Effects of Caprifig (Ficus carica var. caprificus) Storage Temperature and Duration on the Fruit Productivity and Quality of ‘Bursa Siyahi’ Figs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Caprifig Storage Conditions and Pollen Collection
2.3. Evaluation of In Vitro Blastophaga and Pollen Quality
2.3.1. Number of Blastophaga psenes and Duration of Blastophaga’s Exit
2.3.2. Pollen Viability and Pollen Germination
2.4. Pollination Treatments
2.5. Evaluation of Fruit Quality
2.5.1. Initial and Final Fruit Set (%)
2.5.2. Time of Ripening (%)
2.5.3. Fruit Characteristics
2.6. Statistical Analysis
3. Results
3.1. Number of Blastophaga psenes and Duration of Blastophaga’s Exit
3.2. Evaluation of the Pollen Viability and Germination
3.3. Initial and Final Fruit Set
3.4. Fruit Characteristics
3.5. Time of Ripening
3.6. Fruit Skin and Flesh Color
3.7. Correlation Matrix Heatmap
3.8. Principal Components Analysis
4. Discussion
4.1. Number of Blastophaga psenes and Duration of Blastophaga’s Exit
4.2. Evaluation of the Pollen Viability and Germination
4.3. Initial and Final Fruit Set
4.4. Fruit Characteristics and Time of Ripening
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faostat. QCL. 2021. Available online: https://www.fao.org/faostat/en/#data/ (accessed on 10 September 2022).
- Condit, I.J. The Fig; Chronica Botanica: Waltham, MA, USA, 1947. [Google Scholar]
- Aksoy, U.; Balci, B.; Can, H.Z.; Hepaksoy, B. Some significant results of the research-work in Turkey on fig. Acta Hortic. 2003, 605, 173–180. [Google Scholar] [CrossRef]
- Beck, N.G.; Lord, E.M. Breeding system in Ficus carica, the common fig. I. Floral diversity. Am. J. Bot. 1988, 75, 1904–1912. [Google Scholar] [CrossRef]
- Kjellberg, F.; Doumesche, B.; Bronstein, J.L. Longevity of a fig wasp (Blastophaga psenes). Proc. K. Ned. Akad. Van Wet. 1988, 91, 117–122. [Google Scholar]
- Weiblen, G.D. Correlated evolution in fig pollination. Syst. Biol. 2004, 53, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Zare, H. Comparison of fig caprification vessels, period and caprifig cultivar usable in Iran. Acta Hortic. 2008, 798, 233–239. [Google Scholar] [CrossRef]
- Pourghayoumi, M.; Bakhshi, D.; Rahemi, M.; Jafari, M. Effect of pollen source on quantitative and qualitative characteristics of dried figs (Ficus carica L.) Cvs’ Payves’ and ‘Sabz’ ın Kazerun, Iran. Sci. Hortic. 2012, 147, 98–104. [Google Scholar] [CrossRef]
- Ferguson, L.; Michailides, T.J.; Shorey, H.H. The California Fig Industry. Hortic. Rev. 1990, 12, 409–490. [Google Scholar] [CrossRef]
- Özbek, S. Özel Meyvecilik Ders Kitabı; Çukurova Üniv. Ziraat Fak. Yayınları: Adana, Turkey, 1978. [Google Scholar]
- Küden, A.; Tanriver, E. Plant genetic resources and selection studies on figs in the east mediterranean and south east anatolia regions. Acta Hortic. 1998, 480, 49–54. [Google Scholar] [CrossRef]
- Ilgın, M.; Ergenoğlu, F.; Çağlar, S. Viability, germination and amount of pollen in selected caprifig types. Pak. J. Bot. 2007, 39, 9–14. [Google Scholar]
- Anjam, K.; Khadivi-Khub, A.; Sarkhosh, A. The potential of caprifig genotypes for sheltering Blastophaga psenes for caprification of edible figs. Erwerbs-Obstbau 2017, 59, 45–49. [Google Scholar] [CrossRef]
