Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Trees and Treatments Application
2.2. Vegetative Growth Parameters
2.3. Fruit Set and Fruit Drop Percentages
2.4. Fruit Yield
2.5. Fruit Quality
2.5.1. Fruit Physical Characteristics
2.5.2. Fruit Chemical Characteristics
2.6. Leaf Mineral Composition
2.7. Statistical Analysis
3. Results
3.1. Vegetative Growth Parameters
3.2. Fruit Set, Drop and Yield
3.3. Fruit Quality
3.3.1. Physical Fruit Characteristics
3.3.2. Fruit Chemical Characteristics
3.4. Leaf Mineral Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. 2020. Available online: http://faostat-fao.org (accessed on 19 December 2021).
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef]
- Dar, G.; Kamili, A.; Chishti, M.; Dar, S.; Tantry, T.; Ahmad, F. Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. J. Bacteriol. Parasitol. 2016, 7, 273. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.I.; Arcand, Y. Current trends in green technologies in food production and processing. Food Eng. Rev. 2013, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, N.A.; Moses, V.; Prakash, C. The impact of possible climate changes on developing countries: The needs for plants tolerant to abiotic stresses. GM Crops Food 2014, 5, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, E.; Hassan, F.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Phiri, C. Influence of Moringa oleifera leaf extracts on germination and early seedling development of major cereals. Agric. Biol. J. N. Am. 2010, 1, 774–777. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.-R.; Schrader, S.; Höper, H.; Wilke, B.-M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [Green Version]
- Campobenedetto, C.; Mannino, G.; Agliassa, C.; Acquadro, A.; Contartese, V.; Garabello, C.; Bertea, C.M. Transcriptome analyses and antioxidant activity profiling reveal the role of a lignin-derived biostimulant seed treatment in enhancing heat stress tolerance in soybean. Plants 2020, 9, 1308. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabology 2020, 10, 505. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Mannino, G.; Beekwilder, J.; Contartese, V.; Karlova, R.; Bertea, C.M. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci. Rep. 2021, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Nerva, L.; Gritli, T.; Novero, M.; Fiorilli, V.; Bacem, M.; Bertea, C.M.; Lumini, E.; Chitarra, W.; Balestrini, R. Effects of different microbial inocula on tomato tolerance to water deficit. Agronomy 2020, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Song, L.; Xiao, Y.; Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 2018, 8, 2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant biostimulant regulatory framework: Prospects in Europe and current situation at international level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- Soliman, A.S.; Shanan, N.T. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J. Appl. Hortic. 2017, 19, 35–45. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Bakhsh, A.; Javaad, H.W.; Hussain, F.; Akhtar, A.; Raza, M.K. Application of Moringa oleifera leaf extract improves quality and yield of peach (Prunus persica). J. Pure Appl. Agric. 2020, 5, 42–51. [Google Scholar]
- Kamel, H. Response of Manfalouty pomegranate transplants to foliar spray and soil drench applications with some natural extracts. J. Hortic. Sci. Ornam. Plants 2015, 7, 107–116. [Google Scholar]
- Gad El-Kareem, M. Response of Anna Apple Trees to Foliar Application of Moringa Oil. Alex. Sci. Exch. 2021, 42, 851–856. [Google Scholar] [CrossRef]
- Arif, Y.; Bajguz, A.; Hayat, S. Moringa oleifera Extract as a Natural Plant Biostimulant. J. Plant Growth Regul. 2022, 1–16. [Google Scholar] [CrossRef]
- Mashamaite, C.V.; Ngcobo, B.L.; Manyevere, A.; Bertling, I.; Fawole, O.A. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. Plants 2022, 11, 2214. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Fleming, C.; Selby, C.; Rao, J.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Mahmood, A.; Römheld, V.; Neumann, G. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur. J. Agron. 2013, 49, 141–148. [Google Scholar] [CrossRef]
- Vranova, V.; Rejsek, K.; Skene, K.R.; Formanek, P. Non-protein amino acids: Plant, soil and ecosystem interactions. Plant Soil 2011, 342, 31–48. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Kapur, B.; Sarıdaş, M.A.; Çeliktopuz, E.; Kafkas, E.; Kargı, S.P. Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application. Food Chem. 2018, 263, 67–73. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Stirk, W.A.; van Staden, J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 2020, 44, 107612. [Google Scholar] [CrossRef] [PubMed]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, D.; Pramanik, K.; Nayak, B. Use of sea weed extracts as plant growth regulators for sustainable agriculture. Int. J. Bioresour. Stress Manag. 2012, 3, 404–411. [Google Scholar]
- Yusuf, R.; Syakur, A.; Kalaba, Y.; Fatmawati, F. Application of some types of local seaweed extract for the growth and yield of shallot (Allium wakegi). Aquacult. Aquar. Conserv. Legis. 2020, 13, 2203–2210. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Adil, A.; Canan, K.; Metin, T. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 2012, 7, 1073–1086. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plants and Soils; Laboratory of Analytical Agrochemistry, State University: Gent, Belgium, 1982; Volume 63. [Google Scholar]
- Demirsoy, H. Leaf area estimation in some species of fruit tree by using models as a non-destructive method. Fruits 2009, 64, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Magness, J.R.T.; Taylor, G.F. An Improved Type of Pressure Tester for the Determination of Fruit Maturity; United States Department of Agriculture: Washington, DC, USA, 1925; p. 1982.
