Effects of Altering Carbohydrate Supply to Fruit during Development on the Carpometric and Qualitative Characteristics of “Feminello Zagara Bianca” Lemon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Treatments
2.3. Fruit Sampling
2.4. Carpometric Measurements
2.5. Determination Flavedo and Pulp Color
2.6. Qualitative Characterization of Fruits
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miran, W.; Nawaz, M.; Jang, J.; Lee, D.S. Sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int. Biodeterior. 2016, 106, 75–79. [Google Scholar] [CrossRef]
- Saunt, J. Citrus Varieties of the Word. An Illustrated Guide; Sinclair International Limited: Norwich, UK, 2000; pp. 90–97. [Google Scholar]
- Samer, J.; Abdulkader, R.; Samir, A.A.; Eyad, C.M. The cytotoxic effect of essential oil of syrian Citrus limon peel on human colorectal carcinoma cell line (Lim1863). Middle East J. Cancer. 2012, 3, 15–21. [Google Scholar]
- Kaskoos, R.A. Essential oil analysis by GC-MS and analgesic activity of Lippia citriodora and Citrus limon. J. Essent. Oil Bearing Plants. 2019, 22, 273–281. [Google Scholar] [CrossRef]
- Dhanavade, M.J.; Jalkute, C.B.; Ghosh, J.S.; Sonawane, K.D. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. Br. J. Pharmacol. Toxicol. 2011, 2, 119–122. [Google Scholar]
- Ekawati, E.; Darmanto, W. Lemon (Citrus limon) juice has antibacterial potential against diarrhea-causing pathogen. IOP Conf. Ser. Earth Environ. Sci. 2019, 217, 012023. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazi, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food and Cosmetics Industries and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Serna-Escolano, V.; Giménez, M.J.; García-Pastor, M.E.; Dobón-Suárez, A.; Pardo-Pina, S.; Zapata, P.J. Effects of Degreening Treatment on Quality and Shelf-Life of Organic Lemons. Agronomy 2022, 12, 270. [Google Scholar] [CrossRef]
- Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Ríos, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; et al. Physiology of citrus fruiting. Braz. J. Plant Physiol 2007, 19, 333–362. [Google Scholar] [CrossRef]
- Tadeo, F.R.; Cercós, M.; Colmenero-Flores, J.M.; Iglesias, D.J.; Naranjo, M.A.; Rios, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; et al. Molecular physiology of development and quality of Citrus. Adv. Bot. Res. 2008, 47, 147–223. [Google Scholar]
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, D.J.; Tadeo, F.R.; Primo-Millo, E.; Talón, M. Fruit set dependence on carbohydrate availability in citrus trees. Tree Physiol. 2003, 23, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Syvertsen, J.P.; Goñi, C.; Otero, A. Fruit load and canopy shading affect leaf characteristics and net gas exchange of “Spring” navel orange trees. Tree Physiol. 2003, 23, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, E.E.; Koch, K.E. Citrus. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relations; Zaminski, E., Schaffer, A.A., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 797–823. [Google Scholar]
- Hockema, B.R.; Etxeberria, E. Metabolic contributors to drought-enhanced accumulation of sugars and acids in oranges. J. Am. Soc. Hort. Sci. 2001, 126, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cadenas, A.; Mehouachi, J.; Tadeo, F.R.; Primo-Millo, E.; Talon, M. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 2000, 210, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Mehouachi, J.; Iglesias, D.J.; Tadeo, F.R.; Agustí, M.; Primo-Millo, E.; Talon, M. The role of leaves in citrus fruitlet abscission: Effects on endogenous gibberellin levels and carbohydrate content. J. Hort. Sci. Biotechnol. 2000, 75, 79–85. [Google Scholar] [CrossRef]
