Effects of Rhizobacteria Application on Leaf and Fruit Nutrient Content of Different Apple Scion–Rootstock Combinations
Abstract
:1. Introduction
2. Material and Methods
2.1. General Conditions of Place, Climate, and Year of Investigations
2.2. Planting Material
2.3. Soil Analysis
2.4. Preparation of Bacteria Solutions
2.5. Treatment
2.6. Leaf and Fruit Mineral Analysis
2.7. Data Analysis
3. Results
3.1. Leaf Nutrient Contents
3.2. Fruit Nutrient Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karaman, M.R. Sustainable soil fertility. Agric. Units Mag. 2006, 2, 36–43. [Google Scholar]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The use of vermicompost in organic farming: Overview, effects on soil and economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef]
- Arikan, S.; Ipek, M.; Pirlak, L. Effect of some plant growth promoting rhizobacteria (PGPR) on growth, leaf water content and membrane permeability of two citrus rootstock under salt stress condition. In Proceedings of the VII International Scientific Agriculture Symposium, Jahorina, Bosnia and Herzegovina, 6–9 October 2016; pp. 845–850. [Google Scholar]
- Koskey, G.; Mburu, S.W.; Njeru, E.M.; Kimiti, J.M.; Ombori, O.; Maingi, J.M. Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Front. Plant Sci. 2017, 8, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemi, N.O.; Atayese, M.O.; Olubode, A.A.; Akan, M.E. Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. J. Plant Nutr. 2020, 43, 487–499. [Google Scholar] [CrossRef]
- Ercisli, S.; Esitken, A.; Cangi, R.; Sahin, F. Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regul. 2003, 41, 133–137. [Google Scholar] [CrossRef]
- Berkapur, B.T.; İpek, M.; Arıkan, Ş.; Eşitken, A.; Pırlak, L.; Dönmez, M.F.; Turan, M. Influence of bacterial inoculation on growth and plant nutrition of peach grafted in different rootstocks in calcareous soil. Sains Malays. 2021, 50, 2615–2624. [Google Scholar]
- Soumare, A.; Boubekri, K.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: Status and needs. Front. Bioeng. Biotechnol. 2020, 7, 425. [Google Scholar] [CrossRef] [Green Version]
- Babalola, O.O.; Sanni, A.I.; Odhiambo, G.D.; Torto, B. Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J. Microbiol. Biotechnol. 2007, 23, 747–752. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Munir, A.; Asghar, H.N.; Shaharoona, B.; Arshad, M. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J. Microbiol. Biotechnol. 2008, 18, 958–963. [Google Scholar]
- Kumar, K.V.; Srivastava, S.; Singh, N.; Behl, H.M. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J. Hazard. Mater. 2009, 170, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D. Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk. J. Biol. 2008, 32, 9–15. [Google Scholar]
- Kaymak, H.C.; Guvenc, I.; Yarali, F.; Donmez, M.F. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk. J. Agric. For. 2009, 33, 173–179. [Google Scholar]