- Gaaliche, B.; Majdoub, A.; Trad, M.; Mars, M. Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agron. 2013, 2013, 207434. [Google Scholar] [CrossRef] [Green Version]
- Çalışkan, O.; Bayazit, S.; Ilgin, M.; Karataş, N. Morphological diversity of caprifig (Ficus carica var. caprificus) accessions in the eastern Mediterranean region of Turkey: Potential utility for caprification. Sci. Hortic. 2017, 222, 46–56. [Google Scholar] [CrossRef]
- Essid, A.; Alijane, F.; Ferchichi, A. Morphological characterization and pollen evaluation of some Tunisian ex situ planted caprifig (Ficus carica L.) ecotypes. S. Afr. J. Bot. 2017, 111, 134–143. [Google Scholar] [CrossRef]
- Martínez-Gómez, P.; Gradziel, T.M.; Ortega, E.; Dicenta, F. Low temperature storage of almond. HortScience 2002, 37, 691–692. [Google Scholar] [CrossRef] [Green Version]
- Lora, J.; Perez de Oteyza, M.A.; Fuentetaja, P.; Hormaza, J.I. Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill.) pollen. Sci. Hortic. 2006, 108, 91–94. [Google Scholar] [CrossRef]
- Dutta, S.K.; Srivastav, M.; Chaudhary, R.; Lal, K.; Patil, P.; Singh, S.K.; Singh, A.K. Low temperature storage of mango (Mangifera indica L.) pollen. Sci. Hortic. 2013, 161, 193–197. [Google Scholar] [CrossRef]
- Ozcan, A. Effect of Low-temperature storage on sweet cherry (Prunus avium L.) pollen quality. Hortscience 2020, 55, 258–260. [Google Scholar] [CrossRef]
- Ćalić, D.; Milojević, J.; Belić, M.; Miletić, R.; Zdravković-Korać, S. Impact of Storage Temperature on Pollen Viability and Germinability of Four Serbian Autochthon Apple Cultivars. Front. Plant Sci. 2021, 12, 1480. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Lombardini, L. In vitro viability and germination of Carya illinoinensis pollen under different storage conditions. Sci. Hortic. 2021, 275, 109662. [Google Scholar] [CrossRef]
- Tran, X.T.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Reduced pollination efficiency compromises some physicochemical qualities in gac (Momordica cochinchinensis Spreng.) fruit. Agronomy 2021, 11, 190. [Google Scholar] [CrossRef]
- Ðordevic, M.; Vujović, T.; Cerović, R.; Glišić, I.; Milošević, N.; Marić, S.; Radicević, S.; Fotirić Akšić, M.; Meland, M. In vitro and ın vivo performance of plum (Prunus domestica l.) pollen from the anthers stored at distinct temperatures for different periods. Horticulturae 2022, 8, 616. [Google Scholar] [CrossRef]
- Jeong, N.R.; Park, K.Y. Rose pollen management methods to ımprove productivity. Agronomy 2022, 12, 1285. [Google Scholar] [CrossRef]
- Çalışkan, O.; Polat, A.A. Fruit characteristics of fig cultivars and genotypes grown in Turkey. Sci. Hortic. 2008, 115, 360–367. [Google Scholar] [CrossRef]
- Çalışkan, O. Present status and future of table fig cultivation in Turkey. J. Agric. Fac. Uludağ Univ. 2012, 26, 71–87. [Google Scholar]
- Gaaliche, B.; Trad, M.; Mars, M. Effect of pollination ıntensity, frequency and pollen source on fig (Ficus carica L.) productivity and fruit quality. Sci. Hortic. 2011, 130, 737–742. [Google Scholar] [CrossRef]
- Gaaliche, B.; Hfaiedh, L.; Trad, M.; Mars, M. Caprification efficiency of three Tunisian fig (Ficus carica L.) cultivars. JNPR 2011, 1, 20–25. [Google Scholar]