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis of the Association of Analytical Chemists International; Association of Official Agricultural Chemists (AOAC): Gaithersburg, MD, USA, 2005.
- Nielsen, S.S. Phenol-sulfuric acid method for total carbohydrates. In Food Analysis Laboratory Manual; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–53. [Google Scholar]
- Nangle, E.J.; Gardner, D.S.; Metzger, J.D.; Rodriguez-Saona, L.; Guisti, M.M.; Danneberger, T.K.; Petrella, D.P. Pigment Changes in Cool-Season Turfgrasses in Response to Ultraviolet-B Light Irradiance. Agron. J. 2015, 107, 41–50. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by Kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Weiwei, C.; Jinrong, L.; Fang, X.; Jing, L. Improvement to the determination of activated phosphorus in water and wastewater by yellow vanadomolybdate method. Ind. Water Treat. 2017, 37, 95–97. [Google Scholar]
- Banerjee, P.; Prasad, B. Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer. Appl. Water Sci. 2020, 10, 113. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Iowa State University Press: Ames, IA, USA, 1990; p. 507. [Google Scholar]
- Nagar, P.K.; Iyer, R.I.; Sircar, P.K. Cytokinins in developing fruits of moringa pterygosperma gaertn. Physiol. Plant 2006, 55, 45–50. [Google Scholar] [CrossRef]
- Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients 2018, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Howladar, S.M. A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol. Environ. Saf. 2014, 100, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Nisar, N.; Koul, B. Application of Moringa oleifera LAM. Seeds in Wastewater Treatment. Plant Arch. 2021, 21, 2408–2417. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, A.S.; Basra, S.A.; Malik, A.U. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Sci. Hortic. 2016, 210, 227–235. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Ahmed, M.E.; Maswada, H.F.; Xuan, T.D. Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch. Agron. Soil Sci. 2017, 63, 687–699. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef] [PubMed]
- keya Tudu, C.; Dey, A.; Pandey, D.K.; Panwar, J.S.; Nandy, S. Role of plant derived extracts as biostimulants in sustainable agriculture: A detailed study on research advances, bottlenecks and future prospects. In New and Future Developments in Microbial Biotechnology and Bioengineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 159–179. [Google Scholar]
- El Sohaimy, S.A.; Hamad, G.M.; Mohamed, S.E.; Amar, M.H.; Al-Hindi, R.R. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Glob. Adv. Res. J. Agric. Sci. 2015, 4, 188–199. [Google Scholar]
- Rady, M.M.; Mohamed, G.F.; Abdalla, A.; Ahmed, Y.H. Integrated application of salicylic acid and Moringa oleifera leaf extract alleviates the salt-induced adverse effects in common bean plants. J. Agric. Sci. Technol. 2015, 11, 1595–1614. [Google Scholar]