- Etxeberria, E.; Gonzalez, P.; Pozueta-Romero, J. Sucrose transport into citrus juice cells. Evidence for an endocytic transport system. J. Am. Soc. Hort. Sci. 2005, 130, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, H.; Vandercook, C.E. Citrus carotenoids. I. Comparison of carotenoids of mature-green and yellow lemons. J. Food Sci. 1967, 32, 42–48. [Google Scholar] [CrossRef]
- Kato, M.; Ikoma, Y.; Matsumoto, H.; Sugiura, M.; Hyodo, H.; Yano, M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol. 2004, 134, 824–837. [Google Scholar] [CrossRef] [Green Version]
- Gorinstein, S.; Martín-Belloso, O.; Park, Y.S.; Haruenkit, R.; Lojek, A.; Číz, M.; Caspi, A.; Libman, I.; Trakhtenberg, S. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001, 74, 309–315. [Google Scholar] [CrossRef]
- Sinclair, W.B. The Biochemistry and Physiology of the Lemon and Other Citrus Fruits; University of California: Riverside, CA, USA, 1984. [Google Scholar]
- Pauli, H. Proposed extension of the CIE recommendation on “Uniform color spaces, color difference equations, and metric color terms”. J. Opt. Soc. Am. 1976, 66, 866. [Google Scholar] [CrossRef]
- Robertson, A.R. The CIE 1976 Color-Difference Formulae. Color. Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- AOAC Official Method 967.21. 2005. Ascorbic acid in vitamin preparations and juices, 2.6-dichloroindophenol titrimetric method. 45.1.14. In Official Methods of Analysis of AOAC International, 18th ed.; Revision 2; AOAC International: Gaithersburg, MD, USA, 2007; Chapter 45; pp. 22–23.
- Nielsen, S.S. Food Analysis, 4th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Panebianco, F.; Giarratana, F.; Caridi, A.; Sidari, R.; De Bruno, A.; Giuffrida, A. Lactic acid bacteria isolated from traditional Italian dairy products: Activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT. Food Sci. Technol. 2021, 137, 110446. [Google Scholar] [CrossRef]
- Augustin, M.A.; Khor, K.L. Determination of Sugars in Soft Drinks by High Performance Liquid Chromatography. PertaWka 1986, 9, 119–123. [Google Scholar]
- Letaief, H.; Zemni, H.; Mliki, A.; Chebil, S. Composition of Citrus sinensis (L.) Osbeck cv «Maltaise demi-sanguine» juice. A comparison between organic and conventional farming. Food Chem. 2016, 194, 290–295. [Google Scholar] [CrossRef]
- De Bruno, A.; Piscopo, A.; Cordopatri, F.; Poiana, M.; Mafrica, R. Effect of Agronomical and Technological Treatments to Obtain Selenium-Fortified Table Olives. Agriculture 2020, 10, 284. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. HPLC Organic Acid Analysis in Different Citrus Juices under Reversed Phase Conditions. Not. Bot. Hort. Agrobot. Cluj 2010, 38, 44–48. [Google Scholar]
- Xi, W.; Lu, J.; Qun, J.; Jiao, B. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. J. Food Sci. Technol. 2017, 54, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajimahmoodi, M.; Aliabadipoor, M.; Moghaddam, G.; Sadeghi, N.; Reza Oveise, M.; Jannat, B. Evaluation of in vitro Antioxidant Activities of Lemon Juice for Safety Assessment. Am. J. Food Technol. 2012, 7, 708–714. [Google Scholar] [CrossRef]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci. Hortic. 2019, 243, 281–289. [Google Scholar] [CrossRef]
