C5H7NO37.8 130111 Potato leaves [80]
78Amino acidL-HistidineC6H9N3O226.2 156129110 L. japonica [26]; Camellia kucha [39]; Actinidia deliciosa [81]
79Amino acidL-threanineC7H14N2O37.6 175157; 129129; 115 Camellia kucha [39]
80Amino acidL-ArginineC6H14N4O29.9 175130111 L. japonica [26]; Hylocereus polyrhizus [82]
81Cyclohexenecarboxylic acidShikimic acid [L-Schikimic acid] *C7H10O58.1 175157129111A. cordifolia [22]; R. meyeri [37]; Camellia kucha [39]
82Tricarboxylic acidCitric acid [Anhydrous; Citrate]C6H8O76.7191 111; 173 Mentha [18]; Strawberry, Lemon, Cherimoya, Papaya, Passion fruit [50]; V. unguiculata [79]; Potato leaves [80]
83Polyhydroxycarboxylic acidQuinic acidC7H12O67.9191 111; 173111 L. japonica [26]; R. meyeri [37]; Andean blueberry [38]; Potato leaves [80]
84Pentahydroxy hexanoic acidGluconic acid [Dextronic acid; Maltonic acid; Glycogenic acid; Pentahydroxy hexanoic acid] *C6H12O719.1 197188; 179; 156; 119156; 148 R. meyeri [37]; Colchicum micranthum [83]
85BenzofuranLoliolide *C11H16O320.7 197179; 127111 Jatropha [68]
86Alpha, omega dicarboxylic acidSebacic acid [Decanedioic acid] *C10H18O417.6 203185139111; 157Jatropha [68]
87 4-Dihydroxy-3-methoxy-benzenepropanoic acid *C10H12O525.7 213193; 167; 139; 119 Actinidia [70]
88SesquiterpenoidCaryophyllene oxide [Caryophyllene-alpha-oxide] *C15H24O16.4219 173; 111111 R. davurica [69]; Olive leaves [84]
89Carboxylic acidMyristoleic acid [Cis-9-Tetradecanoic acid] *C14H26O220.2 227209; 165121 F. glaucescens [22]; Maackia amurensis [85]
90Pyrimidine nucleosideCytidineC9H13N3O529.2 244225; 179179151L. japonica [26]
91Glycosylated pyrimidine analogUridineC9H12N2O628.3 245145117 L. japonica [26]; Potato leaves [80]
92Hydroxy tetradecanoic acidHydroxy myristic acid [2S-Hydroxytetradecanoic acid; Alpha-Hydroxy Myristic acid] *C14H28O330.8 245228183 F. pottsii [22]
93Medium-chain fatty acidHydroxy dodecanoic acid *C12H22O527.5 247229; 201187159; 145F. glaucescens [22]
94 Caffeic acid isoprenyl esterC14H16O425.4 249203157129Eucalyptus [66]; Brazilian propolis [86]
95Sesquiterpene lactoneArtemisinin C *C15H20O325.7 249202; 157; 125157; 185129Artemisia annua [87]
96Aporphine alkaloidAnonaine *C17H15NO225.8 266249203157R. rugosa [69]; Magnolia [88]
97Ribonucleoside composite of adenine (purine)AdenosineC10H13N5O420.2 268250204; 158157L. japonica [26]; R. acicularis [69]; Huolisu Oral Liquid [89]
98 3,4,8,9,10-Penthahydroxydibenzo [b,d]pyran-6-one *C13H8O733.3 277203157129Terminalia arjuna [56]
99Omega-3-fatty acidStearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid] *C18H28O240.0 277261215; 115129G. linguiforme [22]; Rhus coriaria [36]; Jatropha [68]; Salviae Miltiorrhizae [90]
100Omega-3-fatty acidLinolenic acid (Alpha-Linolenic acid; Linolenate) *C18H30O242.2 279261219163Jatropha [68]; P. sylvestris [75]; Maackia amurensis [85]; Salviae Miltiorrhizae [90]