- Mosa, W.F.; Salem, M.Z.; Al-Huqail, A.A.; Ali, H.M. Application of Glycine, Folic Acid, and Moringa Extract as Bio-stimulants for Enhancing the Production of’Flame Seedless’ Grape Cultivar. Bioresources 2021, 16, 3391–3410. [Google Scholar] [CrossRef]
- Raupp, J.; Oltmanns, M. Soil properties, crop yield and quality with farmyard manure with, or without biodynamic preparations, and with inorganic fertilizers. In Long-Term Field Experiments in Organic Farming; Verlag Dr. Köster: Berlin, Germany, 2006; pp. 135–155. [Google Scholar]
- Yassen, A.; Nadia, B.M.; Zaghloul, M. Role of some organic residues as tools for reducing heavy metals hazards in plant. World J. Agric. Sci. 2007, 3, 204–207. [Google Scholar]
- Abdel-Mawgoud, A.; Tantaway, A.; Hafez, M.M.; Habib, H.A. Seaweed extract improves growth, yield and quality of different watermelon hybrids. Res. J. Agric. Biol. Sci. 2010, 6, 161–168. [Google Scholar]
- Prasad, K.; Das, A.K.; Oza, M.D.; Brahmbhatt, H.; Siddhanta, A.K.; Meena, R.; Eswaran, K.; Rajyaguru, M.R.; Ghosh, P.K. Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation. J. Agric. Food Chem. 2010, 58, 4594–4601. [Google Scholar] [CrossRef]
- Marrez, D.; Naguib, M.; Sultan, Y.; Daw, Z.; Higazy, A. Evaluation of chemical composition for Spirulina platensis in different culture media. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 1161–1171. [Google Scholar]
- Zodape, S.; Gupta, A.; Bhandari, S.; Rawat, U.; Chaudhary, D.; Eswaran, K.; Chikara, J. Foliar application of seaweed sap as biostimulant for enhancement of yieldand quality of tomato (Lycopersicon esculentum Mill.). J. Sci. Ind. Res. 2011, 70, 215–219. [Google Scholar]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Yusuf, R.; Kristiansen, P.; Warwick, N. Potential effect of plant growth regulators in two seaweed products. In I International Symposium on Sustainable Vegetable Production in Southeast Asia; Salatiga: Central Java, Indonesia, 2011; Volume 958, pp. 133–138. [Google Scholar]
- Zhang, X.; Ervin, E. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 2004, 44, 1737–1745. [Google Scholar] [CrossRef]
- Al-Rawi, W.; Al-Hadethi, M.; Abdul-Kareem, A. Effect of foliar application of gibberellic acid and seaweed extract spray on growth and leaf mineral content on peach trees. Iraqi J. Agric. Sci. 2016, 47, 98–105. [Google Scholar]
- Omar, A.E.-D.K.; Ahmed, M.A.-A.; Al-Obeed, R.; Alebidi, A. Influence of foliar applications of yeast extract, seaweed extract and dif-ferent potassium sources fertilization on yield and fruit quality of ‘Flame Seedless’ grape. Acta Sci. Pol. Hortorum Cultus 2020, 19, 143–150. [Google Scholar] [CrossRef]
