Citrus Extract Found Potent in the Control of Seed-Borne Fungal Pathogens of Pearl Millet—A Recommendation for Farmers’ Seed Saving Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey of Pearl Millet Seed Systems
2.3. Determination of Seed Physical and Physiological Characteristics
2.3.1. Seed Moisture Content (%)
2.3.2. Physical Seed Purity (%)
2.3.3. Thousand Seed Weight (g)
2.3.4. Standard Germination and Seed Vigour
2.3.5. Field Germination and Vigour Test
2.4. Determination of Seed Health
2.5. Preparation of Plant Extracts
2.6. Assessment of Botanical Seed Treatments
2.7. Data Analysis
3. Results
3.1. Demographic Characteristics of Pearl Millet Farmers
3.2. Pearl Millet Seed Systems
3.3. Physical Seed Quality of Farmer-Saved Pearl Millet
3.4. Seed Germination and Vigour
3.5. Seed Health Analysis
3.6. Effect of Seed Treatments on Incidence of Seed-Borne Fungi
3.7. Effect of Seed Treatments on Germination and Vigour
4. Discussion
4.1. Seed Quality of Farmer-Saved Pearl Millet
4.2. Incidence of Pathogens on Pearl Millet Seed
4.3. Application of Seed Treatments
5. Conclusions
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ISTA | International Seed Testing Association |
MoFA | Ministry of Food and Agriculture |
CSIR-SARI | Council for Scientific and Industrial Research-Savanna Agricultural Research Institute |
LSD | Least significance difference |
WACCI | West Africa Centre for Crop Improvement |
GSID | Ghana Seed Inspection Division |
PDA | Potato dextrose agar |
DAAD | German Academic Exchange Service |
References
- Satyavathi, C.T.; Ambawat, S.; Khandelwal, V.; Srivastava, R.K. Pearl Millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front. Plant Sci. 2021, 12, 659938. [Google Scholar] [CrossRef] [PubMed]
- Garí, J.A. Review of the African Millet Diversity. In Proceedings of the International Workshop on Fonio, Food Security and Livelihood among the Rural Poor in West Africa, Bamako, Mali, 19–22 November 2001. [Google Scholar]
- Hassan, Z.M.; Sebola, N.A.; Mabelebele, M. The nutritional use of millet grain for food and feed: A review. Agric. Food Secur. 2021, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Khairwal, I.; Rai, K.; Diwakar, B.; Sharma, Y.; Rajpurohit, B.; Nirwan, B.; Bhattacharjee, R. Pearl Millet: Crop Management and Seed Production Manual; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2007; 104p. [Google Scholar]
- MoFA. Agriculture in Ghana: Facts and Figures (2017) Ed.; Statistics, Research, and Information Directorate: Accra, Ghana, 2018.
- MoFA. Agriculture in Ghana: Facts and Figures (2020) Ed.; Statistics, Research, and Information Directorate: Accra, Ghana, 2021.