- Göçmez, A.; Seferoğlu, H.G. Fresh fig and dry fig quality parameters and the effective factors on quality. Turk. J. Agric. Res. 2014, 1, 98–108. [Google Scholar] [CrossRef]
- Michailides, T.J.; Morgan, D.P. Spread of Endosepis in Calimyrna Fig Orchard. Popul. Ecol. 1998, 88, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Şimşek, E.; Kılıç, D.; Çalışkan, O. Phenotypic variation of fig genotypes (Ficus carica L.) in the Eastern Mediterranean of Turkey. Genetica 2020, 52, 957–972. [Google Scholar] [CrossRef]
- Şirin, A. The Effect of Caprıfıcatıon Frequency on Fruit Yield and Quality of Fıg Trees Applıed Dıfferent Traınıng Systems. Master’s Thesis, Aydın Adnan Menderes University, Aydın, Turkey, 2021. [Google Scholar]
- Storey, W.B. Figs Advances İn Fruit Breeding. In Advances in Fruit Breeding; Janick, J., Moore, J.N., Eds.; Purdue Univ.: West Lafayette, IN, USA, 1975; pp. 568–589. [Google Scholar]
- Eti, S. The Pollen Viability And Germination Ratios İn The Some Fruit Species and Cultivars by İn Vitro Tests. Cukurova Univ. J. Agric. Fac. 1991, 6, 69–80. [Google Scholar]
- Zhang, F.P.; Peng, Y.Q.; Compton, S.G.; Yang, D.R. Floral character-istics of Ficus curtipes and the oviposition behavior of its polli-nator fig wasp. Ann. Entomol. Soc. Am. 2009, 102, 556–559. [Google Scholar] [CrossRef]
- United Nations Economic Comission for Europe (UNECE). UNECE Standard FFV-17 Concerning the Marketing and Commercial Quality Control of Fresh Figs. Available online: http://www.unece.org/fileadmin/DAM/trade/agr/standard/fresh/FFV-Std/English/17FreshFigs2010.pdf (accessed on 15 October 2022).
- IPGRI; CIHEAM. Descriptors for Figs; International Plant Genetic Resources Institute: Rome, Italy; International Centre For Advanced Mediterranean Agronomic Studies: Paris, France, 2003. [Google Scholar]
- Khadivi-Khub, A.; Anjam, K. Characterization and evaluation of male fig (caprifig) accessions in Iran. Plant Syst. Evol. 2014, 10, 2177–2189. [Google Scholar] [CrossRef]
- Yaman, S.; Çalışkan, O. Pollinizer characteristics of some caprifig genotypes (Ficus carica var. caprificus) selected from Hatay. Anadolu J. Agric. Sci. 2016, 31, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Ahi Koşar, D.; Aktepe Tangu, N.; Gencer, N.S.; Durgut, E.; Ertürk, U. Some characteristics and caprification potentials of caprifigs (Ficus carica var. caprificus L.) grown in Bursa, Turkey. In Ficus carica: Production, Cultivation and Uses; Dalkılıç, Z., Ed.; Nova Science Publishers: New York, NY, USA, 2022; pp. 97–101. [Google Scholar] [CrossRef]
- Ware, A.B.; Compton, S.G. Dispersal of adult female fig wasps: 2. Movements between trees. Entomol. Exp. Appl. 1994, 73, 231–238. [Google Scholar] [CrossRef]
- Yaman, S. Determınatıon of Phenologıcal, Pomologıcal and Bıologıcal Characterıstıcs of Some Caprıfıg Genotypes (Ficus carica var. caprificus). Master’s Thesis, Mustafa Kemal University, Hatay, Turkey, 2015. [Google Scholar]