- El-Sese, A.; Mohamed, A.; Abou-Zaid, E.A.; Abd-El-Ghany, A. Impact of foliar application with seaweed extract, amino acids and vitamins on yield and berry quality of some Grapevine cultivars. SVU-Int. J. Agric. Sci. 2020, 2, 73–84. [Google Scholar] [CrossRef]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chem. Biol. Technol. Agric. 2021, 8, 5. [Google Scholar] [CrossRef]
- Mohamed, A.Y.; El-Sehrawy, O.A. Effect of seaweed extract on fruiting of Hindy Bisinnara mango trees. Am. J. Sci. 2013, 9, 537–544. [Google Scholar]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.-B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, G.; Erice, G.; Aroca, R.; Zamarreño, Á.M.; García-Mina, J.M.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. Agric. Water Manag. 2018, 202, 271–284. [Google Scholar] [CrossRef]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; You, Y.-H.; Kim, J.-H.; Kim, J.-G.; Hamayun, M.; Lee, I.-J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 2014, 9, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Justi, M.; Morais, E.G.; Silva, C.A. Fulvic acid in foliar spray is more effective than humic acid via soil in improving coffee seedlings growth. Arch. Agron. Soil Sci. 2019, 65, 1969–1983. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Zheng, J.; Shen, Z.; Xu, X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2019, 167, 10–19. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Cong, L.; Wang, X.; Shi, S. Effect of fulvic acid on the phosphorus availability in acid soil. J. Soil Sci. Plant Nutr. 2013, 13, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Huang, S.; Xiong, B.; Sun, G.; He, S.; Liao, L.; Wang, J.; Wang, B.; Wang, Z. Effects of fulvic acid on photosynthetic characteristics of citrus seedlings under drought stress. Proc. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 032007. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razavi, S.M.A.; BahramParvar, M. Some physical and mechanical properties of kiwifruit. Int. J. Food Eng. 2007, 3, 1–16. [Google Scholar] [CrossRef]
- Abd El-Hameed, M.; Ali, A.; Esis, A.; Ahmed, R. Reducing mineral N fertilizer partially in Thompson seedless vineyards by using fulvic acid and effective microorganisms. World Rural Obser. 2014, 6, 36–42. [Google Scholar]
- Priya, B.N.V.; Mahavishnan, K.; Gurumurthy, D.S.; Bindumadhava, H.; Upadhyay, A.P.; Shama, N.K. Fulvic acid (FA) for enhanced nutrient uptake and growth: Insights from biochemical and genomic studies. J. Crop Improv. 2014, 28, 740–757. [Google Scholar]
- Malan, C. Review: Humic and fulvic acids. In A Practical Approach. In Proceedings of the Sustainable Soil Management Symposium, Stellenbosch, South Africa, 3–7 November 2008; pp. 5–6. [Google Scholar]
- El-Hassanin, A.S.; Samak, M.R.; Moustafa, A.N.; Shafika, N.K.; Inas, M.I. Effect of foliar application with humic acid substances under nitrogen fertilization levels on quality and yields of sugar beet plant. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 668–680. [Google Scholar] [CrossRef]