- Mehouachi, J.; Serna, D.; Zaragoza, S.; Agusti, M.; Talon, M.; Primo-Millo, E. Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Sci. 1995, 107, 189–197. [Google Scholar] [CrossRef]
- Goldschmidt, E.E. Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hort. Sci. 1999, 34, 1020–1024. [Google Scholar] [CrossRef] [Green Version]
- Bustan, A.; Goldschmidt, E.E. Estimating the cost of flowering in a grapefruit tree. Plant Cell Environ. 1998, 21, 217–224. [Google Scholar] [CrossRef]
- Jones, W.W.; Steinacker, M.L. Seasonal changes in concentration of sugars and starch in leaves and twigs of citrus trees. Proc. Am. Soc. Hort. Sci. 1951, 58, 1–4. [Google Scholar]
- Hilgeman, R.H.; Dunlap, J.A.; Sharples, G.C. Effect of time of harvest of Valencia oranges on leaf carbohydrate content and subsequent set of fruit. Proc. Am. Soc. Hart. Sci. 1967, 9, 110–116. [Google Scholar]
- Gonzalez-Ferrer, J.; Agusti, M.; Guardiola, J.L. Fruiting pattern and retranslocation of reserves in the Novelette and Washington navel oranges. In Proceedings of the International Society of Citriculture, São Paulo, Brazil, 15–20 July 1984; pp. 194–200. [Google Scholar]
- Garcia-Luis, A.; Fornes, F.; Sanz, A.; Guardiola, J.L. The regulation of flowering and fruit set in Citrus: Relationship with carbohydrate levels. Israel J. Bot. 1988, 37, 189–201. [Google Scholar]
- Shimizu, T.; Torikata, H.; Toni, S. Studies on the effect of crop load on the composition of Satsuma mandarin trees. V. Analysis of production processes of bearing and non-bearing trees based on the carbohydrate economy. J. Jpn. Soc. Hort. Sci. 1978, 46, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Guardiola, J.L. Factors limiting productivity in citrus: A physiological approach. In Citriculture, Proceedings of the 6th International Citrus Congress, Middle East, Tel Aviv, Israel, 6–11 March 1988; Balaban: Rehovot, Israel, 1989; pp. 381–394. [Google Scholar]
- Spiegel-Roy, P.; Goldschmidt, E.E. Biology of Citrus; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Cohen, A. Recent developments in girdling of citrus trees. In Proceedings of the International Society of Citriculture, Tokyo, Japan, 9–12 November 1981; pp. 196–199. [Google Scholar]
- Fisher, M.; Goldschmidt, E.E.; Monselise, S.P. Grapefruit branches. J. Am. Soc. Hort. Sci. 1983, 108, 218–221. [Google Scholar]
- Cohen, A. Effect of girdling date on fruit size in Marsh seedless grapefruit. J. Hort. Sci. 1984, 59, 567–573. [Google Scholar] [CrossRef]
- Mataa, M.; Tominaga, S.; Kozaki, I. The effect of time of girdling on carbohydrate contents and fruiting in Ponkan mandarin. Sci. Hortic. 1998, 73, 203–211. [Google Scholar] [CrossRef]
- Holtzhausen, L.C. Creasing: Formulating a hypothesis. In Proceedings of the International Society of Citriculture/International Citrus Congress, Tokyo, Japan, 9–12 November 1981; pp. 201–204. [Google Scholar]
- Coggins, C.W. Fruit development and senescence. In Citrus Flowering, Fruit-Set and Development; Ferguson, J.J., Ed.; University of Florida: Lake Alfred, FL, USA, 1986; pp. 15–20. [Google Scholar]
- Manera, F.J.; Brotons, J.M.; Conesa, A.; Porras, I. Influence of temperature on the beginning of degreening in lemon peel. Sci. Hortic. 2012, 145, 34–38. [Google Scholar] [CrossRef]