- Mondal, R.; Goswami, S. Quality seeds production-A paradigm shift towards sustainable agriculture. Biot. Res. Today 2020, 2, 106–109. [Google Scholar]
- Koundinya, A.V.; Kumar, P.P. Indian vegetable seeds industry: Status and challenges. Int. J. Plant Anim. Environ. Sci. 2014, 4, 62–69. [Google Scholar]
- Asungre, P.A.; Akromah, R.; Kena, A.W.; Gangashetty, P. Assessing production constraints, management and use of pearl millet in the Guinea Savanna Agro-ecology of Ghana. Afr. J. Plant Sci. 2021, 15, 288–298. [Google Scholar]
- Zida, E.P.; Sereme, P.; Leth, V.; Sankara, P. Effect of aqueous extracts on Acacia gourmaensis A. Chev. and Eclipta alba (L.) hassk on seed sealth, seedling vigour and grain yield of sorghum and pearl millet. Asian J. Plant Pathol. 2008, 2, 40–47. [Google Scholar] [CrossRef]
- Perveen, R.; Abid, M.; Naqvi, A.H.; Naz, S. Management of seed borne fungal diseases of tomato: A review. Pak. J. Phytopathol. 2017, 29, 193–200. [Google Scholar]
- Singh, U.B.; Chaurasia, R.; Manzar, N.; Kashyap, A.S.; Malviya, D.; Singh, S.; Kannojia, P.; Sharma, P.K.; Imran, M.; Sharma, A.K. Chemical management of seed-borne diseases: Achievements and future challenges. In Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management; Kumar, R., Gupta, A., Eds.; Springer: Singapore, 2020; pp. 665–682. [Google Scholar]
- Atri, A.; Singh, N.; Oberoi, H. Influence of seed priming on the development of pearl millet downy mildew (Sclerospora graminicola). Indian Phytopathol. 2019, 72, 209–215. [Google Scholar] [CrossRef]
- Abebe, G.; Alemu, A. Role of improved seeds towards improving livelihood and food security at Ethiopia. Int. J. Res. 2017, 5, 338–356. [Google Scholar] [CrossRef]
- Maharjan, S.; Maharjan, K. Roles and contributions of community seed banks in climate adaptation in Nepal. Dev. Pract. 2018, 28, 292–302. [Google Scholar] [CrossRef]
- Kanton, R.A.L.; Asungre, P.; Ansoba, E.Y.; Inusah, B.I.Y.; Bidzakin, J.; Abubakari, M.; Haggan, L.S.; Toah, P.; Totoe, C.; Akum, F.A. Evaluation of pearl millet varieties for adaptation to the semi-arid agro-ecology of northern Ghana. J. Agric. Ecol. Res. Int. 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Vizcayno, J.F.; Hugo, W.; Alvarez, J.S. Appropriate Seed Varieties for Small-Scale Farmers: Key Practices for DRR Implementers; FAO: London, UK, 2014. [Google Scholar]
- Bekele, N.; Tesso, B.; Fikre, A. Assessment of seed quality parameters in different seed sources of chickpea (Cicer arietinum (L.). Afr. J. Agric. Res. 2019, 14, 1649–1658. [Google Scholar]
- MoFA. Agriculture in Ghana: Facts and Figures (2018) Ed.; Statistics, Research, and Information Directorate: Accra, Ghana, 2019.
- Asungre, P.A. Characterisation of Pearl Millet Germplasm in Ghana. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2014. [Google Scholar]
- FAO. Seed and Seed Quality: Technical Information for FAO Emergency Staff; FAO Seed and Plant Genetic Resources Service: Rome, Italy, 2006; 47p. [Google Scholar]