101Mixture of diastereomersFructose-leucineC12H23NO77.8 294276258210Potato leaves [80]
102Cyclohexenecarboxylic acidCoumaroyl shiikimic acidC16H16O719.4 321219; 173201; 173155Andean blueberry [38]
103Oxylipin13- Trihydroxy-Octadecenoic acid [THODE] *C18H34O532.6329 229; 171210209; 183Phoenix dactylifera [58]; Jatropha [68]; Broccoli [91]
104Alpha, omega-dicarboxylic acidEicosatetraenedioic acid *C20H30O432.1333 287; 197; 151151 G. linguiforme [22]
105Cyclohexenecarboxylic acidCaffeoyl shikimic acidC16H16O838.0 337273; 173128 R. meyeri [37]
106Alpha, omega-dicarboxylic acidTrihydroxy eicosatetraenoic acid *C20H32O545.6 353261243159F. glaucescens [22]
107Dicarboxylic acid sugarCaffeoyl gluconic acidC15H18O1021.6 359340; 312; 284; 228; 196 R. meyeri [37]
108Iridoid glucosideSwerosideC16H22O921.6 359197; 127179111L. japonica [26]
109CyclopentapyranLoganin acidC16H24O1018.9 377158; 359130 L. japonica [26]
110 7-(β-D-Galactopyranosyloxy)-6,8-dimethoxy-2H-1-benzopyran-2-oneC17H20O106.7383 191172; 127171Actinidia [70]
111Iridoid Monotropein *C16H22O1131.2 391373; 329; 251; 187311; 202203V. myrtillus [51,92]
112SterolBeta-Sitostenone [Stigmast-4-En-3-One; Sitostenone] *C29H48O2.1 413301; 171189 F. herrerae [22]; Terminalia laxiflora [93]
113Anabolic steroidVebonol *C30H44O324.9 453435; 210226; 336210Rhus coriaria [36]; Hylosereus polyrhizus [82]
114Phenylpropanoid glucosideGrayanoside A [Hydroxyphenylethyl feruloyl glucopyranoside] *C24H28O1023.4 475 375; 275347; 275; 175247; 175Strawberry [40]
115Thromboxane receptor antagonistVapiprost *C30H39NO444.7 478337263; 121119Rhus coriaria [36]; Hylosereus polyrhizus [82]
116Indole sesquiterpene alkaloidSespendole *C33H45NO445.7 520184125 Rhus coriaria [36]
117Iridoid glucosidep-Coumaroyl monotropein *C25H28O1344.6 537375; 256; 185 Cranberry [52]; V. myrtillus [49,51]
118Iridoid glucosidep-Coumaroyl-6,7-dihydromonotropein *C25H30O1320.2 540373; 229; 179179 Cranberry [48]; V. myrtillus [51]
119CarotenoidZeaxanthin [All-Trans-Zeaxanthin; Anchovyxanthin]C40H56O228.4 570552; 412; 184534; 317; 184487; 404; 321; 149Sarsaparilla [94]; Carotenoids [95]
120Carotenoid(all-E)-lutein 3-O-C(4:0) 41.8 638620; 554536; 335; 220414; 276; 241Carotenoids [96]
121Iridoid p-Coumaroyl monotropein hexoside * 42.5 699537; 347; 259375; 259; 185 V. myrtillus [51]
122Product of chlorophyll degradationPheophytin AC55H74N4O50.6 872593533461Physalis peruviana [97]; Capsicum [98]
* Chemical constituents identified for the first time in L. caerulea.
Table 2. The distribution of the constituents in extracts of L. caerulea samples from the Far East.
Table 2. The distribution of the constituents in extracts of L. caerulea samples from the Far East.