- Khan, O.; Sofi, J.; Kirmani, N.; Hassan, G.; Bhat, S.; Chesti, M.; Ahmad, S. Effect of N, P and K Nano-fertilizers in comparison to humic and fulvic acid on yield and economics of red delicious (Malus domestica Borukh.). Rev. Bras. 2019, 8, 978–981. [Google Scholar]
Depth | Texture | pH | EC (dS/m) | ||||
---|---|---|---|---|---|---|---|
0–60 cm | Sandy loam | 8.17 | 2.58 | ||||
Soluble anions (%) | Soluble Cations (%) | ||||||
CaCO32− | HCO3− | Cl− | SO42− | Na+ | Mg2+ | K+ | Ca2+ |
26.7 | 5.0 | 14.5 | 6.0 | 15.2 | 4.00 | 1.6 | 5.00 |
Treatments | Shoot Length (cm) | Shoot Diameter (cm) | Leaf Area (cm2) | Relative Leaf Chlorophyll Content (SPAD) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 40.15 f ±1.50 | 40.67 e ±2.17 | 0.77 d ±0.06 | 0.8 e ±0.04 | 28.81 e ±1.48 | 30.90 d ±2.32 | 43.01 e ±2.19 | 44.12 d ±.69 |
MLE | 4% | 41.81 ef ±1.09 | 43.20 de ±2.27 | 0.78 d ±0.02 | 0.82 de ±0.02 | 30.57 cde ±2.59 | 32.57 cd ±2.51 | 45.69 d ±1.36 | 47.62 c ±1.19 |
6% | 44.98 bcde ±0.81 | 46.20 cd ±1.35 | 0.86 c ±0.02 | 0.88 bc ±0.01 | 32.13 bcde ±1.45 | 34.43 bc ±1.07 | 50.42 bc ±1.64 | 51.85 b ±2.40 | |
SWE | 0.3% | 44.03 cde ±1.00 | 45.70 cd ±0.46 | 0.84 c ±0.03 | 0.82 de ±0.02 | 32.33 bcd ±1.45 | 33.43 bcd ±1.93 | 48.05 c ±1.24 | 50.40 b ±1.48 |
0.4% | 46.35 bc ±3.32 | 48.60 bc ±2.21 | 0.89 bc ±0.02 | 0.90 b ±0.02 | 33.81 abc ±1.43 | 35.03 abc ±1.50 | 52.53 ab ±1.78 | 55.10 a ±2.26 | |
FA | 0.1% | 42.30 def ±0.39 | 43.63 de ±0.45 | 0.78 d ±0.03 | 0.85 cd ±0.03 | 29.71 de ±3.10 | 33.43 bcd ±1.07 | 49.15 c ±1.07 | 51.00 b ±0.78 |
0.2% | 45.55 bcd ±1.01 | 47.27 bc ±0.95 | 0.89 bc ±0.03 | 0.91 b ±0.02 | 32.66 bcd ±1.01 | 34.30 bc ±1.15 | 53.39 a ±2.40 | 54.45 a ±2.12 | |
Combination | 1 | 47.96 b ±3.09 | 50.27 ab ±2.00 | 0.94 ab ±0.01 | 0.95 a ±0.01 | 35.46 ab ±1.29 | 36.53 ab ±0.65 | 52.98 a ±1.69 | 54.85 a ±0.78 |
2 | 51.28 a ±2.24 | 52.63 a ±2.61 | 0.95 a ±0.02 | 0.96 a ±0.01 | 36.27 a ±1.71 | 37.87 a ±1.53 | 53.75 a ±1.13 | 56.57 a ±1.05 | |
LSD0.05 | 3.23 | 3.06 | 0.05 | 0.04 | 3.15 | 2.81 | 2.33 | 2.23 |
Treatments | Fruit Set (%) | Fruit Drop (%) | Fruit Yield/Tree (kg) | Fruit Yield/Hectare (tons) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 16.77 e ±1.62 | 17.33 e ±1.11 | 73.38 a ±2.45 | 69.65 a ±2.06 | 50.61 e ±2.01 | 51.90 f ±1.54 | 40.49 e ±1.61 | 41.52 f ±1.23 |
MLE | 4% | 16.97 e ±1.50 | 18.75 de ±1.55 | 66.34 b ±0.72 | 66.01 ab ±2.25 | 53.42 de ±1.73 | 54.20 ef ±3.00 | 42.73 de ±1.39 | 43.36 ef ±2.40 |
6% | 20.17 cd ±1.37 | 22.80 bc ±1.61 | 56.64 d ±1.69 | 58.38 cd ±2.36 | 59.19 bc ±1.95 | 59.5 cd ±2.64 | 47.35 bc ±1.56 | 47.60 cd ±2.12 | |
SWE | 0.3% | 18.83 de ±1.60 | 20.83 cd ±1.62 | 60.55 c ±2.67 | 62.25 bc ±3.10 | 55.48 cd ±2.33 | 56.88 de ±2.07 | 44.38 cd ±1.86 | 45.50 de ±1.66 |
0.4% | 24.54 b ±1.17 | 25.29 b ±1.10 | 53.63 d ±1.99 | 55.35 de ±1.93 | 60.73 b ±2.59 | 63.61 b ±1.46 | 48.59 b ±2.07 | 50.88 b ±1.17 | |
