The Effect of Different Doses of 1-Methylcyclopropene on Postharvest Physiology and Predicting Ethylene Production through Multivariate Adaptive Regression Splines in Cocktail Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weight Loss
2.2. Soluble Solids Content (SSC), Fruit Juice pH, Titratable Acidity (TA)
2.3. Color
2.4. Total Phenolic Content (TPC) and Antioxidant Capacity (AC)
2.5. Antioxidative Enzyme Analyses
2.6. Respiration Rate and Ethylene Production
2.7. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. Soluble Solids Content (SSC), Fruit Juice pH, Titratable Acidity (TA)
3.3. Color (L, a, and ΔE)
3.4. Antioxidative Enzymes (APX, CAT, and SOD) and Lipid Peroxidation (MDA)
3.5. Total Phenolic Content and Antioxidant Capacity
3.6. Ethylene Production, Respiration Rate, and Ethylene Production Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Statistics Database. Food and Agriculture Organization of the United Nations. Rome. 2019. Available online: http://www.fao.org/faostat/en/#home (accessed on 27 January 2022).
- Choi, S.H.; Lee, S.H.; Kim, H.J.; Lee, I.S.; Kozukue, N.; Levin, C.E.; Friedman, M. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J. Agric. Food Chem. 2010, 58, 7547–7556. [Google Scholar] [CrossRef]
- Ucan, U.; Ugur, A. Acceleration of growth in tomato seedlings grown with growth retardant. Turk. J. Agric. For. 2021, 45, 669–679. [Google Scholar] [CrossRef]
- Secgin, Z.; Kavas, M.; Yildirim, K. Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/Cas9 genome editing of commercial tomato cultivars. Turk. J. Agric. For. 2021, 45, 704–716. [Google Scholar] [CrossRef]
- Kozukue, N.; Friedman, M. Tomatine, chlorophyll, beta-carotene and lycopene content in tomatoes during growth and maturation. J. Sci. Food Agric. 2003, 83, 195–200. [Google Scholar] [CrossRef]
- Park, M.H.; Sangwanangkul, P.; Baek, D.R. Changes in carotenoid and chlorophyll content of black tomatoes (Lycopersicon esculentum L.) during storage at various temperatures. Saudi J. Biol. Sci. 2016, 25, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Hatami, M.; Kalantari, S.; Delshad, M. Responses of different maturity stages of tomato fruit to different storage conditions. Acta Hortic. 2013, 101, 857–864. [Google Scholar] [CrossRef]
- Wang, K.; Li, H.; Ecker, J. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Martínez, J.; Aguirre-Joya, J.A.; Rojas, R.; Vicente, A.; Aguilar-González, M.A.; Rodríguez-Herrera, R.; Alvarez-Perez, O.B.; Torres-León, C.; Aguilar, C.N. Candelilla wax edible coating with Flourensia cernua Bioactives to prolong the quality of tomato fruits. Foods 2020, 9, 1303. [Google Scholar] [CrossRef]
- Hassan, J.; Rajib, M.M.R.; Sarker, U.; Akter, M.; Khan, M.N.E.A.; Khandaker, S.; Khalid, F.; Rahman, G.K.M.M.; Ercisli, S.; Muresan, C.C.; et al. Optimizing textile dyeing wastewater for tomato irrigation through physiochemical, plant nutrient uses and pollution load index of irrigated soil. Sci. Rep. 2022, 12, 10088. [Google Scholar] [CrossRef]