- Nwankwo, C.I.; Herrmann, L. Optimisation of the seedball technology for sorghum production under nutrient limitations. J. Agric. Rural Dev. Trop. Subtrop. 2021, 122, 53–59. [Google Scholar]
- ISTA. Chapter 2: Sampling. In International Rules for Seed Testing; The International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2022. [Google Scholar]
- Bamkefa, B.A.; Uwaga, I.; Akintobi, O.A.; Adejuwon, A.O.; Umezurike, E.T.; Balogun, O.; Obayemi, O.S. Mycoflora associated with millet (Pennisetum glaucum L.) purchased from major markets in Ibadan metropolis, Nigeria. Adv. Biosci. Bioeng. 2020, 8, 1–23. [Google Scholar]
- Gyasi, E.; Kwoseh, C.; Moses, E. Identification of seed-borne fungi of farmer-saved seeds of pepper and their control with some selected botanicals. Ghana J. Agric. Sci. 2020, 55, 43–53. [Google Scholar] [CrossRef]
- Das, L.; Godbole, S. Antifungal and phytochemical analysis of Lantana camara, Citrus limonum (Lemon), Azadirachta indica (Neem) and Hibiscus rosasinensis (China Rose). J. Pharm. Res. 2015, 9, 476–479. [Google Scholar]
- Tesfaye, A.; Jenber, A.J.; Mintesnot, M. Survey of storage insect pests and management of rice weevil, Sitophilus oryzae, using botanicals on sorghum (Sorghum bicolor L.) at Jawi District, Northwestern Ethiopia. Arch. Phytopathol. Plant Prot. 2021, 54, 2085–2100. [Google Scholar] [CrossRef]
- Kuusaana, E.D.; Eledi, J.A. As the city grows, where do the farmers go? Understanding Peri-urbanization and food systems in Ghana-Evidence from the Tamale Metropolis. Urban Forum 2015, 26, 443–465. [Google Scholar] [CrossRef]
- Mason, S.C.; Maman, N.; Palé, S. Pearl millet production practices in semi-arid west Africa: A review. Exp. Agric. 2015, 51, 501–521. [Google Scholar] [CrossRef]
- Oljira, A.M.; Girma, M. Assessment of indigenous knowledge associated with Sorghum (Sorghum bicolor L. Moench) seed selection and the seed quality attributes in Fafen Zone of Somali Region, Ethiopia. J. Plant Breed. Crop Sci. 2020, 12, 285–291. [Google Scholar]
- Muimba-Kankolong, A. Cereal production. In Food Crop Production by Smallholder Farmers in Southern Africa, Challenges and Opportunities for Improvement; Elsevier Inc.: Cambridge, MA, USA, 2018; pp. 73–121. [Google Scholar]
- Mobolade, A.J.; Bunindro, N.; Sahoo, D.; Rajashekar, Y. Traditional methods of food grains preservation and storage in Nigeria and India. Ann. Agric. Sci. 2020, 64, 196–205. [Google Scholar] [CrossRef]
- Prakash, B.G.; Raghavendra, K.; Gowthami, R.; Shashank, R. Indigenous practices for eco-friendly storage of food grains and seeds. Adv. Plants Agric. Res. 2016, 3, 101–107. [Google Scholar]
- Crozier, J.; Oppong-Mensah, B.; Dougoud, J.; Bateman, M. Study on Crop Protection Where the ‘Green Innovation Centres for the Agriculture and Food Sector’ (GIAE) Initiative Is Being Implemented, Ghana; CAB International: Accra, Ghana, 2018. [Google Scholar]
- Tonapi, V.A.; ArunKumar, M.; Manjunath, P.C. Seed Quality Assurance: A Training Manual. National Level Training on “Seed Quality Assurance” for Officials of Seed Industry, 22–26th November 2011; Division of Seed Science & Technology, Indian Agricultural Research Institute: New Delhi, India, 2011; 249p. [Google Scholar]