- Almaghrabi, O.A.; Abdelmoneim, T.S.; Albishri, H.M.; Moussa, T.A.A. Enhancement of maize growth using some plant growth promoting rhizobacteria (pgpr) under laboratory conditions. Life Sci. J. 2014, 11, 764–772. [Google Scholar]
- Walker, V.; Couillerot, O.; Von Felten, A.; Bellvert, F.; Jansa, J.; Maurhofer, M. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 2012, 356, 151–163. [Google Scholar] [CrossRef]
- Lucy, M.; Reed, E.; Glick, B.R. Application of Free-Living Plant Growth Promoting Rhizobacteria. Antonie Van Leeuwenhoek 2004, 86, 1–25. [Google Scholar] [CrossRef]
- Selvaraj, T.; Rajeshkumar, S.; Nisha, M.C.; Wondimu, L.; Tesso, M. Effect of Glomus mosseae and plant growth promoting rhizo microorganisms (PGPR’s) on growth, nutrients, and content of secondary metabolites in Begonia malabarica Lam. Maejo Int. J. Sci. Technol. 2008, 2, 516–525. [Google Scholar]
- Kucukyumuk, Z.; Erdal, I. Rootstock and cultivar effect on mineral nutrition, seasonal nutrient variation and correlations among leaf, flower and fruit nutrient concentrations in apple trees. Bulg. J. Agric. Sci. 2011, 17, 633–641. [Google Scholar]
- Kaymak, S. Effects of some commercial products on root and crown rot caused by Phytophthora cactorum in apple cultivation. Turk. J. Agric. For. 2022, 46, 19–27. [Google Scholar]
- Burak, M.; Buyukyilmaz, M.; Oz, F. Granny Smith elma çeşidinin farklı anaçlar üzerindeki verim ve kalite özelliklerinin belirlenmesi. In Proceedings of the National Pome Fruit Symposium, Yalova, Turkey, 2–5 September 1997; pp. 61–69. [Google Scholar]
- Pamir, M.; Oz, M.H. Bazı elma anaç-çeşit kombinasyonlarının Erzincan şartlarına adaptasyonu üzerine araştırmalar. In Proceedings of the National Pome Fruit Symposium, Yalova, Turkey, 2–5 September 1997; pp. 69–71. [Google Scholar]
- Güneş, A.; Tarhan, L.; Özdemir, B.S.; Turan, M.; Şahin, F. Effects of Bacterial Inoculated Tuff Material on Yield and Physiological Parameters of Grape (Vitis vinifera) Plant. Erwerbs-Obstbau 2021, 63, 43–51. [Google Scholar] [CrossRef]
- Fazio, G.; Chang, L.; Grusak, M.A.; Robinson, T.L. Apple Rootstocks Influence Mineral Nutrient Concentration of Leaves and Fruit. NY Fruit Q. 2015, 23, 11–15. [Google Scholar]
- Kviklys, D.; Lanauskas, J.; Uselis, N.; Viškelis, J.; Viškelienė, A.; Buskienė, L.; Staugaitis, G.; Mažeika, R.; Samuolienė, G. Rootstock genotype, vigour and leaf colour affects apple tree nutrition. Zemdirb.—Agric. 2017, 104, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Coskun, S.; Askin, M.A. Determination of pomological and biochemical characteristics of some local apple varieties. SDU J. Nat. Appl. Sci. 2016, 11, 120–131. [Google Scholar]
- Szalay, L.; Ordidge, M.; Ficzek, G.; Hadley, P.; Tóth, M.; Battey, N.H. Grouping of 24 apple cultivars on the basis of starch degradation rate and their fruit pattern. Hort. Sci. 2013, 40, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, W. Effects of nitrogenous fertilization. In Nutritional Disorders of Plants: Development, Visual and Analytical Diagnosis; Gustav Fischer: Frankfurt, Germany, 1992. [Google Scholar]