FA | 0.1% | 18.77 de ±1.36 | 20.43 cd ±1.80 | 63.75 bc ±1.91 | 61.51 c ±2.19 | 55.68 cd ±2.10 | 58.03 de ±2.50 | 44.55 cd ±1.68 | 46.43 de ±2.00 |
0.2% | 22.13 bc ±1.95 | 23.70 b ±1.25 | 54.18 d ±2.87 | 56.23 de ±1.57 | 59.70 b ±2.65 | 63.00 bc ±1.37 | 47.76 b ±2.12 | 50.40 bc ±1.10 | |
Combination | 1 | 24.53 b ±1.15 | 25.33 b ±0.96 | 53.41 d ±2.14 | 53.45 e ±2.05 | 62.42 b ±1.64 | 64.00 b ±1.51 | 49.94 b ±1.31 | 51.20 b ±1.21 |
2 | 27.96 a ±2.55 | 30.1 a ±2.42 | 49.07 e ±2.36 | 49.22 f ±3.14 | 66.67 a ±1.85 | 67.97 a ±2.60 | 53.34 a ±1.48 | 54.37 a ±2.08 | |
LSD0.05 | 2.81 | 2.66 | 3.73 | 4.02 | 3.64 | 3.71 | 2.92 | 2.96 |
Treatments | Fruit Weight (g) | Fruit Size (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Firmness (kg/cm2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 175.33 e ±5.03 | 179.33 f ±5.03 | 192.00 e ±2.00 | 193.00 f ±4.58 | 44.67 e ±1.56 | 48.70 c ±1.37 | 44.53 f ±3.41 | 46.43 d ±1.10 | 1.32 e ±0.07 | 1.44 c ±0.04 |
MLE | 4% | 178.33 e ±3.51 | 184.33 ef ±3.05 | 193.33 e ±3.05 | 198.33 ef ±2.89 | 49.60 d ±2.35 | 51.23 c ±1.21 | 49.1 de ±1.68 | 48.07 d ±1.98 | 1.34 de ±0.07 | 1.45 c ±0.07 |
6% | 190.00 d ±5.00 | 197.00 d ±3.00 | 205.00 d ±5.00 | 211.00 d ±2.64 | 53.53 c ±1.70 | 57.20 b ±1.2 | 52.30 b ±1.70 | 54.30 b ±2.00 | 1.55 bc ±0.03 | 1.59 b ±0.05 | |
SWE | 0.3% | 182.33 e ±2.52 | 186.00 e ±3.60 | 196.67 e ±3.05 | 199.00 e ±2.64 | 47.93 de ±2.40 | 50.33 c ±1.90 | 46.11 ef ±1.65 | 51.70 bc ±1.54 | 1.45 cd ±0.08 | 1.48 c ±0.06 |
0.4% | 200.00 c ±5.00 | 204.00 c ±3.60 | 214.33 c ±4.04 | 217.33 c ±4.04 | 59.20 b ±0.87 | 58.53 b ±1.02 | 51.16 bc ±1.18 | 54.13 b ±2.50 | 1.55 bc ±0.03 | 1.61 b ±0.03 | |
FA | 0.1% | 178.00 e ±2.00 | 183.00 ef ±3.60 | 194.33 e ±2.31 | 197.00 ef ±3.00 | 48.53 d ±1.78 | 50.87 c ±1.42 | 47.36 de ±1.07 | 49.07 cd ±2.11 | 1.42 de ±0.07 | 1.46 c ±0.10 |
0.2% | 195.00 cd ±5.00 | 201.33 cd ±4.16 | 208.67 cd ±6.03 | 216.00 cd ±3.60 | 54.80 c ±1.78 | 59.17 b ±1.64 | 52.43 b ±2.26 | 54.10 b ±1.57 | 1.57 b ±0.06 | 1.59 b ±0.02 | |
Combination | 1 | 210.33 b ±2.52 | 212.67 b ±2.52 | 222.67 b ±2.52 | 227.00 b ±2.64 | 59.37 b ±1.62 | 59.55 b ±1.17 | 56.73 a ±1.05 | 58.07 a ±1.70 | 1.58 b ±0.04 | 1.64 b ±0.03 |
2 | 217.67 a ±2.52 | 220.33 a ±2.52 | 231.00 a ±3.60 | 233.67 a ±1.53 | 62.93 a ±2.06 | 63.17 a ±2.81 | 58.21 a ±1.93 | 60.67 a ±2.66 | 1.70 a ±0.06 | 1.76 a ±0.03 | |
LSD0.05 | 6.85 | 5.63 | 5.83 | 5.28 | 3.29 | 2.86 | 2.69 | 3.24 | 0.10 | 0.10 |
Treatments | TSS (%) | Acidity (%) | TSS-Acid (Ratio) | Anthocyanin Content (mg/100 g) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 10.00 e ±0.53 | 10.47 d ±0.30 | 0.84 a ±0.04 | 0.83 a ±0.03 | 11.88 e ±1.00 | 12.68 d ±0.71 | 0.81 f ±0.04 | 0.85 f ±0.05 |
MLE | 4% | 11.10 cde ±0.65 | 10.73 cd ±0.25 | 0.76 b ±0.03 | 0.75 b ±0.02 | 14.65 d ±1.53 | 14.31 cd ±0.14 | 0.84 ef ±0.01 | 0.89 ef ±0.03 |
6% | 11.97 bc ±0.40 | 11.90 bc ±0.79 | 0.67 cd ±0.02 | 0.67 c ±0.02 | 17.80 c ±1.12 | 17.81 b ±1.81 | 0.97 bc ±0.01 | 0.99 bc ±0.03 | |