- Ndjeunga, J. Local village seed systems and pearl millet seed quality in Niger. Exp. Agric. 2002, 38, 149–162. [Google Scholar] [CrossRef]
- Sugri, I.; Nutsugah, S.K.; Yirzagla, J. Effect of some seed physical characteristics on viability of pearl millet (Pennisetum glaucum (L.) R. Brown). Res. J. Seed Sci. 2011, 4, 181–191. [Google Scholar] [CrossRef]
- Martinatti, J.; Raimundo, E.K.M.; Zacharias, M.B.; Conceição, P.M.; Forti, V.A. Quality of millet seeds at different positions of the panicle. Pesqui. Agropecu. Trop. 2020, 50. [Google Scholar] [CrossRef]
- Hussain, A.; Anwar, S.A.; Sahi, G.M.; Abbas, Q. Seed borne fungal pathogens associated with pearl millet (Pennisetum typhoides) and their impact on seed germination. Pak. J. Phytopathol. 2009, 21, 55–60. [Google Scholar]
- Yago, J.I.; Roh, J.; Bae, S.; Yoon, Y.; Kim, H.; Nam, M. The Effect of seed-borne mycoflora from sorghum and foxtail millet seeds on germination and disease transmission. Mycobiology 2011, 39, 206–218. [Google Scholar] [CrossRef]
- Sharma, R.; Humayun, P.; Girish, A.G.; Anitha, K.; Chakrabarty, S.K.; Babu, B.S.; Holajjer, P. Plant quarantine measures for the safe global distribution of germplasm of ICRISAT mandate crops. Crop Prot. 2021, 148, 105718. [Google Scholar] [CrossRef]
- Ortega-Acosta, S.A.; Reyes-García, G.; Vargas-Álvarez, D.; Gámez-Vázquez, A.J.; Ávila-Perches, M.A.; Espinosa-Trujillo, E.; Bello-Martínez, J.; Damián-Nava, A.; Palemón-Alberto, F. First report of Talaromyces verruculosus causing storage rot of groundnut in Mexico. New Dis. Rep. 2018, 3827, 5197. [Google Scholar] [CrossRef]
- Kaurav, A.; Pandya, R.K.; Singh, B. Performance of botanicals and fungicides against blast of pearl millet (Pennisetum glaucum). Ann. Plant Soil Res. 2018, 20, 258–262. [Google Scholar]
- Kumari, P.; Godika, S.; Kumar, S.; Ghasolia, R.P. Downey mildew of pearl millet and it’s management. Planta 2021, 2, 395–404. [Google Scholar]
- Carvalho, R.d.S.; Silva, M.A.; Borges, M.T.R.; Forti, V.A. Plant extracts in agriculture and their applications in the treatment of seeds. Ciênc. Rural 2022, 52. [Google Scholar] [CrossRef]
- Obeng-ofori, D. The use of botanicals by resource poor farmers in Africa and Asia for the protection of stored agricultural products. Stewart Postharvest Rev. 2007, 6, 1–8. [Google Scholar] [CrossRef]
- Okwu, D.E.; Awurum, A.N.; Okoronkwo, J.I. Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). Pest Technol. 2007, 1, 145–148. [Google Scholar]
Description | Location | Average (%) | |||
---|---|---|---|---|---|
Garu District | Bongo District | Kassana-Nankana Municipality | |||
Gender | Male | 50 | 50 | 47.5 | 49.2 |
Female | 50 | 50 | 52.5 | 50.8 | |
Age (years) | 20–30 | 5 | 7.5 | 10 | 7.5 |
31–40 | 17.5 | 17.5 | 32.5 | 22.5 | |
41–50 | 22.5 | 17.5 | 27.5 | 22.5 | |
51–60 | 35 | 42.5 | 17.5 | 31.7 | |
>60 | 20 | 15 | 12.5 | 15.8 | |
Education | Primary | 15 | 5 | 35 | 18.3 |
Secondary | 0 | 10 | 22.5 | 10.8 | |