- Gaudet, D.; Singh Yadav, N.; Sorokin, A.; Bilichak, A.; Kovalchuk, I. Development and optimization of a germination assay and long-term storage for Cannabis sativa pollen. Plants 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Novara, C.; Ascari, L.; La Morgia, V.; Reale, L.; Genre, A.; Siniscalco, C. Viability and germinability in long term storage of Corylus avellana pollen. Sci. Hortic. 2017, 214, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Mesnoua, M.; Roumani, M.; Salem, A. The effect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Sci. Hortic. 2018, 236, 279–283. [Google Scholar] [CrossRef]
- Kadri, K.; Elsafy, M.; Makhlouf, S.; Awad, M.A. Effect of pollination time, the hour of daytime, pollen storage temperature and duration on pollen viability, germinability, and fruit set of date palm (Phoenix dactylifera L.) cv “Deglet Nour”. Saudi J. Biol. Sci. 2022, 29, 1085–1091. [Google Scholar] [CrossRef]
- Yuan, S.C.; Chin, S.; Lee, C.Y.; Chen, F.C. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot. Stud. 2018, 59, 1. [Google Scholar] [CrossRef] [Green Version]
- Rosell, V.; Galán Saúco, V.; Herrero, M. Pollen germination as affected by pollen age in cherimoya. Sci. Hortic. 2006, 109, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wu, J.; Chen, J.; Fu, D.; Zhang, C.; Cai, C.; Ou, L. A simple pollen collection, dehydration, and long-term storage method for litchi (Litchi chinensis Sonn.). Sci. Hortic. 2015, 188, 78–83. [Google Scholar] [CrossRef]
- Bellusci, F.; Musacchio, A.; Stabile, R.; Pellegrino, G. Differences in pollen viability in relation to different deceptive pollination strategies in Mediterranean orchids. Ann. Bot. 2010, 106, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Marks, T.R.; Seaton, P.T.; Pritchard, H.W. Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species. Ann. Bot. 2014, 114, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Pacini, E.; Jacquard, C.; Clement, C. Pollen vacuoles and their significance. Planta 2011, 234, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Pacini, E.; Franchi, G.G. Pollen biodiversity—Why are pollen grains different despite having the same function? A review. Bot. J. Linn Soc. 2020, 193, 141–164. [Google Scholar] [CrossRef]
- Franchi, G.G.; Nepi, M.; Dafni, A.; Pacini, E. Partially hydrated pollen: Taxonomic distribution, ecological and evolutionary significance. Plant Syst. Evol. 2002, 234, 211–227. [Google Scholar] [CrossRef]
- Calıskan, O.; Bayazit, S.; Kılıc, D.; Ilgın, M.; Karatas, N. Pollen morphology and variability of caprifig (Ficus carica var. caprificus) genetic resources in Turkey using multivariate analysis. Sci. Hortic. 2021, 287, 1–10. [Google Scholar] [CrossRef]
- Metz, C.; Nerd, A.; Mizrahi, Y. Viability of pollen of two fruit crop cacti of the genus Hylocereus is affected by temperature and duration of storage. HortScience 2000, 35, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Weiblen, G.D.; Bush, G.L. Speciation in fig pollinators and parasites. Mol. Ecol. 2002, 11, 1573–1578. [Google Scholar] [CrossRef]
- Wang, R.W.; Sun, B.F.; Zheng, Q.; Shi, L.; Zhu, L. Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism. J. R. Soc. Interface 2011, 8, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Jandér, K.C.; Herre, E.A. Host sanctions and pollinator cheating in the fig tree–fig wasp mutualism. Proc. Biol. Sci. 2010, 277, 1481–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oukabli, A.; Mamouni, A.; Laghezali, M.; Ater, M.; Roger, J.P.; Khadiri, B. Local Caprifig tree characterization and analysis of interest for pollination. Acta Hortic. 2003, 605, 61–64. [Google Scholar] [CrossRef]