- Giovannoni, J.J. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 2007, 10, 283–289. [Google Scholar] [CrossRef]
- Saltveit, M.E. Fruit ripening and fruit quality. In Tomatoes; Heuvelink, E., Ed.; CABI Publishing: Wallingford, UK, 2005; pp. 145–159. [Google Scholar]
- Toor, R.K.; Savage, G.P.; Lister, C.E. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal. 2006, 19, 1–10. [Google Scholar] [CrossRef]
- Góraj-Koniarska, J.; Saniewski, M.; Kosson, R.; Wiczkowski, W.; Horbowicz, M. Effect of fluridone on some physiological and qualitative features of ripening tomato fruit. Acta Biol. Crac. Ser. Bot. 2017, 59, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Deltsidis, A.I.; Sims, C.A.; Brecht, J.K. Ripening recovery and sensory quality of pink tomatoes stored in controlled atmosphere at chilling or nonchilling temperatures to extend shelf life. HortScience 2018, 53, 1186–1190. [Google Scholar] [CrossRef] [Green Version]
- Mata, C.I.; Magpantay, J.; Hertog, M.L.; Van de Poel, B.; Nicolaï, B.M. Expression and protein levels of ethylene receptors, CTRs and EIN2 during tomato fruit ripening as affected by 1-MCP. Postharvest Biol. Technol. 2021, 179, 111573. [Google Scholar] [CrossRef]
- Maul, F.; Sargent, S.A.; Sims, C.A.; Baldwin, E.A.; Balaban, M.O.; Huber, D.J. Tomato flavor and aroma quality as affected by storage temperature. J. Food Sci. 2000, 65, 1228–1237. [Google Scholar] [CrossRef]
- Recasens, I.; Benavides, A.; Puy, J.; Casero, T. Pre-harvest calcium treatments in relation to the respiration rate and ethylene production of ‘Golden Smoothee’ apples. J. Sci. Food Agric. 2004, 84, 765–771. [Google Scholar] [CrossRef]
- Jung, J.; Deng, Z.; Zhao, Y. Mechanisms and performance of cellulose nanocrystals Pickering emulsion chitosan coatings for reducing ethylene production and physiological disorders in postharvest ‘Bartlett’ pears (Pyrus communis L.) during cold storage. Food Chem. 2020, 309, 125693. [Google Scholar] [CrossRef]
- Cavusoglu, S.; Uzun, Y.; Yilmaz, N.; Ercisli, S.; Eren, E.; Ekiert, H.; Szopa, A. Maintaining the quality and storage life of button mushrooms (Agaricus bisporus) with gum, agar, sodium alginate, egg white protein, and lecithin coating. J. Fungi 2021, 7, 614. [Google Scholar] [CrossRef]
- Akin, M.; Eyduran, S.P.; Eyduran, E.; Reed, B.M. Analysis of macro nutrient related growth responses using multivariate adaptive regression splines. Plant Cell Tissue Organ Cult. 2020, 140, 661–670. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ş.; İşlek, F.; Yılmaz, N.; Tekin, O. Kayısıda (Prunus armeniaca L.) metil jasmonate, sitokinin ve lavanta yağı uygulamalarının hasat sonrası fizyolojisi üzerine etkileri. Yüzüncü Yıl Üniv. Tarım Bilim. Derg. 2020, 30, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Cavusoglu, S.; Yilmaz, N.; Islek, F.; Tekin, O.; Sagbas, H.I.; Ercisli, S.; Nečas, T. Effect of methyl jasmonate, cytokinin, and lavender oil on antioxidant enzyme system of apricot fruit (Prunus armeniaca L.). Sustainability 2021, 13, 8565. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ş.; Yılmaz, N.; İşlek, F. Effect of methyl jasmonate treatments on fruit quality and antioxidant enzyme activities of sour cherry (Prunus cerasus L.) during cold storage. J. Agric. Sci. 2021, 27, 460–468. [Google Scholar]