Tertiary | 15 | 2.5 | 5 | 7.5 | |
No formal education | 70 | 82.5 | 37.5 | 63.3 |
Description | Location | Average | |||
---|---|---|---|---|---|
Garu District | Bongo District | Kassana-Nankana Municipal | |||
Seed selection criteria | Larger panicles | 2.5 | 0 | 0 | 0.8 |
Disease free panicles | 2.5 | 27.5 | 17.5 | 15.8 | |
Disease free with larger panicles | 95 | 72.5 | 82.5 | 83.3 | |
Storage method | Hanging panicles | 2.5 | 0 | 2.5 | 1.7 |
Jute sacks | 12.5 | 5 | 0 | 5.8 | |
Polythene bags | 5 | 0 | 0 | 1.7 | |
Laminated polythene bags | 10 | 85 | 60 | 51.7 | |
Clay pots | 65 | 7.5 | 30 | 34.2 | |
Barns | 5 | 2.5 | 2.5 | 3.3 | |
Containers | 0 | 0 | 5 | 1.7 | |
Seed treatments | Ash | 92.1 | 44.1 | 47.2 | 61.1 |
Orange peels | 0 | 14.7 | 0 | 4.9 | |
Synthetic chemicals | 5.3 | 17.6 | 36.1 | 19.7 | |
Orange peels and ash | 2.6 | 5.9 | 0 | 2.8 | |
Synthetic chemicals and ash | 0 | 2.9 | 2.8 | 1.9 | |
Cut tubes | 0 | 2.9 | 0 | 1 | |
Lemon grass | 0 | 11.8 | 5.6 | 5.8 | |
Badokoka | 0 | 0 | 5.6 | 1.9 | |
Lemon grass and reddish gravel | 0 | 0 | 2.8 | 0.9 | |
Seed quality problems | Mouldiness/fungi attack | 52.5 | 10 | 22.5 | 28.3 |
Insect attack | 12.5 | 10 | 12.5 | 11.7 | |
No mould or insects | 35 | 75 | 65 | 58.3 | |
Insects and mould | 0 | 5 | 0 | 1.7 |
Seed Samples | Seed Moisture (%) * | Purity Percent (%) * | 1000-Seed Weight (g) * |
---|---|---|---|
Garu District | 9.34 ± 0.772 | 91.24 ± 9.55 | 14.07 ± 2.621 |
Bongo District | 8.49 ± 1.120 | 96.61 ± 1.63 | 14.25 ± 1.696 |
Kassana-Nankana Municipal | 8.84 ± 1.017 | 97.86 ± 1.61 | 14.37 ± 1.359 |
Certified seed | 7.44 ± 0.173 | 98.99 ± 0.56 | 11.35 ± 1.054 |
p-value | <0.001 | <0.001 | <0.001 |
L.S.D | 0.3078 | 1.748 | 0.0618 |
CV (%) | 10 | 5.1 | 12.7 |
Seed Samples | Standard Germination (%) * | Field Germination (%) at 7 Days * | Fungi Incidence (%) at 7 Days * | Vigour Index at 7 Days | Days to | Plant Height (cm) | ||||
---|---|---|---|---|---|---|---|---|---|---|
3-Leaf Stage | 5-Leaf Stage | 7-Leaf Stage | 7 Days | 14 Days | 21 Days | |||||
Garu District | 65.7 (8.08) | 55.7 (7.28) | 70.6 (8.16) | 953 | 8.82 | 14.45 | 22.14 | 1.96 | 5.70 | 7.76 |
Bongo District | 77.52 (8.79) | 66.9 (8.13) | 46.8 (6.09) | 1395.5 | 8.6 | 14.12 | 21.33 | 2.30 | 6.75 | 9.19 |
Kassana-Nankana Municipal | 73.68 (8.39) | 69.2 (8.26) | 45.7 (6.04) | 1394.5 | 8.15 | 13.74 | 20.9 | 2.14 | 6.05 | 8.28 |
Certified seed | 83.78 (9.15) | 74.1 (8.56) | 56.5 (7.07) | 1308.5 | 8.02 | 12.33 | 18.75 | 2.13 | 6.30 | 10.47 |
Grand mean | 75.17 (8.60) | 66.5 (8.12) | 54.9 (6.84) | 1263 | 8.40 | 13.66 | 20.78 | 2.13 | 6.20 | 8.92 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | 0.011 | <0.001 | <0.001 |
L.S.D | 4.103 (0.355) | 5.65 (0.46) | 9.68 (0.96) | 116.5 | 0.47 | 0.56 | 0.778 | 0.201 | 0.4549 | 0.755 |
CV (%) | 15.2 (11.5) | 24.6 (16.4) | 49 (39) | 25.6 | 15.4 | 11.5 | 10.4 | 26.2 | 20.4 | 23.5 |
Fungal Pathogen | Garu Incidence (%) | Bongo Incidence (%) | Kassana-Nankana Municipal Incidence (%) | Certified Seed Incidence (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Denugu | Duuri | Mean | Vea | Nyaariga | Mean | Kandiga | Mirigu | Mean | WAAP-Naara | Akad-Kom | Mean | |