SWE | 0.3% | 10.77 de ±0.15 | 11.00 cd ±0.40 | 0.70 c ±0.04 | 0.72 b ±0.02 | 15.34 d ±0.89 | 15.28 c ±0.51 | 0.93 cd ±0.02 | 0.97 cd ±0.01 |
0.4% | 12.33 b ±1.10 | 12.33 b ±0.35 | 0.66 cd ±0.01 | 0.66 c ±0.01 | 18.62 bc ±2.08 | 18.78 b ±0.54 | 0.99 b ±0.05 | 1.04 b ±0.03 | |
FA | 0.1% | 10.73 de ±0.42 | 10.90 cd ±0.85 | 0.76 b ±0.04 | 0.72 b ±0.03 | 14.14 d ±0.85 | 15.25 c ±1.66 | 0.87 de ±0.02 | 0.92 de ±0.02 |
0.2% | 11.80 bcd ±1.01 | 12.16 b ±0.68 | 0.67 cd ±0.03 | 0.67 c ±0.01 | 17.59 c ±0.83 | 18.16 b ±1.23 | 0.95 bc ±0.02 | 1.03 b ±0.03 | |
Combination | 1 | 12.87 b ±0.85 | 12.60 b ±0.36 | 0.64 d ±0.01 | 0.64 c ±0.01 | 20.03 ab ±1.78 | 19.69 b ±0.56 | 1.00 b ±0.04 | 1.05 b ±0.04 |
2 | 14.00 a ±0.6 | 14.23 a ±1.20 | 0.63 d ±0.01 | 0.63 c ±0.02 | 22.10 a ±0.63 | 22.70 a ±1.52 | 1.08 a ±0.02 | 1.12 a ±0.03 | |
LSD0.05 | 1.06 | 1.11 | 0.05 | 0.04 | 2.11 | 1.94 | 0.05 | 0.06 |
Treatments | Total Sugars (%) | Reducing Sugars (%) | Non-Reducing Sugars (%) | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 7.38 g ±0.10 | 7.93 ±0.30 | 4.57 g ±0.08 | 5.11 h ±0.11 | 2.81 bc ±0.03 | 2.82 b ±0.42 |
MLE | 4% | 7.85 f ±0.08 | 8.08 e ±0.12 | 5.26 f ±0.06 | 5.39 g ±0.05 | 2.59 cd ±0.06 | 2.70 b ±0.12 |
6% | 8.59 e ±0.21 | 8.66 d ±0.26 | 5.60 e ±0.03 | 5.79 e ±0.14 | 2.99 b ±0.19 | 2.87 b ±0.15 | |
SWE | 0.3% | 8.07 f ±0.19 | 8.22 e ±0.17 | 5.54 e ±0.06 | 5.68 ef ±0.06 | 2.54 cd ±0.16 | 2.54 b ±0.11 |
0.4% | 9.96 c ±0.20 | 10.19 bc ±0.06 | 6.27 c ±0.02 | 6.34 c ±0.01 | 3.70 a ±0.18 | 3.84 a ±0.07 | |
FA | 0.1% | 7.90 f ±0.02 | 8.02 e ±0.08 | 5.42 ef ±0.03 | 5.50 fg ±0.07 | 2.48 d ±0.02 | 2.52 b ±0.05 |
0.2% | 9.67 d ±0.08 | 9.94 c ±0.06 | 5.87 d ±0.26 | 6.01 d ±0.18 | 3.80 a ±0.18 | 3.93 a ±0.21 | |
Combination | 1 | 10.23 b ±0.23 | 10.37 b ±0.04 | 6.54 b ±0.2 | 6.66 b ±0.21 | 3.69 a ±0.21 | 3.71 a ±0.18 |
2 | 10.61 a ±0.26 | 10.67 a ±0.19 | 6.79 a ±0.03 | 6.90 a ±0.02 | 3.82 a ±0.23 | 3.77 a ±0.17 | |
LSD0.05 | 0.26 | 0.29 | 0.20 | 0.20 | 0.27 | 0.34 |
Treatments | N (%) | P (%) | K (%) | Ca (%) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 2.02 d ±0.01 | 2.04 d ±0.04 | 0.34 d ±0.02 | 0.36 d ±0.02 | 2.05 d ±0.01 | 2.04 f ±0.02 | 1.38 d ±0.02 | 1.40 d ±0.03 |
MLE | 4% | 2.02 d ±0.02 | 2.07 d ±0.04 | 0.36 cd ±0.01 | 0.39 cd ±0.01 | 2.10 cd ±0.03 | 2.06 ef ±0.02 | 1.39 d ±0.03 | 1.43 cd ±0.03 |
6% | 2.08 b ±0.01 | 2.15 bc ±0.04 | 0.40 bc ±0.01 | 0.42 bc ±0.02 | 2.16 b ±0.01 | 2.17 d ±0.03 | 1.44 c ±0.01 | 1.48 bc ±0.02 | |
SWE | 0.3% | 2.03 cd ±0.03 | 2.08 cd ±0.03 | 0.37 cd ±0.03 | 0.38 cd ±0.01 | 2.10 c ±0.03 | 2.10 e ±0.03 | 1.42 cd ±0.04 | 1.48 bc ±0.04 |
0.4% | 2.07 bc ±0.02 | 2.14 bc ±0.04 | 0.40 b ±0.02 | 0.44 b ±0.01 | 2.16 b ±0.03 | 2.25 bc ±0.02 | 1.50 b ±0.02 | 1.51 b ±0.03 | |
FA | 0.1% | 2.04 bcd ±0.04 | 2.09 bcd ±0.01 | 0.35 d ±0.01 | 0.39 cd ±0.02 | 2.10 c ±0.02 | 2.09 ef ±0.03 | 1.40 d ±0.01 | 1.43 cd ±0.01 |