- Manera, F.J.; Brotons, J.M.; Conesa, A.; Porras, I. Relation between temperature and the beginning of peel color change in grapefruit (Citrus paradisi Macf.). Sci. Hortic. 2013, 160, 292–299. [Google Scholar] [CrossRef]
- Rodrigo, M.J.; Alquézar, B.; Alós, E.; Lado, J.; Zacarías, L. Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit. Sci. Hortic. 2013, 163, 46–62. [Google Scholar] [CrossRef]
- Conesa, A.; Manera, F.C.; Brotons, J.M.; Fernandez-Zapata, J.C.; Simón, I.; Simón-Grao, S.; Alfosea-Simón, M.; Nicolása, J.J.M.; Valverde, J.M.; García-Sanchez, F. Changes in the content of chlorophylls and carotenoids in the rind of ‘Fino 49’ lemons during maturation and their relationship with parameters from the CIELAB color space. Sci. Hortic. 2019, 243, 252–260. [Google Scholar] [CrossRef]
- Huff, A. Nutritional control of regreening and degreening in citrus peel segments. Plant Physiol. 1983, 73, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Huff, A. Sugar regulation of plastid interconversions in the epicarp of citrus fruit. Plant Physiol. 1984, 76, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, D.J.; Tadeo, F.R.; Legaz, F.; Primo-Millo, E.; Talon, M. In vivo sucrose stimulation of colour change in citrus fruit epicarps: Interactions between nutritional and hormonal signals. Physiol. Plant. 2001, 112, 244–250. [Google Scholar] [CrossRef]
- Fidelibus, M.W.; Koch, K.E.; Davies, F.S. Gibberellic acid alters sucrose, hexoses, and their gradients in peel tissues during color break delay in ‘Hamlin’ orange. J. Am. Soc. Hortic. Sci. 2008, 133, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Gambetta, G.; Mesejo, C.; Martínez-Fuentes, A.; Reig, C.; Gravina, A.; Agustí, M. Gibberellic acid and norflurazon affecting the time-course of flavedo pigment and abscisic acid content in ‘Valencia’ sweet orange. Sci. Hortic. 2014, 180, 94–101. [Google Scholar] [CrossRef]
- Miller, E.V.; Winstons, J.R.; Fisher, D.F. A physiological study of carotenoid pigments and other constituens in the juice of Florida oranges. USDA Tech. Bull. 1941, 780, 1–31. [Google Scholar]
- González-Sicilia, E. El Cultivo de los Agrios; INIA: Madrid, Spain, 1960. [Google Scholar]
- Casas, A.; Mallent, D. El color de los frutos cítricos. II. Factores que influyen en el color (continuación). Influencia de la fertilización, del portainjerto y otros. Rev. Agroquim. Tecnol. Aliment. 1988, 28, 344–356. [Google Scholar]
- Matsumoto, H.; Ikoma, Y.; Kato, M.; Kuniga, T.; Nakajima, N.; Yoshida, T. Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J. Agric. Food Chem. 2007, 55, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Soost, R.K. Unfruitfulness in ‘Clementine’ mandarin. Proc. Amer. Soc. Hort. Sci. 1956, 67, 171–175. [Google Scholar]
- Cameron, J.W.; Cole, D.; Nauer, E.M. Fruit size in relation to seed number in the Valencia orange and some other citrus varieties. Proc. Amer. Soc. Hort. Sci. 1960, 76, 170–180. [Google Scholar]
- Ketsa, S. Effect of seed number on fruit characteristics of Tangerine. Kasetsart J. 1988, 22, 225–227. [Google Scholar]
- Sadka, A.; Shlizerman, L.; Kamara, I.; Blumwald, E. Primary Metabolism in Citrus Fruit as Affected by Its Unique Structure. Front. Plant Sci. 2019, 10, 1167. [Google Scholar] [CrossRef]
- Monselise, S.P. Citrus. In Handbook of Fruit Set and Development; Monselise, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 87–108. [Google Scholar]