Aspergillus niger | 80 | 60 | 70 | 70 | 30 | 50 | 20 | 50 | 35 | 0 | 67 | 33 |
A. flavus | 30 | 0 | 15 | 30 | 50 | 40 | 20 | 30 | 25 | 0 | 0 | 0 |
A. fumigatus | 10 | 50 | 30 | 20 | 10 | 15 | 10 | 20 | 15 | 0 | 0 | 0 |
Aspergillus spp. | 30 | 50 | 40 | 0 | 20 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
Pennicillium spp. | 0 | 10 | 5 | 10 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
Curvularia spp. | 50 | 70 | 60 | 50 | 70 | 60 | 40 | 90 | 65 | 100 | 67 | 83 |
Colletotrichum spp. | 0 | 10 | 5 | 10 | 20 | 15 | 30 | 20 | 25 | 67 | 33 | 50 |
Alternaria alternata | 60 | 20 | 40 | 30 | 50 | 40 | 50 | 10 | 30 | 33 | 67 | 50 |
Fusarium spp. | 30 | 20 | 25 | 60 | 30 | 45 | 40 | 40 | 40 | 67 | 100 | 83 |
Drechslera spp. | 0 | 10 | 5 | 20 | 0 | 10 | 20 | 50 | 35 | 0 | 0 | 0 |
Bipolaris spp. | 20 | 20 | 20 | 10 | 0 | 5 | 20 | 10 | 15 | 67 | 67 | 67 |
Exserohilium spp. | 60 | 40 | 50 | 70 | 50 | 60 | 20 | 10 | 15 | 33 | 67 | 50 |
Rhizopus spp. | 10 | 10 | 10 | 20 | 0 | 10 | 10 | 0 | 5 | 0 | 0 | 0 |
Talaromyces spp. | 70 | 30 | 50 | 70 | 40 | 55 | 60 | 50 | 55 | 67 | 67 | 67 |
Seed Samples | Seed Treatments | Fungal Incidence (%) * |
---|---|---|
Garu District | Control | 96.7 (9.82) |
Neem kernel extract | 83.3 (9.11) | |
Citrus extract | 30 (5.18) | |
Imidacloprid + thiram (3.5:1) | 30 (5.18) | |
Water | 98.3 (9.91) | |
Bongo District | Control | 98.3 (9.91) |
Neem extract | 56.7 (7.42) | |
Citrus extract | 15 (3.46) | |
Imidacloprid + thiram (3.5:1) | 56.7 (7.38) | |
Water | 66.7 (7.75) | |
Kassena- Nankana Municipal | Control | 96.7 (9.82) |
Neem extract | 33.3 (4.61) | |
Citrus extract | 21.7 (3.52) | |
Imidacloprid + thiram (3.5:1) | 40 (6.24) | |
Water | 51.7 (6.18) | |
Certified seed | Control | 96.7 (9.83) |
Neem extract | 93.3 (9.65) | |
Citrus extract | 31.7 (5.47) | |
Imidacloprid + thiram (3.5:1) | 25 (4.97) | |
Water | 95 (9.74) | |
Grand mean | 60.8 (7.25) | |
p-value | 0.001 | |
L.S.D | 22.81 (2.16) | |
CV (%) | 32.7 (26) |
Seed Samples | Treatment | Standard Germination (%) * | Field Germination at 7 Days (%) * | Vigour Index at 7 Days | Days to | Plant Height (cm) | ||||
---|---|---|---|---|---|---|---|---|---|---|
3-Leaf Stage | 5-Leaf Stage | 7-Leaf Stage | 7 Days | 14 Days | 21 Days | |||||
Garu District | Control | 60.83 (7.79) | 66.17 (8.12) | 351 | 7.17 | 11.67 | 15.67 | 2.10 | 7.65 | 15.09 |
Neem kernel extract | 72.5 (8.50) | 62.33 (7.88) | 490 | 6.83 | 10.50 | 15.50 | 2.54 | 8.82 | 15.82 | |
Citrus extract | 80 (8.94) | 74.67(8.64) | 591 | 6.33 | 10.50 | 14.67 | 2.74 | 8.81 | 17.46 | |
Imidacloprid + thiram (3.5:1) | 87.83 (9.37) | 77.5 (8.01) | 784 | 6.17 | 9.67 | 14.17 | 2.72 | 9.54 | 16.47 | |
Water | 73.33 (8.56) | 70 (8.36) | 625 | 6.5 | 10.33 | 14.83 | 2.79 | 9.56 | 17.14 | |
Bongo District | Control | 64.33 (8.01) | 65.5 (8.09) | 450 | 7 | 11.00 | 15.83 | 2.03 | 7.93 | 12.77 |