- Kadri, K.; Ahmed, O.; Souhaila, M.; Mohamed, S.C.; Abdelhamid, C.; Amani, T. Contribution to the study of the effect of pollination mode on fruit set rate and yield in the date palm (Phoenix dactylifera L.) in the Oases of Tozeur (Tunisia). Int. J. Agric. Innov. Res. 2019, 7, 533–537. [Google Scholar]
- Doi, K.; Inoue, R.; Iwasaki, N. Seed weight mediates effects of pollen on berry weight, ripening, and anthocyanin content in highbush blueberry. Sci. Hortic. 2021, 288, 110313. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Bremer, V.; Stover, E. Fig (Ficus carica L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.E., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2011; pp. 134–158. [Google Scholar]
- Ryugo, K. Fruit Culture: Its Science and Art; John Wiley and Sons: New York, NY, USA, 1988. [Google Scholar]
- Doi, K.; Nozaki, R.; Takahashi, K.; Iwasaki, N. Effects of the number of seeds per berry on fruit growth characteristics, especially on the duration of stage II in blueberry. Plants 2018, 7, 96. [Google Scholar] [CrossRef]
- Lama, K.; Harlev, G.; Shafran, H.; Peer, R.; Flaishman, M.A. Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color during fig (Ficus carica L.) ripening. J. Plant Physiol. 2020, 251, 153192. [Google Scholar] [CrossRef]
- Sicilia, A.; Catara, V.; Scialò, E.; Lo Piero, A.R. Fungal Infection Induces Anthocyanin Biosynthesis and Changes in DNA Methylation Configuration of Blood Orange [Citrus sinensis L. (Osbeck)]. Plants 2021, 10, 244. [Google Scholar] [CrossRef]
- Villegasa, D.; Handford, M.; Alcaldea, J.A.; Perez-Donosoa, A. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Plant Physiol. Biochem. 2016, 104, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Michailides, T.J.; Morgan, D.P. Dynamics of Blastophaga psenes populations, availability of caprifigs and fig endosepsis caused by Fusarium moniliforme. Phytopathology 1994, 84, 1254–1263. [Google Scholar] [CrossRef]
Storage (S) | Number of Blastophaga psenes | Duration of Blastophaga’s exit (Days) | Pollen Viability (%) | Pollen Germination (%) |
---|---|---|---|---|
Fresh | 357.29 a* | 4.77 a | 76.39 | 36.76 b |
Stored | 171.92 b | 3.03 b | 77.81 | 42.16 a |
F-value | 49.23 | 39.60 | 1.93 | 29.70 |
Storage temperature (ST) (°C) | ||||
0 | 143.27 b | 3.01 c | 75.79 b | 37.54 c |
4 | 239.42 a | 3.29 b | 76.83 a | 41.70 b |
8 | 225.75 a | 3.62 a | 77.25 a | 43.96 a |
F-value | 154.67 | 32.04 | 9.74 | 32.48 |
Storage time (STM) (day) | ||||
0 | 357.29 a | 4.77 a | 77.82 a | 35.76 c |
4 | 243.62 b | 4.29 b | 75.70 b | 48.98 a |
8 | 266.88 b | 4.07 b | 77.80 a | 49.82 a |
12 | 171.74 c | 3.77 c | 76.96 ab | 42.19 b |
16 | 121.14 d | 2.11 d | 76.27 b | 37.26 c |
20 | 56.22 e | 0.92 e | 73.63 c | 32.55 d |
F-value | 335.897 | 402.74 | 24.70 | 59.00 |
Factor | ||||
S | <0.001 | <0.001 | 0.16 ns | <0.001 |
ST | <0.001 | <0.001 | <0.001 | <0.001 |
STM | <0.001 | <0.001 | <0.001 | <0.001 |