- Eyduran, E.; Akkus, O.; Kara, M.K.; Tirink, C.; Tariq, M.M. Use of multivariate adaptive regression splines (MARS) in predicting body weight from body measurements in Mengali Rams. In Proceedings of the International Conference on Agriculture, Forest, Food, Sciences and Technologies (ICAFOF), Nevsehir, Turkey, 15–17 May 2017; Volume 11, p. 17. [Google Scholar]
- Dhall, R.K.; Singh, P. Effect of ethephon and ethylene gas on ripening and quality of tomato (Solanum lycopersicum L.) during cold storage. J. Nutr. Food Sci. 2013, 3, 1–7. [Google Scholar]
- Kaynaş, A.A.; Sakaldaş, M.; Kuzucu, F.C. Hasat sonrası 1-MCP uygulamalarının Çanakkale yöresinde yetiştirilen domateslerde depolama süresi ve meyve kalitesi üzerine olan etkileri. In Proceedings of the VI. Sebze Tarımı Sempozyumu, KSÜ Ziraat Fakültesi Bahçe Bitkileri Bölümü, Kahramanmaras, Turkey, 19–22 September 2006; pp. 70–75. [Google Scholar]
- Suntae, C.; Rona, B. Extending the postharvest quality of tomato fruit by 1-methylcyclopropene application. Korean J. Hortic. Sci. Technol. 2007, 25, 6–11. [Google Scholar]
- Cho, M.; Hong, Y.; Choi, S.Y.; Huber, D.J. Effect of 1-methylcyclopropene on the quality of cherry tomato with different ripening stage. Korean J. Hortic. Sci. Technol. 2007, 25, 347–354. [Google Scholar]
- Poyesh, D.S.; Terada, N.; Sanada, A.; Gemma, H.; Koshio, K. Effect of 1-MCP on ethylene regulation and quality of tomato cv. Red Ore. Int. Food Res. J. 2018, 25, 1001–1006. [Google Scholar]
- Kamol, S.I.; Howlader, J.; Dhar, G.C.; Aklimuzzaman, M. Effect of different stages of maturity and postharvest treatments on quality and storability of tomato. J. Bangladesh Agric. Univ. 2014, 12, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Trandafir, I.; Ionica, M.E. Evolution of antioxidant activity and bioactive compounds in tomato (Lycopersicon esculentum Mill.) fruits during growth and ripening. J. Appl. Bot. Food Qual. 2014, 87, 97–103. [Google Scholar]
- Baldwin, E.; Plotto, A.; Narciso, J.; Bai, J. Effect of 1-methylcyclopropene on tomato flavour components, shelf life and decay as influenced by harvest maturity and storage temperature. J. Sci. Food Agric. 2011, 91, 969–980. [Google Scholar] [CrossRef]
- Fei, X.; Lulu, Y.; Feng, Z.; Zhongquan, C.; Huayan, Z.; Xinxin, G.; Haiyan, M.; Lintao, L. Possible mechanism of the detached unripe green tomato fruit turning red. J. Plant Growth Regul. 2018, 37, 35–45. [Google Scholar] [CrossRef]
- Tolasa, M.; Gedamu, F.; Woldetsadik, K. Impacts of harvesting stages and pre-storage treatments on shelf life and quality of tomato (Solanum lycopersicum L.). Cogent Food Agric. 2021, 7, 1863620. [Google Scholar] [CrossRef]