- Less, R. Laboratory Handbook of Methods of Food Analiysis; Leonard Hill Books: London, UK, 1971. [Google Scholar]
- Kacar, B.; Inal, A. Bitki Analizleri; Nobel Yayın No: 1241; Nobel Yayın Dağıtım: Ankara, Turkey, 2008; p. 63. [Google Scholar]
- Toplu, C.; Uygur, V.; Kaplankiran, M.; Demirkeser, T.H.; Yildiz, E. Leaf mineral composition of ‘Nova’, ‘Robinson’ and ‘Fremont’ mandarin cultivars on different rootstocks. J. Plant Nutr. 2010, 33, 602–612. [Google Scholar] [CrossRef]
- Sundara, B.; Natarajam, V.; Hari, K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 2002, 77, 43–49. [Google Scholar] [CrossRef]
- Gunes, A.; Alpaslan, M.; Inal, A. Bitki Besleme ve Gübreleme; Ankara Üniversitesi Ziraat Fakültesi Yayınları: Ankara, Turkey, 2004. [Google Scholar]
- Kucukyumuk, Z.; Erdal, I. Anaç ve çeşidin elmanın mineral beslenmesine etkisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Derg. 2009, 4, 8–16. [Google Scholar]
- Treder, W.; Klamkowski, K.; Wójcik, K.; Tryngiel-Gać, A.; Sas-Paszt, L.; Mika, A.; Kowalczyk, W. Apple leaf macro- and micronutrient content as affected by soil treatments with fertilizers and microorganisms. Sci. Hortic. 2022, 297, 110975. [Google Scholar] [CrossRef]
- Treder, W. The influence of fertigation with nitrogen and multicompound fertilizers on soil mineral content, growth and fruiting of apple trees. Zesz. Nauk. ISK Monogr. Rozpr. 2003, 97, 77. (In Polish) [Google Scholar]
- Fallahi, E.; Chun, I.J.; Neilsen, G.H.; Michael, W.C. Effects of three rootstocks on photosynthesis, leaf mineral nutrition, and vegetative growth of “Bc-2 Fuji” apple trees. J. Plant Nutr. 2001, 24, 827–834. [Google Scholar] [CrossRef]
- Webster, A.D. Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Hortic. 2004, 658, 29–41. [Google Scholar] [CrossRef]
- Amiri, M.E.; Fallahi, E.; Golchin, A. Influence of foliar and ground fertilization on yield, fruit quality, and soil, leaf, and fruit mineral nutrients in apple. J. Plant Nutr. 2008, 31, 365–370. [Google Scholar] [CrossRef]
- Ferree, D.C.; Hirst, P.M.; Schmid, J.C.; Dotson, P.E. Performance of three apple cultivars with 22 dwarfing rootstocks during 8 seasons in Ohio. Fruit Var. J. 1995, 49, 171–178. [Google Scholar]
- Amiri, M.E.; Fallahi, E.; Songhorabad, M.S. Influence of rootstock on mineral uptake and scion growth of ‘Golden Delicious’ and ‘Royal Gala’ apples. J. Plant Nutr. 2014, 37, 16–29. [Google Scholar] [CrossRef]
- Aguirre, P.B.; Al-Hinai, Y.K.; Roper, T.R.; Krueger, A.R. Apple tree rootstock and fertilizer application timing affect nitrogen uptake. HortScience 2001, 36, 1202–1205. [Google Scholar] [CrossRef] [Green Version]
- Fallahi, E.; Colt, W.M.; Fallahi, B.; Chun, I.J. The Importance of Apple Rootstocks on Tree Growth, Yield, Fruit Quality, Leaf Nutrition, and Photosynthesis with an Emphasis on ‘Fuji’. HortTechnology 2002, 12, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, S.; Almehdi, A.; DeJong, T.M. Phenotyping vigour control capacity of new peach rootstocks by xylem vessel analysis. Sci. Hortic. 2011, 127, 353–357. [Google Scholar] [CrossRef]