ST × TM | <0.001 | 0.106 ns | <0.001 | <0.001 |
Storage Temperature (ST) (°C) | Initial Fruit Set (%) | Final Fruit Set (%) | Fruit Weight (g) | Fruit Diameter (mm) | Fruit Length (mm) | Ostiole Diameter (mm) | Flesh Thickness (mm) | Skin Thickness (mm) | Fruit Cavity (mm) | Fertile Seeds per Fruit | Single Seed Weight (mg) | Sterile Seeds (%) | Fig Endosepsis (%) | SSC (Brix) | TA (g/100 mL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 76.77 b* | 65.44 b | 82.90 | 56.36 | 52.02 | 6.43 b | 21.64 | 2.99 | 5.88 | 1061.98 | 1.73 b | 1.13 a | 35.05 a | 16.87 | 0.24 |
4 | 81.23 a | 70.96 a | 82.60 | 55.85 | 51.47 | 7. 44 a | 21.39 | 3.14 | 5.43 | 1037.33 | 1.98 a | 0.67 b | 31.23 b | 17.00 | 0.24 |
8 | 80.60 a | 67.71 ab | 83.03 | 56.50 | 52.51 | 7.28 a | 21.26 | 3.26 | 5.28 | 1066.33 | 1.78 ab | 0.87 b | 28.24 c | 17.04 | 0.21 |
F-value | 10.64 | 11.37 | 0.07 | 0.49 | 1.32 | 9.23 | 0.43 | 2.99 | 1.13 | 0.24 | 4.72 | 15.30 | 9.60 | 0.19 | 4.25 |
Pollination frequency (PF) | |||||||||||||||
4 day intervals (T1) | 80.47 a | 71.37 a | 80.80 b | 54.95 b | 51.34 b | 6.34 b | 21.09 | 3.15 | 5.39 | 1096.66 a | 1.75 b | 0.70 b | 33.02 a | 16.96 | 0.22 |
8 day intervals (T2) | 78.60 b | 64.71 b | 84.89 a | 57.34 a | 52.67 a | 7.16 a | 21.77 | 3.11 | 5.66 | 1014.81 b | 1.91 a | 1.08 a | 29.99 b | 16.98 | 0.24 |
F-value | 5.11 | 47.83 | 19.96 | 21.07 | 6.45 | 48.37 | 4.04 | 0.21 | 0.64 | 5.19 | 4.90 | 25.98 | 5.67 | 0.01 | 3.28 |
Interaction ST × PF | |||||||||||||||
0 × 4 day intervals | 77.17 | 66.32 c | 82.02 bc | 55.71 | 51.50 | 5.70 | 21.15 | 2.93 | 6.03 | 1117.29 a | 1.66 | 0.94 b | 37.78 a | 17.08 | 0.23 |
4 × 4 day intervals | 82.99 | 76.41 a | 81.48 bc | 54.37 | 51.34 | 6.81 | 21.05 | 3.17 | 5.30 | 1108.50 ab | 1.96 | 0.61 c | 29.61 b | 17.06 | 0.19 |
8 × 4 day intervals | 81.26 | 71.38 b | 78.89 c | 54.76 | 51.18 | 6.49 | 21.08 | 3.36 | 4.85 | 993.83 bc | 1.63 | 0.55 c | 31.67 b | 16.73 | 0.24 |
0 × 8 day intervals | 76.38 | 64.57 c | 83.79 ab | 57.01 | 52.55 | 7.16 | 22.12 | 3.06 | 5.72 | 946.66 c | 1.80 | 1.33 a | 32.32 b | 16.66 | 0.25 |
4 × 8 day intervals | 79.47 | 65.51 c | 83.72 b | 57.34 | 51.60 | 8.07 | 21.73 | 3.11 | 5.55 | 956.16 c | 2.00 | 0.72 c | 32.85 b | 16.93 | 0.22 |
8 × 8 day intervals | 79.95 | 64.05 c | 87.16 a | 58.24 | 53.85 | 8.06 | 21.45 | 3.16 | 5.72 | 1138.83 a | 1.93 | 1.19 ab | 24.81 c | 17.35 | 0.25 |
F-value | 1.11 | 8.01 | 5.22 | 1.37 | 1.83 | 0.18 | 0.26 | 1.15 | 1.02 | 10.13 | 1.22 | 5.68 | 6.23 | 1.81 | 0.49 |
Factor | |||||||||||||||
ST | 0.002 | 0.001 | 0.925 ns | 0.623 ns | 0.301 ns | 0.003 | 0.658 ns | 0.087 ns | 0.353 ns | 0.784 ns | 0.030 | <0.001 | 0.003 | 0.825 ns | 0.05 ns |
PF | 0.040 | <0.001 | <0.001 | <0.001 | 0.025 | <0.001 | 0.067 ns | 0.649 ns | 0.438 ns | 0.041 | 0.047 | <0.001 | 0.034 | 0.915 ns | 0.09 ns |
ST × PF | 0.350 ns | 0.006 | 0.023 | 0.291 ns | 0.201 ns | 0.832 ns | 0.768 ns | 0.347 ns | 0.387 ns | 0.002 | 0.328 ns | <0.001 | 0.013 | 0.205 ns | 0.61 ns |
Storage Temperature (ST)(°C) | September 1–15 (%) | September 15–October 1 (%) | October 1–15 (%) | October 15–November 1(%) |
---|---|---|---|---|
0 | 40.00 a* | 23.50 b | 21.24 | 15.38 |
4 | 30.68 c | 31.89 a | 23.21 | 13.12 |
8 | 33.63 b | 29.68 a | 22.10 | 14.25 |