- Jin, P.; Zhu, H.; Wang, J.; Chen, J.; Wang, X.; Zheng, Y. Effect of methyl jasmonate on energy metabolism in peach Fruit during chilling stress. J. Sci. Food Agric. 2013, 93, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Opiyo, A.M.; Ying, T.J. The effects of 1-methylcyclopropene treatment on the shelf life and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruit. Int. J. Food Sci. Technol. 2005, 40, 665–673. [Google Scholar] [CrossRef]
- Sangwanangkul, P.; Bae, Y.S.; Lee, J.S.; Choi, H.J.; Choi, J.W.; Park, M.H. Short-term Pretreatment with High CO2 Alters Organic Acids and Improves Cherry Tomato Quality during Storage. Hortic. Environ. Biotechnol. 2017, 58, 127–135. [Google Scholar] [CrossRef]
- Su, L.; Diretto, G.; Purgatto, E.; Danoun, S.; Zouine, M.; Li, Z.; Roustan, J.P.; Bouzayen, M.; Giuliano, G.; Chervin, C. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol. 2015, 15, 114. [Google Scholar] [CrossRef] [PubMed]
- Konagaya, K.; Al Riza, D.F.; Nie, S.; Yoneda, M.; Hirata, T.; Takahashi, N.; Kuramoto, M.; Ogawa, Y.; Suzuki, T.; Kondo, N. Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image. Postharvest Biol. Technol. 2020, 160, 111031. [Google Scholar] [CrossRef]
- Ngcobo, B.L.; Bertling, I.; Clulow, A.D. Post-harvest alterations in quality and health-related parameters of cherry tomatoes at different maturity stages following irradiation with red and blue LED lights. J. Hortic. Sci. Biotechnol. 2021, 96, 383–391. [Google Scholar] [CrossRef]
- Sun, J.; You, X.; Li, L.; Peng, H.; Su, W.; Li, C.; He, Q.; Liao, F. Effects of a phospholipase D inhibitor on postharvest enzymatic browning and oxidative stress of litchi fruit. Postharvest Biol. Technol. 2011, 62, 288–294. [Google Scholar] [CrossRef]
- Steelheart, C.; Alegre, M.L.; Bahima, J.V.; Senn, M.E.; Simontacchi, M.; Bartoli, C.G.; Grozeff, G.E.G. Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum L.) fruit postharvest life. Sci. Hortic. 2019, 255, 193–201. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Sun, J.; Sheng, J.; Zhou, Z.; Xin, M.; Yi, P.; He, X.; Zheng, F.; Tang, Y.; et al. The effects of 1-methylcyclopropene in the regulation of antioxidative system and softening of mango fruit during storage. J. Food Qual. 2020, 2020, 6090354. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, K.; Liu, S. Evaluation of 1-methylcyclopropene (1-MCP) and low temperature conditioning (LTC) to control brown of Huangguan pears. Sci. Hortic. 2020, 259, 108738. [Google Scholar] [CrossRef]
- Ilıc, Z.; Aharon, Z.; Perzelan, Y.; Alkalai-Tuvia, S.; Fallik, E. Lipophilic and hydrophilic antioxidant activity of tomato fruit during postharvest storage on different temperatures. Acta Hortic. 2010, 830, 627–634. [Google Scholar]
- Giudice, R.D.; Raiola, A.; Tenore, G.C.; Frusciante, L.; Barone, A.; Monti, D.M.; Rigano, M.M. Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. J. Funct. Foods 2015, 18, 83–94. [Google Scholar] [CrossRef]
- Jesús Periago, M.; García-Alonso, J.; Jacob, K.; Belén Olivares, A.; José Bernal, M.; Dolores Iniesta, M.; Martínez, C.; Ros, G. Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int. J. Food Sci. Nutr. 2009, 60, 694–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cao, J.; Lin, L.; Sun, J.; Jiang, W. Effect of 1-methylcyclopropene on nutritional quality and antioxidant activity of tomato fruit (Solanum lycopersicon L.) during storage. J. Food Qual. 2010, 33, 150–164. [Google Scholar] [CrossRef]
- Carrillo-Lopez, A.; Yahia, E. HPLC–DAD–ESI–MS analysis of phenolic compounds during ripening in exocarp and mesocarp of tomato fruit. J. Food Sci. 2013, 78, 1839–1844. [Google Scholar] [CrossRef]
- Senay Ozgen, S.; Sekerci, S.; Korkut, R.; Karabiyik, T. The tomato debate: Postharvest-ripened or vine ripe has more antioxidant? Hortic. Environ. Biotechnol. 2016, 53, 271–276. [Google Scholar] [CrossRef]
- Taye, A.M.; Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effects of 1-MCP on quality and storability of cherry tomato (Solanum lycopersicum L.). Horticulturae 2019, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Mostofi, Y.; Toıvonen, P.M.A.; Lessani, H.; Babalar, M.; Lu, C. Effects of 1-methylcyclopropene on ripening of greenhouse tomatoes at three storage temperatures. Postharvest Biol. Technol. 2003, 27, 285–292. [Google Scholar] [CrossRef]
Storage Period (Day) | Treatments | ||||
---|---|---|---|---|---|
Control | 625 ppb | 1250 ppb | Average | ||
Weight Loss (%) | 0 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 |
7 | 1.176 ± 0.040 A | 0.943 ± 0.005 B | 0.949 ± 0.034 B | 1.023 ± 0.041 d | |
12 | 2.691 ± 0.536 A | 1.572 ± 0.157 AB | 1.343 ± 0.086 B | 1.869 ± 0.265 cd | |
17 | 4.511 ± 0.431 A | 1.965 ± 0.205 B | 1.532 ± 0.062 B | 2.669 ± 0.485 bc | |
28 | 6.171 ± 0.475 A | 2.516 ± 0.158 B | 2.078 ± 0.084 B | 3.589 ± 0.665 ab | |
39 | 7.830 ± 0.376 A | 3.271 ± 0.048 B | 2.739 ± 0.171 B | 4.613 ± 0.817 a | |
Average | 3.730 ± 0.675 A | 1.711 ± 0.260 B | 1.440 ± 0.211 B | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.001 |
Storage Period (Day) | Treatments | ||||
---|---|---|---|---|---|
Control | 625 ppb | 1250 ppb | Average | ||
SSC (%) | 0 | 6.000 ± 0.058 | 6.000 ± 0.058 | 6.000 ± 0.058 | 6.000 ± 0.029 d |
7 | 6.533 ± 0.033 A | 6.433 ± 0.033 A | 6.100 ± 0.058 B | 6.356 ± 0.069 c | |
12 | 6.463 ± 0.132 A | 6.363 ± 0.032 A | 6.133 ± 0.088 A | 6.320 ± 0.068 c | |
17 | 6.800 ± 0.058 A | 6.600 ± 0.058 AB | 6.333 ± 0.186 B | 6.578 ± 0.089 b | |
28 | 6.860 ± 0.032 A | 6.637 ± 0.027 B | 6.457 ± 0.030 C | 6.651 ± 0.060 ab | |
39 | 6.920 ± 0.012 A | 6.793 ± 0.007 B | 6.663 ± 0.041 C | 6.792 ± 0.039 a | |
Average | 6.596 ± 0.080 A | 6.471 ± 0.063 AB | 6.281 ± 0.064 B | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.118 | ||
pH | 0 | 4.200 ± 0.040 | 4.200 ± 0.040 | 4.200 ± 0.040 | 4.200 ± 0.020 c |
7 | 4.330 ± 0.042 A | 4.013 ± 0.327 A | 4.260 ± 0.023 A | 4.201 ± 0.107 c | |
12 | 4.347 ± 0.012 A | 4.317 ± 0.037 A | 4.300 ± 0.017 A | 4.321 ± 0.014 bc | |
17 | 4.493 ± 0.047 A | 4.413 ± 0.042 A | 4.400 ± 0.055 A | 4.436 ± 0.028 ab | |
28 | 4.457 ± 0.018 A | 4.403 ± 0.018 AB | 4.360 ± 0.025 B | 4.407 ± 0.017 ab | |
39 | 4.567 ± 0.066 A | 4.533 ± 0.009 A | 4.410 ± 0.044 B | 4.503 ± 0.033 a | |
Average | 4.399 ± 0.033 | 4.313 ± 0.062 | 4.322 ± 0.022 | ||
Pvalues = | Ptreatment = 0.173 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.688 | ||
TA (%) | 0 | 0.755 ± 0.010 | 0.755 ± 0.010 | 0.755 ± 0.010 | 0.755 ± 0.005 a |
7 | 0.640 ± 0.029 A | 0.661 ± 0.073 A | 0.702 ± 0.024 A | 0.668 ± 0.025 b | |
12 | 0.617 ± 0.087 A | 0.580 ± 0.059 A | 0.672 ± 0.152 A | 0.623 ± 0.055 bc | |
17 | 0.559 ± 0.002 B | 0.570 ± 0.004 B | 0.623 ± 0.006 A | 0.584 ± 0.010 cd | |
28 | 0.525 ± 0.004 C | 0.557 ± 0.004 B | 0.610 ± 0.006 A | 0.564 ± 0.013 cd | |
39 | 0.435 ± 0.004 C | 0.506 ± 0.004 B | 0.608 ± 0.004 A | 0.516 ± 0.025 d | |
Average | 0.588 ± 0.027 | 0.605 ± 0.024 | 0.662 ± 0.025 | ||
Pvalues = | Ptreatment = 0.030 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.927 |
Storage Period (Day) | Treatments | ||||
---|---|---|---|---|---|
Control | 625 ppb | 1250 ppb | Average | ||
L | 0 | 39.663 ± 0.350 | 39.663 ± 0.350 | 39.663 ± 0.350 | 39.663 ± 0.175 a |
7 | 39.117 ± 0.182 A | 39.227 ± 0.436 A | 39.383 ± 0.569 A | 39.242 ± 0.217 ab | |
12 | 38.223 ± 1.042 A | 39.030 ± 0.012 A | 39.290 ± 0.710 A | 38.848 ± 0.398 bc | |
17 | 37.987 ± 0.189 A | 38.195 ± 0.020 A | 38.800 ± 0.126 B | 38.327 ± 0.139 cd | |
28 | 37.700 ± 0.058 A | 38.067 ± 0.032 B | 38.377 ± 0.054 C | 38.048 ± 0.101 de | |
39 | 36.753 ± 0.119 A | 37.280 ± 0.113 A | 38.200 ± 0.335 B | 37.411 ± 0.237 e | |
Average | 38.241 ± 0.279 B | 38.577 ± 0.211 AB | 38.590 ± 0.195 A | ||
Pvalues = | Ptreatment = 0.012 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.859 | ||
a | 0 | 20.007 ± 0.621 | 20.007 ± 0.621 | 20.007 ± 0.621 | 20.007 ± 0.310 c |
7 | 23.567 ± 0.203 A | 21.233 ± 0.317 B | 20.470 ± 0.153 B | 21.757 ± 0.480 b | |
12 | 24.137 ± 0.105 A | 22.630 ± 0.168 B | 22.433 ± 0.251 B | 23.067 ± 0.284 a | |
17 | 24.180 ± 0.127 A | 22.877 ± 0.049 B | 22.363 ± 0.151 C | 23.140 ± 0.277 a | |
28 | 24.597 ± 0.097 A | 23.470 ± 0.221 B | 22.380 ± 0.170 C | 23.482 ± 0.331 a | |
39 | 25.343 ± 0.149 A | 23.727 ± 0.665 B | 22.790 ± 0.090 B | 23.953 ± 0.422 a | |
Average | 23.638 ± 0.426 A | 22.324 ± 0.347 B | 21.741 ± 0.281 B | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.011 | ||
ΔE | 0 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 |
7 | 3.813 ± 0.087 A | 2.720 ± 0.115 B | 2.456 ± 0.144 B | 2.997 ± 0.216 b | |
12 | 5.495 ± 0.231 A | 3.081 ± 0.006 B | 3.175 ± 0.012 B | 3.917 ± 0.400 ab | |
17 | 5.107 ± 0.561 A | 3.796 ± 0.654 AB | 2.934 ± 0.598 B | 3.946 ± 0.438 ab | |
28 | 6.021 ± 0.826 A | 4.243 ± 0.662 AB | 3.165 ± 0.610 B | 4.476 ± 0.546 a | |
39 | 6.267 ± 0.633 A | 4.614 ± 1.140 AB | 3.182 ± 0.666 B | 4.688 ± 0.614 a | |
Average | 4.450 ± 0.546 A | 3.076 ± 0.422 B | 2.485 ± 0.316 B | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.199 |
Storage Period (Day) | Treatments | ||||
---|---|---|---|---|---|
Control | 625 ppb | 1250 ppb | Average | ||
APX (mmol g−1) | 0 | 0.311 ± 0.006 | 0.311 ± 0.006 | 0.311 ± 0.006 | 0.311 ± 0.003 b |
7 | 0.234 ± 0.003 C | 0.319 ± 0.003 B | 0.355 ± 0.006 A | 0.303 ± 0.018 b | |
12 | 0.320 ± 0.001 C | 0.390 ± 0.006 B | 0.453 ± 0.003 A | 0.388 ± 0.019 a | |
17 | 0.258 ± 0.004 C | 0.339 ± 0.004 B | 0.370 ± 0.003 A | 0.322 ± 0.017 b | |
28 | 0.230 ± 0.002 C | 0.294 ± 0.003 B | 0.353 ± 0.004 A | 0.292 ± 0.018 b | |
39 | 0.208 ± 0.004 C | 0.291 ± 0.003 B | 0.327 ± 0.004 A | 0.275 ± 0.018 b | |
Average | 0.260 ± 0.010 C | 0.324 ± 0.008 B | 0.362 ± 0.011 A | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.001 | ||
CAT (mmol g−1) | 0 | 0.006 ± 0.000 | 0.006 ± 0.003 | 0.006 ± 0.003 | 0.006 ± 0.001 c |
7 | 0.018 ± 0.001 B | 0.025 ± 0.002 A | 0.027 ± 0.000 A | 0.023 ± 0.002 b | |
12 | 0.020 ± 0.000 C | 0.036 ± 0.001 B | 0.047 ± 0.002 A | 0.034 ± 0.004 a | |
17 | 0.013 ± 0.005 B | 0.022 ± 0.010 AB | 0.037 ± 0.001 A | 0.024 ± 0.005 ab | |
28 | 0.017 ± 0.000 C | 0.028 ± 0.001 B | 0.041 ± 0.001 A | 0.028 ± 0.004 ab | |
39 | 0.012 ± 0.001 C | 0.026 ± 0.001 B | 0.036 ± 0.001 A | 0.025 ± 0.003 ab | |
Average | 0.014 ± 0.001 C | 0.024 ± 0.003 B | 0.032 ± 0.003 A | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.002 | ||
SOD (unit g−1) | 0 | 11.199 ± 0.440 | 11.199 ± 0.440 | 11.199 ± 0.440 | 11.199 ± 0.220 c |
7 | 17.130 ± 0.115 C | 25.837 ± 0.566 B | 40.162 ± 1.155 A | 27.710 ± 3.378 a | |
12 | 14.665 ± 0.000 C | 20.338 ± 0.426 B | 25.350 ± 0.577 A | 20.118 ± 1.557 b | |
17 | 11.526 ± 5.030 B | 18.258 ± 0.500 AB | 23.180 ± 0.577 A | 17.655 ± 2.238 bc | |
28 | 10.679 ± 0.591 C | 16.097 ± 0.000 B | 21.451 ± 0.639 A | 16.076 ± 1.575 bc | |
39 | 8.141 ± 3.943 B | 15.329 ± 0.672 AB | 22.522 ± 0.587 A | 15.331 ± 2.381 bc | |
Average | 12.223 ± 1.14 C | 17.843 ± 1.144 B | 23.977 ± 2.082 A | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.001 | ||
MDA (mmol g−1) | 0 | 1.008 ± 0.053 | 1.008 ± 0.053 A | 1.008 ± 0.053 | 1.008 ± 0.026 d |
7 | 1.558 ± 0.022 A | 1.165 ± 0.006 B | 1.132 ± 0.034 B | 1.285 ± 0.069 cd | |
12 | 2.168 ± 0.102 A | 1.548 ± 0.050 B | 1.274 ± 0.010 C | 1.663 ± 0.136 bc | |
17 | 2.141 ± 0.069 A | 1.746 ± 0.007 B | 1.266 ± 0.020 C | 1.718 ± 0.128 bc | |
28 | 2.651 ± 0.055 A | 1.819 ± 0.063 B | 1.337 ± 0.027 C | 1.936 ± 0.194 ab | |
39 | 3.527 ± 0.224 A | 2.115 ± 0.050 B | 1.562 ± 0.028 C | 2.401 ± 0.300 a | |
Average | 2.176 ± 0.197 A | 1.567 ± 0.094 B | 1.263 ± 0.043 B | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.001 |
Storage Period (Day) | Treatments | ||||
---|---|---|---|---|---|
Control | 625 ppb | 1250 ppb | Average | ||
Total Phenolic (mg100 g−1) | 0 | 31.730 ± 2.118 | 31.730 ± 2.118 | 31.730 ± 2.118 | 31.730 ± 1.062 bc |
7 | 27.776 ± 0.314 C | 36.164 ± 0.313 B | 41.830 ± 0.590 A | 35.256 ± 2.052 a | |
12 | 31.984 ± 0.462 C | 34.672 ± 0.178 B | 36.619 ± 0.274 A | 34.425 ± 0.691 a | |
17 | 24.622 ± 2.359 B | 32.137 ± 0.533 A | 34.393 ± 0.307 A | 30.384 ± 1.636 ab | |
28 | 23.935 ± 0.077 C | 30.061 ± 0.095 B | 32.684 ± 0.446 A | 28.893 ± 1.303 bc | |
39 | 20.905 ± 0.232 C | 25.212 ± 0.128 B | 29.337 ± 0.522 A | 25.151 ± 1.229 c | |
Average | 26.825 ± 1.088 B | 30.968 ± 1.188 A | 33.738 ± 1.365 A | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.011 | ||
Antioxidant Capacity (μmol TE g−1) | 0 | 7.316 ± 0.125 | 7.316 ± 0.125 | 7.316 ± 0.125 | 7.316 ± 0.063 b |
7 | 7.987 ± 0.022 C | 10.220 ± 0.092 B | 13.049 ± 0.082 A | 10.419 ± 0.733 a | |
12 | 7.248 ± 0.087 C | 8.041 ± 0.083 B | 10.015 ± 0.178 A | 8.435 ± 0.416 b | |
17 | 5.449 ± 0.061 B | 7.219 ± 0.780 A | 8.690 ± 0.182 A | 7.119 ± 0.523 b | |
28 | 5.182 ± 0.081 C | 8.303 ± 0.169 B | 9.032 ± 0.088 A | 7.506 ± 0.593 b | |
39 | 4.870 ± 0.083 C | 7.973 ± 0.042 B | 8.803 ± 0.090 A | 7.215 ± 0.600 b | |
Average | 6.342 ± 0.295 C | 8.179 ± 0.267 B | 9.484 ± 0.434 A | ||
Pvalues = | Ptreatment = 0.001 | Pstorage = 0.001 | Ptreatment × Pstorage = 0.001 |
Terms | Coefficients | Basic Functions |
---|---|---|
Ethylene Production | ||
1 | 1.71 | Intercept |
2 | 1.96 | Control group |
3 | 3.79 | max (0, 1.57-Weight loss) |
4 | −0.303 | max (0, Weight loss-1.57) |
5 | −4.89 | max (0, 4.35-pH) |
6 | 1.89 | max (0, pH-4.35) |
7 | −0.0962 | max (0, 21.3-Respiration rate) |
8 | 0.23 | max (0, Respiration rate-21.3) |
9 | 0.578 | max (0, 7.97-Antioxidant capacity) |
10 | −0.223 | max (0, Antioxidant capacity-7.97) |
11 | −0.57 | max (0, 22.6-a) |
Weight Loss | Respiration Rate | Antioxidant Capacity | pH | a |
---|---|---|---|---|
100 | 43.9 | 35.4 | 19.4 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahar, A.; Cavusoglu, S.; Yilmaz, N.; Tekin, O.; Ercisli, S. The Effect of Different Doses of 1-Methylcyclopropene on Postharvest Physiology and Predicting Ethylene Production through Multivariate Adaptive Regression Splines in Cocktail Tomato. Horticulturae 2022, 8, 567. https://doi.org/10.3390/horticulturae8070567
Bahar A, Cavusoglu S, Yilmaz N, Tekin O, Ercisli S. The Effect of Different Doses of 1-Methylcyclopropene on Postharvest Physiology and Predicting Ethylene Production through Multivariate Adaptive Regression Splines in Cocktail Tomato. Horticulturae. 2022; 8(7):567. https://doi.org/10.3390/horticulturae8070567
Chicago/Turabian StyleBahar, Askin, Seyda Cavusoglu, Nurettin Yilmaz, Onur Tekin, and Sezai Ercisli. 2022. "The Effect of Different Doses of 1-Methylcyclopropene on Postharvest Physiology and Predicting Ethylene Production through Multivariate Adaptive Regression Splines in Cocktail Tomato" Horticulturae 8, no. 7: 567. https://doi.org/10.3390/horticulturae8070567
APA StyleBahar, A., Cavusoglu, S., Yilmaz, N., Tekin, O., & Ercisli, S. (2022). The Effect of Different Doses of 1-Methylcyclopropene on Postharvest Physiology and Predicting Ethylene Production through Multivariate Adaptive Regression Splines in Cocktail Tomato. Horticulturae, 8(7), 567. https://doi.org/10.3390/horticulturae8070567