- Pirlak, L.; Turan, M.; Sahin, F.; Esitken, A. Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth and nutrient element contents of leaves. J. Sustain. Agric. 2007, 30, 145–155. [Google Scholar] [CrossRef]
- Karlidag, H.; Esitken, A.; Turan, M.; Sahin, F. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 2007, 114, 16–20. [Google Scholar] [CrossRef]
- Arikan, S. The Effects of Beneficial Rhizobacteria Treatments on Apple and Sweet Cherry in Salinity Soil Conditions. Ph.D. Thesis, Selcuk University, Konya, Turkey, 2017. [Google Scholar]
- Karakurt, H. Determination of Effects of Some Bacteria Strains on Fruit Setting, Fruit Properties and Plant Growth on Apple. Master’s Thesis, Ataturk University, Erzurum, Turkey, 2006. [Google Scholar]
- Esitken, A.; Karlidag, H.; Ercisli, S.; Turan, M.; Sahin, F. The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust. J. Agric. Res. 2003, 54, 377–380. [Google Scholar] [CrossRef]
- Esitken, A.; Pirlak, L.; Turan, M.; Sahin, F. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic. 2006, 110, 324–327. [Google Scholar] [CrossRef]
- Esitken, A.; Yildiz, H.E.; Ercisli, S.; Donmez, M.F.; Turan, M.; Gunes, A. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci. Hortic. 2010, 124, 62–66. [Google Scholar] [CrossRef]
- Arikan., S. Effects of Plant Growth Promoting Rhizobacteria (pgpr) on Growth, Yield and Fruit Quality of Sour Cherry. Master’s Thesis, Selcuk University, Konya, Turkey, 2012. [Google Scholar]
- Tuzlaci, H.İ. The Using Facilities of Application of Plant Growth Promoting Rhizobacteria in Strawberry Culture on Greenhouse and Field Conditions. Master’s Thesis, Ataturk University, Erzurum, Turkey, 2014. [Google Scholar]
- Erturk, A.S. Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Fruit and Plant Characteristics Of Quince (Cv. Esme). Master’s Thesis, Gaziosmanpasa University, Tokat, Turkey, 2015. [Google Scholar]
- Erdogan, U. Determination of the Effects of Nitrogen-Fixing and Phosphate-Solubilizing Bacterial Combinations which Promotes Plant Growth in the Vegetative Development Characteristics of Pear Shoots. Master’s Thesis, Bozok University, Yozgat, Turkey, 2017. [Google Scholar]
- Unsal, N. Effects of Growing Media and Use of Beneficial Bacteria on Yield and Fruit Quality of Soilless Grown Strawberries. Master’s Thesis, Ege University, İzmir, Turkey, 2019. [Google Scholar]
- Kurek, E.; Ozimek, E.; Sobiczewski, P.; Słomka, A.; Jaroszuk-Ściseł, J. Effect of Pseudomonas luteola on mobilization of phosphorus and growth of young apple trees (Ligol)-pot experiment. Sci. Hortic. 2013, 164, 270–276. [Google Scholar] [CrossRef]
Soil Depth | P | K | Ca | Mg | Mn | Zn | Fe | Cu |
---|---|---|---|---|---|---|---|---|
mg/kg | ||||||||
0–30 cm | 11.5–15.1 | 151.3–241.5 | 1479.3–1750.0 | 228.1–258.9 | 18.2–29.7 | 2.66–3.58 | 1.10–1.53 | 1.38–2.12 |
30–60 cm | 11.5–13.2 | 132.8–194.2 | 1512.0–1815.9 | 211.0–231.8 | 17.5–22.2 | 2.52–3.15 | 0.97–1.50 | 1.31–1.98 |
Texture class | EC (dS/m) | pH | Lime (%) | Organic matter (%) | Bacteria density (cfu/mL) | |||