0.2% | 2.07 bc ±0.01 | 2.14 bc ±0.04 | 0.41 b ±0.02 | 0.43 b ±0.02 | 2.18 b ±0.02 | 2.20 cd ±0.04 | 1.45 c ±0.01 | 1.48 bc ±0.03 | |
Combination | 1 | 2.09 b ±0.03 | 2.15 b ±0.01 | 0.41 b ±0.01 | 0.45 b ±0.01 | 2.18 b ±0.02 | 2.29 b ±0.04 | 1.51 b ±0.02 | 1.51 b ±0.01 |
2 | 2.15 a ±0.03 | 2.21 a ±0.02 | 0.45 a ±0.02 | 0.49 a ±0.03 | 2.26 a ±0.03 | 2.38 a ±0.04 | 1.55 a ±0.01 | 1.57 a ±0.03 | |
LSD0.05 | 0.04 | 0.06 | 0.03 | 0.03 | 0.04 | 0.05 | 0.04 | 0.05 |
Treatments | Fe (mg L−1) | Zn (mg L−1) | Mn (mg L−1) | B (mg L−1) | |||||
---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 124.00 e ±3.60 | 129.00 d ±3.60 | 29.67 f ±1.53 | 30.33 f ±2.52 | 40.33 f 2.52 | 40.33 e ±1.53 | 72.67 d ±2.52 | 75.33 e ±2.08 |
MLE | 4% | 127.00 de ±1.73 | 132.33 cd ±2.52 | 33.00 ef ±1.00 | 36.33 e ±1.53 | 43.33 ef ±1.53 | 44.33 de ±2.08 | 76.00 cd 3.00 | 76.67 e ±1.53 |
6% | 132.67 bc ±2.52 | 137.67 b ±2.52 | 38.00 cd ±2.00 | 40.67 cd ±115 | 50.67 bc ±2.08 | 51.33 bc ±1.53 | 78.67 c ±4.04 | 80.67 d ±3.05 | |
SWE | 0.3% | 130.67 bcd ±2.30 | 136.00 bc ±1.00 | 35.00 de ±3.00 | 39.67 d ±2.51 | 47.33 cd ±2.52 | 49.00 bc ±2.65 | 77.00 cd ±3.00 | 77.67 de ±2.00 |
0.4% | 133.67 b ±3.51 | 138.33 b ±1.53 | 41.67 b ±1.53 | 43.00 bc ±2.00 | 52.33 b ±2.52 | 52.67 b ±2.52 | 88.00 b ±2.00 | 86.33 c ±1.53 | |
FA | 0.1% | 128.33 cde ±1.53 | 135.33 bc ±2.52 | 31.67 ef ±1.53 | 34.00 e ±1.00 | 46.00 de ±1.00 | 48.00 cd ±2.00 | 74.67 cd ±1.53 | 76.00 e ±1.00 |
0.2% | 133.33 bc ±3.05 | 138.33 b ±1.53 | 39.00 bc ±2.00 | 43.67 bc ±1.53 | 53.00 b ±2.00 | 52.00 bc ±2.64 | 85.00 b ±2.00 | 86.00 c ±2.00 | |
Combination | 1 | 135.00 b ±2.64 | 139.67 b ±2.52 | 41.67 b ±1.53 | 44.00 b ±1.00 | 52.33 b ±2.08 | 52.67 b ±3.05 | 88.00 b ±3.60 | 90.33 b ±3.51 |
2 | 140.00 a ±2.00 | 145.00 a ±2.00 | 45.67 a ±2.08 | 48.00 a ±2.00 | 57.00 a ±1.00 | 58.00 a ±2.00 | 93.33 a ±2.89 | 94.67 a ±2.51 | |
LSD0.05 | 4.65 | 4.10 | 3.28 | 3.05 | 3.44 | 4.02 | 4.78 | 3.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosa, W.F.A.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple. Horticulturae 2023, 9, 32. https://doi.org/10.3390/horticulturae9010032
Mosa WFA, Sas-Paszt L, Głuszek S, Górnik K, Anjum MA, Saleh AA, Abada HS, Awad RM. Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple. Horticulturae. 2023; 9(1):32. https://doi.org/10.3390/horticulturae9010032
Chicago/Turabian StyleMosa, Walid F. A., Lidia Sas-Paszt, Sławomir Głuszek, Krzysztof Górnik, Muhammad Akbar Anjum, Abaidalah A. Saleh, Hesham S. Abada, and Rehab M. Awad. 2023. "Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple" Horticulturae 9, no. 1: 32. https://doi.org/10.3390/horticulturae9010032
APA StyleMosa, W. F. A., Sas-Paszt, L., Głuszek, S., Górnik, K., Anjum, M. A., Saleh, A. A., Abada, H. S., & Awad, R. M. (2023). Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple. Horticulturae, 9(1), 32. https://doi.org/10.3390/horticulturae9010032