- Gawankar, M.S.; Haldankar, P.M.; Salvi, B.R.; Parulekar, Y.R.; Dalvi, N.V.; Kulkarni, M.M.; Saitwal, Y.S.; Nalage, N.A. Effect of girdling on induction of flowering and quality of fruits in horticultural crops—A review. Adv. Agric. Res. Technol. J. 2019, 3, 201–215. [Google Scholar]
- Yang, X.Y.; Wang, F.F.; Teixeira da Silva, J.A.; Zhong, J.; Liu, Y.Z.; Peng, S.A. Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in l-galactose pathway in citrus. N. Z. J. Crop Hortic. Sci. 2013, 41, 23–31. [Google Scholar] [CrossRef]
- Li, C.Y.; Weiss, D.; Goldschmidt, E.E. Effects of carbohydrate starvation on gene expression in citrus root. Planta 2003, 217, 11–20. [Google Scholar] [CrossRef]
- Li, C.Y.; Weiss, D.; Goldschmidt, E.E. Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. Ann. Bot. 2003, 92, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, F.; Kato, M.; Hyodo, H.; Ikoma, Y.; Sugiura, M.; Yano, M. Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J. Exp. Bot. 2005, 56, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolucka, B.A.; Goossens, A.; Inze, D. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J. Exp. Bot. 2005, 56, 2527–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, A.C.; Marsh, K.B.; Boldingh, H.L.; Pickering, A.H.; Bulley, S.M.; Frearson, N.J.; Ferguson, A.R.; Thornber, S.E.; Bolitho, K.M.; Macrae, E.A. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ. 2004, 27, 423–435. [Google Scholar] [CrossRef]
- Yabuta, Y.; Mieda, T.; Rapolu, M.; Nakamura, A.; Motoki, T.; Maruta, T.; Yoshimura, K.; Ishikawa, T.; Shigeoka, S. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J. Exp. Bot. 2007, 58, 2661–2671. [Google Scholar] [CrossRef] [Green Version]
- Gautier, H.; Massot, C.; Stevens, R.; Sérino, S.; Génard, M. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann. Bot. 2009, 103, 495–504. [Google Scholar] [CrossRef]
- Li, M.J.; Ma, F.W.; Shang, P.F.; Zhang, M.; Hou, C.M.; Liang, D. Influence of light on ascorbate formation and metabolism in apple fruits. Planta 2009, 230, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Li, M.J.; Ma, F.W.; Liu, J.; Li, J. Shading the whole vines during young fruit development decreases ascorbate accumulation in kiwi. Physiol. Plant 2010, 140, 225–237. [Google Scholar] [CrossRef] [PubMed]
Parameter | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | ||
Fruit weight (g) | 226.7 a | 220.5 a | 194.6 b | 185.5 b | 173.4 b | ** |
Fruit height (mm) | 95.8 a | 95.4 a | 93.8 ab | 92.8 ab | 90.0 b | ** |
Fruit width (mm) | 73.0 a | 72.0 a | 69.1 b | 67.2 bc | 65.2 c | ** |
Ratio of height/width | 1.31 c | 1.33 bc | 1.36 ab | 1.38 a | 1.38 a | ** |
Specific gravity of fruit (g cm−3) | 0.86 | 0.85 | 0.86 | 0.85 | 0.86 | n.s. |
Parameters | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | ||
L* | 73.3 | 72.3 | 72.9 | 72.5 | 72.9 | n.s. |
a* | 6.1 a | 5.7 ab | 5.5 b | 5.3 b | 4.7 b | ** |
b* | 60.6 | 59.1 | 59.1 | 59.3 | 59.7 | n.s. |
Hue angle (h°) | 84.3 c | 84.5 bc | 84.7 bc | 84.9 b | 85.9 a | ** |
C* | 60.9 | 59.4 | 59.4 | 59.6 | 59.9 | n.s. |
Citrus color index | 1.4 a | 1.3 a | 1.3 a | 1.2 a | 1.1 b | ** |
Peel thickness (mm) | 6.8 b | 7.0 b | 7.6 a | 7.9 a | 8.1 a | ** |
Flavedo thickness (mm) | 1.6 d | 1.6 d | 1.7 bc | 1.8 ab | 1.9 a | ** |
Albedo thickness (mm) | 5.2 b | 5.4 b | 5.9 a | 6.1 a | 6.2 a | ** |