0–30 cm | Loamy | 0.39–0.43 | 8.2–8.3 | 6.88–7.13 | 2.15–2.38 | 0.309 × 106–0.330 × 106 | ||
30–60 cm | 0.29–0.31 | 8.1–8.2 | 7.09–7.27 | 2.11–2.15 | - |
N | P | K | Mg | Ca | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|
% (dw) | mg/kg (dw) | |||||||||
Rootstock | ||||||||||
M.9 | 2.11 | 0.14 | 1.60b | 0.29 | 1.34 | 94.03 | 62.97 | 46.17a | 8.79a | 37.05b |
MM.106 | 2.09 | 0.13 | 1.69a | 0.32 | 1.38 | 89.47 | 60.40 | 39.27b | 7.02b | 47.16a |
Cultivar | ||||||||||
Scarlet Spur | 2.03bc | 0.14bc | 1.65 | 0.36a | 1.28 | 84.94c | 77.91b | 50.05b | 7.03c | 52.19a |
Fuji | 2.21ab | 0.13bc | 1.71 | 0.27b | 1.44 | 90.50bc | 49.95de | 28.18e | 6.33c | 40.43c |
Granny Smith | 2.03bc | 0.14bc | 1.58 | 0.27b | 1.30 | 96.77b | 51.03de | 33.37de | 6.49c | 34.76d |
Galaxy Gala | 2.12abc | 0.12cd | 1.63 | 0.32ab | 1.42 | 82.63c | 47.55e | 47.86bc | 9.29ab | 33.91d |
Golden Reinders | 2.04bc | 0.11d | 1.75 | 0.31ab | 1.40 | 85.24c | 60.11c | 44.14c | 7.05c | 37.89cd |
Red Chief | 1.97c | 0.17a | 1.56 | 0.29b | 1.41 | 95.32b | 54.60cd | 34.13d | 10.17a | 46.54b |
Jeromine | 2.29a | 0.16ab | 1.65 | 0.31ab | 1.27 | 106.85a | 90.63a | 61.30a | 9.00b | 49.02ab |
Scion–rootstock combination | ||||||||||
Scarlet S./M.9 | 2.08 | 0.16ab | 1.55bcd | 0.37a | 1.46abc | 82.65defg | 87.52a | 52.88abc | 7.21ef | 48.28bc |
Fuji/M.9 | 2.27 | 0.15abc | 1.77ab | 0.29ab | 1.42abcd | 80.40efg | 44.13ef | 31.45fgh | 6.73efg | 34.82ef |
G.Smith/M.9 | 1.93 | 0.13bcde | 1.59bcd | 0.29ab | 1.35bcde | 88.88cdef | 56.18cd | 34.03fgh | 6.49efg | 29.42g |
G.Gala/M.9 | 2.24 | 0.11cde | 1.50d | 0.28ab | 1.36abcde | 87.92cdef | 38.93f | 50.52bc | 13.20a | 29.59fg |
Golden R./M.9 | 1.99 | 0.10e | 1.65abcd | 0.28ab | 1.27def | 101.66bc | 71.37b | 51.86bc | 7.91de | 31.81fg |
Red Chief/M.9 | 1.98 | 0.18a | 1.53cd | 0.26b | 1.32cde | 94.31bcde | 58.07bc | 39.61def | 10.88b | 42.57cd |
Jeromine/M.9 | 2.27 | 0.15abc | 1.64abcd | 0.29ab | 1.20ef | 122.42a | 84.57a | 62.83a | 9.15cd | 42.86cd |
Scarlet/MM.106 | 1.98 | 0.13bcde | 1.74abc | 0.35ab | 1.11f | 87.22cdef | 68.30b | 47.22cd | 6.86efg | 56.10a |
Fuji/MM.106 | 2.15 | 0.12bcde | 1.64abcd | 0.26b | 1.47abc | 100.61bc | 55.78cde | 24.92h | 5.94fg | 46.04c |
G.Smith/MM.106 | 2.13 | 0.14abcd | 1.57bcd | 0.25b | 1.26def | 104.66b | 45.89def | 32.70fgh | 6.48efg | 40.10de |
G.Gala/MM.106 | 2.01 | 0.13bcde | 1.75abc | 0.36a | 1.47abc | 77.34fg | 56.16cd | 45.21cde | 5.38g | 38.23e |
Golden/MM.106 | 2.09 | 0.11cde | 1.85a | 0.33ab | 1.53a | 68.81g | 48.86cdef | 36.42efg | 6.19fg | 43.97cd |
R.Chief/MM.106 | 1.96 | 0.16ab | 1.60bcd | 0.32ab | 1.50ab | 96.34bcd | 51.13cde | 28.65gh | 9.46bc | 50.51b |
Jeromine/MM.106 | 2.32 | 0.16ab | 1.67abcd | 0.34ab | 1.33cde | 91.29bcdef | 96.69a | 59.78ab | 8.85cd | 55.19a |
N | P | K | Mg | Ca | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|
Rootstock | ||||||||||
M.9 | 1.3a | 4.2b | 1.4b | 0.9 | 1.3 | 2.7b | 3.8 | 3.8 | 1.8b | 1.3a |
MM.106 | 0.7b | 6.6a | 3.8a | 1.0 | 1.4 | 5.1a | 3.8 | 2.9 | 3.4a | 0.3b |
Cultivar | ||||||||||