NamesTotalElements
Amfora; Goluboe vereteno; Tomichka; Volhova7kaempferol; herbacetin; 2,3,4,5,6-pentahydroxybenzoic acid; caffeic acid isoprenyl ester; L-histidine; anonaine; 8,9,10-penthahydroxydibenzo [bd]pyran-6-one
Amfora; Goluboe vereteno; Tomichka1hydroxyferulic acid
Amfora; Tomichka; Volhova3quercetin; hydroxy dodecanoic acid; rhamnocitrin
Amfora; Goluboe vereteno; Volhova1jaceosidin
Goluboe vereteno; Tomichka; Volhova4pheophytin A; sebacic acid; fructose-leucine; myristoleic acid
Amfora; Tomichka2sespendole; fraxetin
Amfora; Volhova1stearidonic acid
Tomichka; Volhova10p-coumaroyl shiikimic acid; isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); p-coumaroyl malonyldihexose; isorhamnetin; ellagic acid; resveratrol; methylgallic acid; delphinidin 3-O-glucoside; hydroxy methoxy dimethylbenzoic acid; quinic acid
Goluboe vereteno; Volhova1(epi)-afzelechin derivative
Amfora194/6,8-dihydro-5,7-dihydroxy-2-oxo-2H-1-benzopyran-3-acetic acid; trihydroxyisoflavone; dimethylquercetin-3-O-dehexoside; chrysoeriol O-hexoside; 6-hydroxy-3-methoxy-4-O-β-D-glucopyranoside; formononetin-7-O-glucoside-6″-O-malonate; 13- trihydroxy-Octadecenoic acid; linolenic acid; cirsiliol; adenosine; pelargonidin-3-O-glucoside; citric acid; apigenin; gallocatechin; grayanoside A; pelargonidin 3-O-(6-O-malonyl-β-D-glucoside); C-hexosyl-apigenin O-rhamnoside; artemisinin C; vapiprost
Tomichka30rutin; 7-(β-D-glucopyranoside/galactopyranoside)-2-oxo-2H-1-benzopyran-4-acetic acid; umbelliferone; sinapic acid; vebonol; umbelliferone hexoside; lonicerin; (−)-epicatechin gallate; caffeic acid; L-arginine; quercetin 3-O-glucoside; ferulic acid; L-threanine; quercetin 3-O-pentosyl hexoside; p-coumaroyl-6,7-dihydromonotropein; p-coumaroylhexose-4-O-hexoside; 5-O-dicaffeoylquinic acid; eicosatetraenedioic acid; uridine; delphinidin 3-O-β-D-sambubioside; chlorogenic acid; delphinidin 3-O-rutinoside; caffeoyl gluconic acid; caffeoylquinic acid derivative; cytidine; naringenin; petunidin-3-rutinoside; dicaffeoylferuoylquinic acid; kaempferol 3-O-rutinoside; zeaxanthin; pentahydroxy dimethoxyflavone
Goluboe vereteno4caffeoyl shikimic acid; calycosin-7-O-β-D-glucoside-6″-O-malonate; pinosylvin; dihydroxy-tetramethoxy(iso)flavone
Volhova5trihydroxy eicosatetraenoic acid; 4-O-dicaffeoylquinic acid; derivative of quercetin rhamnosyl hexoside; monotropein; butin
Table 3. Distribution of chemicals in extracts of L. caerulea cultivars from Saint-Petersburg, shown in detail by variety of sample.
Table 3. Distribution of chemicals in extracts of L. caerulea cultivars from Saint-Petersburg, shown in detail by variety of sample.