Moisture content, peel (%) | 83.9 | 84.9 | 84.6 | 84.3 | 84.1 | n.s. |
Parameters | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | ||
L* | 46.2 a | 46.3 a | 45.0 b | 44.9 b | 44.2 b | ** |
a* | 0.2 a | 0.2 a | 0.1 a | −0.2 b | −0.2 b | ** |
b* | 12.9 | 12.6 | 12.1 | 11.9 | 11.7 | n.s. |
Hue angle (h°) | 89.0 b | 89.2 b | 89.4 b | 90.8 a | 91.4 a | ** |
C* | 19.9 | 12.6 | 12.1 | 11.9 | 11.8 | n.s. |
Citrus color index | 0.4 a | 0.3 a | 0.2 a | −0.3 b | −0.5 b | ** |
Normal seeds per fruit (n°) | 9.8 | 9.5 | 9.9 | 9.5 | 9.5 | n.s. |
Empty seeds per fruit (n°) | 2.1 | 2.2 | 2.2 | 1.8 | 2.3 | n.s. |
Juice content (%) | 40.0 a | 39.2 ab | 36.3 bc | 35.2 c | 34.5 c | ** |
Moisture content, pulp (%) | 90.0 | 88.8 | 90.1 | 89.5 | 89.7 | n.s. |
Parameters | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | ||
Total soluble solids (°Brix) | 7.5 b | 7.7 b | 8.3 a | 8.5 a | 8.6 a | ** |
pH | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | n.s. |
Titratable acidity (g L−1) | 53.0 b | 53.7 b | 58.6 a | 59.3 a | 60.7 a | ** |
Ascorbic acid (mg 100 mL−1) | 48.0 a | 47.6 a | 44.4 b | 44.6 b | 43.8 b | ** |
Parameters (mg 100 mL−1) | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | ||
Tartaric Acid | 12.12 a | 8.52 b | 7.03 b | 8.29 b | 7.91 b | ** |
Malic Acid | 157.76 | 152.37 | 162.45 | 154.71 | 144.46 | n.s. |
Ossalic Acid | 11.20 a | 0 d | 3.72 c | 8.86 ab | 6.20 bc | ** |
Ascorbic Acid | 28.47 a | 26.12 a | 25.50 ab | 21.19 c | 22.62 bc | ** |
Citric Acid | 4659.94 bc | 4599.75 c | 4942.33 a | 4906.51 a | 4832.92 ab | ** |
Parameters | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
(g L−1) | 70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | |
Glucose | 7.20 ab | 6.67 b | 8.33 a | 7.52 ab | 8.65 a | ** |
Fructose | 5.56 b | 7.33 ab | 7.69 a | 6.78 ab | 7.98 a | ** |
Sucrose | 5.04 | 4.56 | 5.17 | 5.67 | 4.99 | n.s. |
Parameters | Girdling Time | Sign. | ||||
---|---|---|---|---|---|---|
70 DAFB | 100 DAFB | 130 DAFB | 160 DAFB | Control | ||
TPC | 1294.58 bc | 1275.40 c | 1393.78 abc | 1407.01 ab | 1491.67 a | ** |
ABTS | 7.64 b | 6.70 b | 7.35 b | 10.47 a | 9.501 a | ** |
DPPH | 7.27 | 7.01 | 7.39 | 7.32 | 7.02 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafrica, R.; De Bruno, A.; Lanza, D.; Poiana, M. Effects of Altering Carbohydrate Supply to Fruit during Development on the Carpometric and Qualitative Characteristics of “Feminello Zagara Bianca” Lemon. Horticulturae 2023, 9, 71. https://doi.org/10.3390/horticulturae9010071
Mafrica R, De Bruno A, Lanza D, Poiana M. Effects of Altering Carbohydrate Supply to Fruit during Development on the Carpometric and Qualitative Characteristics of “Feminello Zagara Bianca” Lemon. Horticulturae. 2023; 9(1):71. https://doi.org/10.3390/horticulturae9010071
Chicago/Turabian StyleMafrica, Rocco, Alessandra De Bruno, Domenico Lanza, and Marco Poiana. 2023. "Effects of Altering Carbohydrate Supply to Fruit during Development on the Carpometric and Qualitative Characteristics of “Feminello Zagara Bianca” Lemon" Horticulturae 9, no. 1: 71. https://doi.org/10.3390/horticulturae9010071
APA StyleMafrica, R., De Bruno, A., Lanza, D., & Poiana, M. (2023). Effects of Altering Carbohydrate Supply to Fruit during Development on the Carpometric and Qualitative Characteristics of “Feminello Zagara Bianca” Lemon. Horticulturae, 9(1), 71. https://doi.org/10.3390/horticulturae9010071