F-value | 38.91 | 24.11 | 0.74 | 1.71 |
Pollination frequency (PF) | ||||
4 day intervals (T1) | 37.59 a | 28.82 | 21.11 | 12.47 b |
8 day intervals (T2) | 31.96 b | 27.90 | 23.33 | 16.03 a |
F-value | 47.02 | 1.81 | 2.16 | 31.87 |
Interaction ST × PF | ||||
0 × 4 day intervals | 46.77 a | 26.83 b | 16.38 b | 9.92 c |
4 × 4 day intervals | 31.85 bc | 32.48 a | 24.86 a | 10.34 c |
8 × 4 day intervals | 33.43 b | 27.15 b | 22.10 ab | 17.15 ab |
0 × 8 day intervals | 32.52 bc | 20.17 c | 26.10 a | 20.84 a |
4 × 8 day intervals | 29.51 c | 31.31 a | 21.57 ab | 15.91 b |
8 × 8 day intervals | 33.84 b | 32.22 a | 22.31 ab | 11.34 bc |
F-value | 29.19 | 8.91 | 8.35 | 33.87 |
Factor | ||||
ST | < 0.001 | < 0.001 | 0.493 ns | 0.222 ns |
PF | < 0.001 | 0.203 | 0.167 | < 0.001 |
ST × PF | < 0.001 | 0.004 | 0.005 | < 0.001 |
Storage temperature (ST) (°C) | Skin | Flesh | ||||
---|---|---|---|---|---|---|
L | C | Hue | L | C | Hue | |
0 | 25.46 | 10.54 | 11.03 | 37.09 | 23.15 | 50.59 |
4 | 24.99 | 9.39 | 9.00 | 38.29 | 24.92 | 52.79 |
8 | 24.30 | 10.50 | 11.09 | 35.76 | 23.81 | 52.42 |
F-value | 0.90 | 1.49 | 1.72 | 1.96 | 1.54 | 0.74 |
Pollination frequency(PF) | ||||||
4 day intervals (T1) | 24.67 | 10.59 | 10.80 | 36.74 | 24.22 | 53.82 a* |
8 day intervals (T2) | 25.17 | 9.69 | 9.95 | 37.36 | 23.70 | 50.04 b |
F-value | 0.50 | 2.11 | 0.66 | 0.35 | 0.39 | 5.76 |
Interaction ST × PF | ||||||
0 × 4 day intervals | 25.67 | 11.52 | 12.93 | 36.04 | 23.89 | 46.88 b |
4 × 4 day intervals | 24.38 | 10.15 | 9.53 | 37.34 | 26.11 | 57.81 a |
8 × 4 day intervals | 23.94 | 10.10 | 9.94 | 36.83 | 22.67 | 56.77 a |
0 × 8 day intervals | 25.25 | 9.56 | 9.13 | 38.14 | 22.40 | 54.30 ab |
4 × 8 day intervals | 25.60 | 8.62 | 8.48 | 39.25 | 23.74 | 47.71 b |
8 × 8 day intervals | 24.66 | 10.90 | 12.23 | 34.69 | 24.95 | 48.07 b |
F-value | 0.46 | 1.92 | 2.84 | 1.75 | 2.90 | 12.73 |
Factor | ||||||
ST | 0.431 ns | 0.262 ns | 0.219 ns | 0.182 ns | 0.253 ns | 0.494 ns |
PF | 0.490 ns | 0.171 ns | 0.430 ns | 0.561 ns | 0.541 ns | 0.033 |
ST × PF | 0.632 ns | 0.188 ns | 0.097 ns | 0.214 ns | 0.093 ns | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahi Koşar, D.; Ertürk, Ü. Effects of Caprifig (Ficus carica var. caprificus) Storage Temperature and Duration on the Fruit Productivity and Quality of ‘Bursa Siyahi’ Figs. Horticulturae 2023, 9, 78. https://doi.org/10.3390/horticulturae9010078
Ahi Koşar D, Ertürk Ü. Effects of Caprifig (Ficus carica var. caprificus) Storage Temperature and Duration on the Fruit Productivity and Quality of ‘Bursa Siyahi’ Figs. Horticulturae. 2023; 9(1):78. https://doi.org/10.3390/horticulturae9010078
Chicago/Turabian StyleAhi Koşar, Dilan, and Ümran Ertürk. 2023. "Effects of Caprifig (Ficus carica var. caprificus) Storage Temperature and Duration on the Fruit Productivity and Quality of ‘Bursa Siyahi’ Figs" Horticulturae 9, no. 1: 78. https://doi.org/10.3390/horticulturae9010078
APA StyleAhi Koşar, D., & Ertürk, Ü. (2023). Effects of Caprifig (Ficus carica var. caprificus) Storage Temperature and Duration on the Fruit Productivity and Quality of ‘Bursa Siyahi’ Figs. Horticulturae, 9(1), 78. https://doi.org/10.3390/horticulturae9010078