Neem kernel extract | 68 (8.24) | 62.67 (7.90) | 534 | 7 | 10.83 | 15.33 | 2.40 | 8.61 | 13.45 | |
Citrus extract | 81.33 (9.04) | 82.83 (9.10) | 704 | 6.17 | 9.83 | 14.50 | 2.91 | 9.4 | 15.91 | |
Imidacloprid + thiram (3.5:1) | 85.5 (9.23) | 82.5 (9.08) | 812 | 6.33 | 10.17 | 14.67 | 2.71 | 9.31 | 14.94 | |
Water | 74.5 (8.63) | 77.83 (8.82) | 723 | 6.67 | 10.17 | 14.83 | 2.87 | 9.13 | 15.51 | |
Kassana-Nankana Municipal | Control | 57.67 (7.57) | 66.17 (8.13) | 481 | 7 | 10.50 | 15.50 | 2.21 | 7.89 | 13.85 |
Neem kernel extract | 70.33 (8.37) | 69.83 (8.35) | 636 | 6.5 | 9.83 | 15.17 | 2.72 | 8.77 | 15.46 | |
Citrus extract | 84.17 (9.17) | 81.83 (9.04) | 835 | 6.33 | 9.67 | 14.50 | 2.83 | 8.82 | 16.15 | |
Imidacloprid + thiram (3.5:1) | 83.17 (9.10) | 79 (8.89) | 838 | 6.83 | 9.67 | 14.50 | 2.86 | 9.68 | 16.86 | |
Water | 69.5 (8.33) | 71.83 (8.47) | 594 | 6.5 | 10.00 | 14.83 | 2.82 | 9.05 | 15.8 | |
Certified Seed | Control | 62 (7.87) | 69.17 (8.31) | 573 | 7.67 | 10.83 | 15.67 | 2.29 | 8.34 | 14.7 |
Neem kernel extract | 71 (8.41) | 73.17 (8.55) | 583 | 7.33 | 11.00 | 15.50 | 2.45 | 8.67 | 15.85 | |
Citrus extract | 77.67 (8.81) | 81 (9.0) | 859 | 6.33 | 10.00 | 14.50 | 3.21 | 10.47 | 17.4 | |
Imidacloprid + thiram (3.5:1) | 84.17 (9.17) | 80.33 (8.96) | 829 | 6.33 | 9.83 | 14.33 | 2.94 | 9.59 | 17.16 | |
Water | 65.17 (8.06) | 72.17 (8.49) | 618 | 7.33 | 10.33 | 15.33 | 2.76 | 9.1 | 17.58 | |
Grand mean | 73.65 (8.56) | 73.33 (8.55) | 646 | 6.72 | 10.32 | 14.99 | 2.65 | 8.96 | 15.77 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.07 | |
L.S.D | 3.957 (0.23) | 2.92 (0.17) | 128.3 | 0.32 | 0.56 | 0.55 | 0.23 | 0.72 | 2.09 | |
CV (%) | 9.4 (4.7) | 6.9 (3.6) | 34.7 | 8.2 | 9.5 | 6.40 | 15.40 | 14 | 23.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anafo, M.A.; Sugri, I.; Asungre, P.A.; Ankamah-Yeboah, T.; Eleblu, J.S.Y.; Danquah, E.Y. Citrus Extract Found Potent in the Control of Seed-Borne Fungal Pathogens of Pearl Millet—A Recommendation for Farmers’ Seed Saving Systems. Horticulturae 2023, 9, 1075. https://doi.org/10.3390/horticulturae9101075
Anafo MA, Sugri I, Asungre PA, Ankamah-Yeboah T, Eleblu JSY, Danquah EY. Citrus Extract Found Potent in the Control of Seed-Borne Fungal Pathogens of Pearl Millet—A Recommendation for Farmers’ Seed Saving Systems. Horticulturae. 2023; 9(10):1075. https://doi.org/10.3390/horticulturae9101075
Chicago/Turabian StyleAnafo, Matthew Akalagtota, Issah Sugri, Peter Anabire Asungre, Theresa Ankamah-Yeboah, John Saviour Yaw Eleblu, and Eric Yirenkyi Danquah. 2023. "Citrus Extract Found Potent in the Control of Seed-Borne Fungal Pathogens of Pearl Millet—A Recommendation for Farmers’ Seed Saving Systems" Horticulturae 9, no. 10: 1075. https://doi.org/10.3390/horticulturae9101075
APA StyleAnafo, M. A., Sugri, I., Asungre, P. A., Ankamah-Yeboah, T., Eleblu, J. S. Y., & Danquah, E. Y. (2023). Citrus Extract Found Potent in the Control of Seed-Borne Fungal Pathogens of Pearl Millet—A Recommendation for Farmers’ Seed Saving Systems. Horticulturae, 9(10), 1075. https://doi.org/10.3390/horticulturae9101075