NamesTotalElements
Amfora SPb Goluboe vereteno SPb Tomichka SPb Volhova SPb4(epi)-afzelechin derivative; L-histidine; anonaine; myristoleic acid
Amfora SPb Goluboe vereteno SPb Tomichka SPb4petunidin; sebacic acid; apigenin; pentahydroxy dimethoxyflavone
Amfora SPb Tomichka SPb Volhova SPb2isorhamnetin; ellagic acid
Amfora SPb Goluboe vereteno SPb Volhova SPb2caffeic acid isoprenyl ester; quercetin
Goluboe vereteno SPb Tomichka SPb Volhova SPb3herbacetin; (epi)-afzelechin; (epi)-catechin
Amfora SPb Tomichka SPb67-(β-D-glucopyranoside/galactopyranoside)-2-oxo-2H-1-benzopyran-4-acetic acid; shikimic acid; cirsiliol; methylgallic acid; hydroxy dodecanoic acid; dihydroxy-tetramethoxy(iso)flavone
Amfora SPb Goluboe vereteno SPb5p-coumaroyl monotropein hexoside; resveratrol; fructose-leucine; quinic acid; artemisinin C
Amfora SPb Volhova SPb15,6,4′-trihydroxy-7,8-dimethoxyflavone
Goluboe vereteno SPb Tomichka SPb62,3,4,5,6-pentahydroxybenzoic acid; sespendole; linolenic acid; gallocatechin; 6-trihydroxy-3,5-dimethoxybenzoic acid; 4-dihydroxy-3-methoxy-benzenepropanoic acid
Tomichka SPb Volhova SPb18,9,10-penthahydroxydibenzo [b d]pyran-6-one
Goluboe vereteno SPb Volhova SPb2citric acid; hydroxy methoxy dimethylbenzoic acid
Amfora SPb31coumaroyl shiikimic acid; loganin acid; isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); 2,4,6-trihydroxy-3,5-dimethoxybenzoic acid; lonicerin; p-coumaroyl malonyldihexose; caryophyllene oxide; L-pyroglutamic acid; 3,8,9,10-penthahydroxydibenzo [bd]pyran-6-one; hydroxyferulic acid; caffeic acid; L-arginine; 3-O-hydroxydihydrocaffeoylquinic acid; quercetin 3-O-glucoside; pheophytin A; L-proline; eicosatetraenedioic acid; rhamnetin II; rhamnocitrin; loliolide; 7-(β-D-galactopyranosyloxy)-6,8-dimethoxy-2H-1-benzopyran-2-one; p-coumaroyl-6,7-dihydromonotropein; delphinidin 3-O-β-D-sambubioside; chlorogenic acid; delphinidin 3-O-rutinoside; kaempferol-3-O-α-L-rhamnoside; caffeoyl gluconic acid; pinosylvin; caffeoylquinic acid derivative; dihydroresveratrol; sweroside; luteolin 7-O-(6-O-arabinosyl-glucoside)
Tomichka SPb9trihydroxy eicosatetraenoic acid; dimethylquercetin-3-O-dehexoside; sophoraisoflavone A; (all-E)-lutein 3-O-C(4:0); dihydrokaempferol; hydroxy myristic acid; jaceosidin; luteolin 7-O-glucoside; naringenin
Goluboe vereteno SPb12acacetin 8-C-glucoside malonylated; gluconic acid; kaempferol; stearidonic acid; β-Sitostenone; p-coumaroyl monotropein; anthocyanidin; adenosine; (epi)-catechin derivative; protocatechuic acid; calycosin-7-O-β-D-glucoside-6″-O-malonate; chrysin derivative
Volhova SPb12,3,4,6-pentahydroxybenzoic acid
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Razgonova, M.P.; Navaz, M.A.; Sabitov, A.S.; Zinchenko, Y.N.; Rusakova, E.A.; Petrusha, E.N.; Golokhvast, K.S.; Tikhonova, N.G. The Global Metabolome Profiles of Four Varieties of Lonicera caerulea, Established via Tandem Mass Spectrometry. Horticulturae 2023, 9, 1188. https://doi.org/10.3390/horticulturae9111188

AMA Style

Razgonova MP, Navaz MA, Sabitov AS, Zinchenko YN, Rusakova EA, Petrusha EN, Golokhvast KS, Tikhonova NG. The Global Metabolome Profiles of Four Varieties of Lonicera caerulea, Established via Tandem Mass Spectrometry. Horticulturae. 2023; 9(11):1188. https://doi.org/10.3390/horticulturae9111188

Chicago/Turabian Style

Razgonova, Mayya P., Muhammad Amjad Navaz, Andrey S. Sabitov, Yulia N. Zinchenko, Elena A. Rusakova, Elena N. Petrusha, Kirill S. Golokhvast, and Nadezhda G. Tikhonova. 2023. "The Global Metabolome Profiles of Four Varieties of Lonicera caerulea, Established via Tandem Mass Spectrometry" Horticulturae 9, no. 11: 1188. https://doi.org/10.3390/horticulturae9111188

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop