Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing and Sample Preparation
2.2. Sample Pretreatment
2.3. GC-MS/MS Analysis
2.4. Qualitative and Quantitative Analysis
2.5. Odor Activity Value Analysis
2.6. Sensory Evaluation
2.7. Statistical Analyses
3. Results and Discussion
3.1. Analysis of Volatile Compounds
3.2. Principal Component Analysis
3.3. Multiple Experiment Viewer
3.4. Partial Least Squares Discriminant Analysis
3.5. Validation of Differential Compounds between SW and WS Processes
3.6. Analysis of Main Volatile Compounds
3.7. Sensory Characteristics of Black Tea Following SW and WS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, P.M. Tea: A new perspective on health benefits. Food Res. Int. 2013, 53, 558–567. [Google Scholar] [CrossRef]
- Liu, Z.B.; Bruins, M.E.; Ni, L.; Vincken, J. Green and Black Tea Phenolics, Bioavailability; Transformation by Colonic Microbiota; and Modulation of Colonic Microbiota. J. Agric. Food Chem. 2018, 66, 8469–8477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and Biological Activities of Processed Camellia sinensis Teas, A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T. Manufacture of Tea, 3rd ed.; Agricultural Press of China: Beijing, China, 2014; p. 88. [Google Scholar]
- Tomlins, K.I.; Mashingaidze, A. Influence of withering; including leaf handling; on the manufacturing and quality of black teas—A review. Food Chem. 1997, 60, 573–580. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, P.-C.; Liu, P.-P.; Song, X.-W.; Guo, F.; Li, Y.-Y.; Ni, D.-J.; Jiang, C.-J. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chem. 2019, 272, 313–322. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hirata, S.; Yang, Z.; Baldermann, S.; Kitayama, E.; Matsumoto, S.; Suzuki, M.; Fleischmann, P.; Winterhalter, P.; Watanabe, N. Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 2010, 123, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Saijō, R.; Kuwabara, Y. Volatile Flavor of Black Tea, Part I. Formation of Volatile Components during Black Tea Manufacture. Agric. Biol. Chem. 1967, 31, 389–396. [Google Scholar] [CrossRef]
- Wang, D.M.; Yoshimura, T.; Kubota, K.; Kobayashi, A. Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 1. Qualitative and Quantitative Analyses of Glycosides with Aglycons as Aroma Compounds. J. Agric. Food Chem. 2000, 48, 5411–5418. [Google Scholar] [CrossRef]
- Luo, L.F.; Liang, G.Z.; Yang, J.Y.; Feng, H.Y.; Mo, X.Y.; Liu, H.Y.; Li, Z.P. Study on 4 oolong tea varieties suitable for making floral-flavored black tea in southwest Guangxi. Chin. Hortic. Abstr. 2017, 33, 18–19. (In Chinese) [Google Scholar]
- Mei, S.; Chen, W.; Ma, C.Y.; Chen, D.; Qiao, X.Y. Comparative analysis of volatiles of flowery black teas and Dancong teas from Guangdong province. Mod. Food Sci. Technol. 2020, 36, 242–252. (In Chinese) [Google Scholar] [CrossRef]
- Pan, Y.B. Study on the Aroma Characteristic and the Key Technology of Congou Black Tea with Flowery-Fruity Flavor. Master’s Thesis, Fujian Agriculture and Forestry University, Fujian, China, 2014. (In Chinese). [Google Scholar]
- Hou, Z.-W.; Wang, Y.-J.; Xu, S.-S.; Wei, Y.-M.; Bao, G.-H.; Dai, Q.-Y.; Deng, W.-W.; Ning, J.-M. Effects of dynamic and static withering technology on volatile and nonvolatile components of Keemun black tea using GC-MS and HPLC combined with chemometrics. LWT 2020, 130, 109547. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, Y.; Fu, X.; Mei, X.; Cheng, S.; Gui, J.; Dong, F.; Tang, J.; Ma, S.; Yang, Z. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chem. 2017, 237, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhou, Y.; Fu, X.; Mei, X.; Cheng, S.; Gui, J.; Dong, F.; Tang, J.; Ma, S.; Yang, Z. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem. 2018, 269, 202–211. [Google Scholar]
- Ma, C.Y.; Li, J.X.; Chen, W.; Wang, W.W.; Qi, D.D.; Pang, S.; Mao, A.Q. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography–mass spectrometry combined with chemometrics. Food Res. Int. 2018, 108, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent Advances in Volatiles of Teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Wang, C.; Li, C.-W.; Liu, S.-H.; Zhang, C.-X.; Li, L.-W.; Jiang, D.-H. Characterization of Aroma-Active Compounds of Pu-erh Tea by Headspace Solid-Phase Microextraction (HS-SPME) and Simultaneous Distillation-Extraction (SDE) Coupled with GC-Olfactometry and GC-MS. Food Anal. Method 2016, 9, 1188–1198. [Google Scholar] [CrossRef]
- Zhang, M.M.; Jiang, Y.W.; Hua, J.J.; Wang, J.; Yuan, H.B.; Yang, Y.Q. Effect of drying methods on chestnut-like aroma of green tea. Food Sci. 2020, 41, 115–123. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, W.; Lao, F.; Bi, S.; Pan, X.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chem. 2021, 336, 127721. [Google Scholar]
- Zhu, Y.; Lv, H.-P.; Shao, C.-Y.; Kang, S.; Zhang, Y.; Guo, L.; Dai, W.; Tan, J.-F.; Peng, Q.-H.; Lin, Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef]
- Deb, S.; Jolvis Pou, K.R. A Review of Withering in the Processing of Black Tea. J. Biosyst. Eng. 2016, 41, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, M.; Nakanishi, H.; Ema, J.-I.; Ma, S.-J.; Noguchi, E.; Inohara-Ochiai, M.; Fukuchi-Mizutani, M.; Nakao, M.; Sakata, K. Cloning of β-Primeverosidase from Tea Leaves; a Key Enzyme in Tea Aroma Formation. Plant Physiol. 2002, 130, 2164–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.J.; Wang, F.M.; Liu, G.F.; He, Z.R.; Yang, H.; Wei, C.L.; Wang, X.C.; Wei, S. Correlation between spatiotemporal profiles of volatile terpenoids and relevant terpenoid synthase gene expression in Camellia sinensis. Acta Hortic. Sin. 2014, 41, 2094–2106. (In Chinese) [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.; Liu, X.; Gui, J.; Mei, X.; Fu, X.; Dong, F.; Tang, J.; Zhang, L.; Yang, Z. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Genis, D.O.; Sezer, B.; Durna, S.; Boyaci, I.H. Determination of milk fat authenticity in ultra-filtered white cheese by using Raman spectroscopy with multivariate data analysis. Food Chem. 2021, 336, 127699. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yangming, H.; Górska-Horczyczak, E.; Wierzbicka, A.; Jeleń, H.H. Rapid analysis of Baijiu volatile compounds fingerprint for their aroma and regional origin authenticity assessment. Food Chem. 2021, 337, 128002. [Google Scholar] [CrossRef]
- Jia, W.; Shi, Q.Y.; Zhang, R.; Shi, L.; Chu, X.G. Unraveling proteome changes of irradiated goat meat and its relationship to off-flavor analyzed by high-throughput proteomics analysis. Food Chem. 2021, 337, 127806. [Google Scholar] [CrossRef]
- Qian, X.; Lan, Y.; Han, S.; Liang, N.; Zhu, B.; Shi, Y.; Duan, C. Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Res. Int. 2020, 137, 109650. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC × GC-TOFMS; organoleptic impact evaluation; and multivariate data analysis. Food Res. Int. 2020, 131, 109043. [Google Scholar] [CrossRef]
- Yang, Y.; Hua, J.; Deng, Y.; Jiang, Y.; Qian, M.C.; Wang, J.; Li, J.; Zhang, M.; Dong, C.; Yuan, H. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Res. Int. 2020, 137, 109656. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, X.L.; Song, X.B.; Zheng, F.; Li, H.; Chen, F.; Zhang, Y.; Zhang, F. Evolution of the key odorants and aroma profiles in traditional Laowuzeng baijiu during its one-year ageing. Food Chem. 2020, 310, 125898. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Q.; Ma, W.J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS); gas chromatography-olfactometry (GC-O); odor activity value (OAV); and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yan, J.; Wang, B.; Meng, Q.; Zhang, L.; Tong, H. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’. Food Res. Int. 2020, 136, 109355. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.W.; Yao, Z.M.; Xiao, Z.B.; Wu, M.L. The study on characteristic aroma compounds in two lavender essential oils by AEDA and OAVs. Food Ind. 2016, 37, 264–268. (In Chinese) [Google Scholar]
- Flaig, M.; Qi, S.; Wei, G.D.; Yang, X.G.; Schieberle, P. Characterization of the Key Odorants in a High-Grade Chinese Green Tea Beverage (Camellia sinensis; Jingshan cha) by Means of the Sensomics Approach and Elucidation of Odorant Changes in Tea Leaves Caused by the Tea Manufacturing Process. J. Agric. Food Chem. 2020, 68, 5168–5179. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.-T.; Wan, X.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef]
- Wang, H.; Hua, J.; Jiang, Y.; Yang, Y.; Wang, J.; Yuan, H. Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances. Food Res. Int. 2020, 136, 109479. [Google Scholar] [CrossRef]
- Zhu, J.C.; Niu, Y.W.; Xiao, Z.B. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV); gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef]
- Shu, C.; She, Y.B.; Xiao, Z.B.; Xu, L.; Niu, Y.W.; Zhu, J.C. Investigations on the aroma active compounds in fresh and aged Longjing tea by SPME/GC-MS/GC-O/OAV. Food Ind. 2016, 37, 279–285. (In Chinese) [Google Scholar]
- Zhang, Q.; Li, Q.Y.; Huang, M.Q.; Wu, J.H.; Li, H.H.; Sun, J.Y.; Sun, X.T.; Zhen, F.P.; Sun, B.G. Analysis of odor-active compounds in 2 sesame-flavor Chinese Baijius. Food Sci. 2019, 40, 214–222. (In Chinese) [Google Scholar] [CrossRef]
- Shu, Q.L.; Zhao, H.T.; Wang, Y.D. Study on the aroma components of Qimen black tea during the initial processing. J. Anhui Agric. Sci. 1989, 4, 91–94. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Chen, Q.B.; Zhang, Y.G.; Song, Z.S.; Wang, L.L.; You, Z.M. Effects of green-making technique on aroma pattern of Oolong tea. J. Tea Sci. 2014, 34, 387–395. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Y.F.; Di, T.M.; Yang, S.L.; Wu, L.Y.; Chen, Y.Q.; Xia, T.; Zhang, X. Changes in aroma components in the processing of flowery black tea. Food Sci. 2018, 39, 167–175. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.M.; Zhang, N.; Zhao, M.Y.; Jing, T.; Jin, J.; Wu, B.; Wan, X.; Schwab, W.; Song, C. Carotenoid Cleavage Dioxygenase 4 Catalyzes the Formation of Carotenoid-Derived Volatile β-Ionone during Tea (Camellia sinensis) Withering. J. Agric. Food Chem. 2020, 68, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.C. Tea Biochemistry, 3rd ed.; Agricultural Press of China: Beijing, China, 2003. [Google Scholar]
- Zhu, H.K.; He, H.F.; Ye, Y.; Dong, C.W.; Gui, A.H.; Gao, M.Z.; Chen, L. Influence of rolling temperature on physicochemical quality of Congou black tea. Mod. Food Sci. Technol. 2017, 33, 168–175. (In Chinese) [Google Scholar] [CrossRef]
NO. | Name | Odor Characteristics A | OTs (μg/L) B | OAVs | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WSR1F0 | WSR1F1 | WSR1F2 | WSR1F3 | WSR1F4 | WSR1F5 | WSR2F0 | WSR2F1 | WSR2F2 | WSR2F3 | WSR2F4 | WSR3F0 | WSR3F1 | WSR3F2 | WSR3F3 | WSR4F0 | WSR4F1 | WSR4F2 | ||||
2 | Hexanal | Fresh, green, fruity | 4.5 | 1.066 | 1.371 | 1.465 | 1.595 | 1.845 | 1.822 | 0.818 | 1.085 | 1.474 | 1.850 | 2.037 | 1.115 | 1.244 | 1.176 | 2.108 | 2.817 | 2.091 | 1.335 |
9 | β-Myrcene | Sweet, citrus | 13.5 | 1.582 | 1.597 | 1.478 | 1.490 | 0.980 | 0.997 | 1.190 | 1.477 | 1.179 | 1.165 | 1.374 | 0.628 | 0.996 | 1.622 | 0.924 | 1.400 | 0.883 | 1.279 |
12 | 3-Carene | Lemon, resin | 0.4 | 16.954 | 18.910 | 16.853 | 15.248 | 11.936 | 12.574 | 13.142 | 13.539 | 14.215 | 16.190 | 16.833 | 8.380 | 13.781 | 16.658 | 10.567 | 14.364 | 10.946 | 15.024 |
25 | Geraniol | Mild, sweet rose fragrance | 40 | 6.568 | 6.012 | 6.478 | 5.180 | 5.707 | 5.784 | 5.387 | 5.121 | 6.657 | 6.171 | 6.357 | 6.542 | 6.283 | 4.216 | 5.401 | 6.985 | 3.416 | 3.251 |
28 | τ-Cadinol | Tar, camphor and greasy | 0.44 | 10.677 | 9.021 | 10.616 | 9.455 | 11.282 | 10.840 | 11.294 | 10.373 | 12.341 | 12.067 | 10.459 | 0.179 | 0.293 | 0.180 | 0.349 | 0.315 | 0.232 | 0.232 |
44 | β-Ionone | Woody and fruity | 0.007 | 1074.313 | 1453.406 | 1645.816 | 1307.892 | 2022.196 | 1743.251 | 1381.336 | 1446.323 | 1572.640 | 2112.980 | 684.361 | 31.739 | 108.926 | 94.072 | 90.944 | 72.800 | 76.150 | 77.878 |
NO. | Name | Odor Characteristics A | OTs (μg/L) B | OAVs | |||||||||||||||||
SWR1F0 | SWR1F1 | SWR1F2 | SWR1F3 | SWR1F4 | SWR1F5 | SWR2F0 | SWR2F1 | SWR2F2 | SWR2F3 | SWR2F4 | SWR3F0 | SWR3F1 | SWR3F2 | SWR3F3 | SWR4F0 | SWR4F1 | SWR4F2 | ||||
2 | Hexanal | Fresh, green, fruity | 4.5 | 0.199 | 0.416 | 0.461 | 0.719 | 0.403 | 0.439 | 0.643 | 0.207 | 0.631 | 0.654 | 0.933 | 0.428 | 0.687 | 0.528 | 1.264 | 0.911 | 0.456 | 1.416 |
9 | β-Myrcene | Sweet, citrus | 13.5 | 1.591 | 1.486 | 1.539 | 1.431 | 1.198 | 1.775 | 1.478 | 1.451 | 1.601 | 1.608 | 1.825 | 1.409 | 1.822 | 1.909 | 2.316 | 1.820 | 1.688 | 1.921 |
12 | 3-Carene | Lemon, resin | 0.4 | 19.004 | 17.995 | 17.348 | 18.418 | 18.231 | 18.856 | 17.862 | 17.487 | 22.132 | 20.875 | 24.349 | 22.676 | 26.002 | 28.023 | 32.444 | 23.104 | 20.421 | 18.372 |
25 | Geraniol | Mild, sweet rose fragrance | 40 | 6.948 | 8.199 | 6.571 | 7.540 | 7.293 | 7.524 | 6.994 | 7.176 | 9.087 | 7.576 | 8.890 | 8.956 | 9.309 | 7.610 | 8.968 | 8.419 | 7.147 | 10.470 |
28 | τ-Cadinol | Tar, camphor and greasy | 0.44 | 0.219 | 0.245 | 0.194 | 0.298 | 0.257 | 0.272 | 0.295 | 0.252 | 0.270 | 0.272 | 0.333 | 0.248 | 0.317 | 0.282 | 0.138 | 0.284 | 0.742 | 0.293 |
44 | β-Ionone | Woody and fruity | 0.007 | 205.981 | 114.297 | 109.283 | 123.315 | 158.397 | 136.819 | 123.968 | 157.210 | 231.167 | 177.036 | 226.629 | 201.362 | 160.768 | 120.050 | 107.086 | 166.519 | 193.382 | 87.750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Tu, Z.; Zhu, H.; Chen, L.; Wang, Y.; Yang, Y.; Lv, H.; Zhu, Y.; Yu, L.; Ye, Y. Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea. Horticulturae 2022, 8, 549. https://doi.org/10.3390/horticulturae8060549
Lin J, Tu Z, Zhu H, Chen L, Wang Y, Yang Y, Lv H, Zhu Y, Yu L, Ye Y. Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea. Horticulturae. 2022; 8(6):549. https://doi.org/10.3390/horticulturae8060549
Chicago/Turabian StyleLin, Jiazheng, Zheng Tu, Hongkai Zhu, Lin Chen, Yuwan Wang, Yunfei Yang, Haowei Lv, Yan Zhu, Liaoyuan Yu, and Yang Ye. 2022. "Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea" Horticulturae 8, no. 6: 549. https://doi.org/10.3390/horticulturae8060549
APA StyleLin, J., Tu, Z., Zhu, H., Chen, L., Wang, Y., Yang, Y., Lv, H., Zhu, Y., Yu, L., & Ye, Y. (2022). Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea. Horticulturae, 8(6), 549. https://doi.org/10.3390/horticulturae8060549