Scarlet Spur | 0.4abc | 7.4ab | 4.5a | −1.7de | 0.4b | 5.8ab | 1.1c | 4.5ab | 2.4bc | 1.8 |
Fuji | −0.3bc | 10.7a | 4.2a | −5.2e | 2.2a | 1.8cd | 2.6bc | 1.0c | 1.0cd | −0.7 |
Granny Smith | 2.9a | 4.2bc | 1.5ab | 8.6a | 0.4b | −2.0d | 2.2bc | 1.3c | 4.0b | −0.5 |
Galaxy Gala | 1.3abc | 5.6abc | 2.1a | −2.8de | 0.6b | 6.3a | 7.8a | 2.4bc | 8.6a | 0.6 |
Golden Reinders | 2.2ab | 7.4ab | −1.8b | 0.4cd | 1.6a | 2.4bc | 3.0bc | 6.8a | 0.4cd | 2.0 |
Red Chief | 1.6abc | 0.8c | 4.2a | 2.4bc | 1.9a | 5.2abc | 4.4bc | 5.3ab | −0.7d | 2.1 |
Jeromine | −0.8c | 1.9c | 3.2a | 5.2ab | 2.3a | 7.8a | 5.3ab | 2.4bc | 2.6bc | 0.4 |
Scion–rootstock combination | ||||||||||
Scarlet S./M.9 | 3.1abc | 0.8de | 3.7bcd | 0.0cdef | −1.2b | 8.0ab | −1.0fg | 1.9bcde | 1.6cd | 2.8a |
Fuji/M.9 | −1.0cd | 9.1abcd | 1.4d | −5.2f | 3.1ab | 1.1cef | 8.3ab | 1.6cde | 1.0cde | 0.1abc |
G.Smith/M.9 | 4.0a | 3.5cde | 1.2d | 3.1bcd | 0.2ab | −2.4ef | 4.6abcde | 6.6ab | 1.5cd | −2.0c |
G.Gala/M.9 | 0.8abcd | 10.1abc | 0.7d | −1.4def | 0.5ab | 6.0abc | 8.7ab | 0.5def | 9.0a | 2.5a |
Golden R./M.9 | 0.9abcd | 8.2abcd | −1.2e | −2.1def | 0.0ab | −3.8f | 1.3cdefg | 7.0a | −2.7e | 2.3a |
Red Chief/M.9 | 2.6abc | −1.4e | 1.7d | 5.1bc | 2.2ab | 6.3abc | −0.9efg | 4.4abcde | −1.2de | 3.1a |
Jeromine/M.9 | −1.0cd | −0.6e | 2.1cd | 7.2b | 4.4a | 3.5bcde | 5.5abc | 4.9abcd | 3.3bc | 0.3abc |
Scarlet/MM.106 | −2.4d | 14.1a | 5.3bc | −3.5ef | 2.0ab | 3.5bcde | 3.3bcdef | 7.1a | 3.2bc | 0.7abc |
Fuji/MM.106 | 0.3abcd | 12.3ab | 7.1a | −5.2f | 1.3ab | 2.5bcdef | −3.1g | 0.5def | 1.0cde | −1.5bc |
G.Smith/MM.106 | 1.9abcd | 5.0bcde | 1.9d | 14.0a | 0.7ab | −1.5def | −0.2defg | −3.9f | 6.5ab | 1.0abc |
G.Gala/MM.106 | 1.9abcd | 1.1de | 3.6bcd | −4.2f | 0.6ab | 6.7abc | 6.9ab | 4.2abcde | 8.2a | −1.3bc |
Golden/MM.106 | 3.5ab | 6.7abcde | −2.4e | 3.0bcde | 3.2ab | 8.6ab | 4.7abcd | 6.6ab | 3.4bc | 1.8ab |
R.Chief/MM.106 | 0.7abcd | 2.9cde | 6.7ab | −0.4cef | 1.7ab | 4.1bcd | 9.6a | 6.2abc | −0.2cde | 1.1abc |
Jeromine/MM.106 | −0.7bcd | 4.4bcde | 4.2bc | 3.2bcd | 0.3ab | 12.0a | 5.0abcd | −0.1ef | 2.0cd | 0.6abc |
N | P | K | Mg | Ca | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|
% (dw) | mg/kg (dw) | |||||||||
Rootstock | ||||||||||
M.9 | 0.30b | 0.24 | 8.69 | 1.04 | 3.59 | 10.60 | 1.30a | 15.42 | 1.93a | 7.87 |
MM.106 | 0.43a | 0.21 | 7.89 | 0.97 | 3.49 | 10.40 | 0.82b | 14.87 | 1.69b | 7.17 |
Cultivar | ||||||||||
Scarlet Spur | 0.39ab | 0.23c | 8.64b | 1.03ab | 3.52 | 11.00c | 0.98c | 16.90b | 1.87a | 10.78a |
Fuji | 0.41a | 0.20d | 7.31d | 1.02ab | 3.41 | 8.87d | 0.49d | 13.00g | 1.54b | 2.94e |
Granny Smith | 0.34d | 0.26b | 8.58b | 0.96bc | 3.35 | 11.30b | 1.35a | 15.20d | 2.02a | 9.02b |
Galaxy Gala | 0.37bcd | 0.21d | 8.18c | 1.03ab | 3.67 | 12.04a | 1.23b | 17.23a | 1.85a | 6.65c |
Golden Reinders | 0.29e | 0.16e | 7.17d | 0.92c | 3.43 | 11.36b | 1.01c | 13.41f | 1.56b | 5.06d |
Red Chief | 0.35cd | 0.28a | 9.08a | 1.06a | 3.73 | 11.01c | 1.15b | 14.21e | 1.92a | 10.73a |
Jeromine | 0.39abc | 0.23c | 9.10a | 1.04a | 3.65 | 7.91e | 1.21b | 16.07c | 1.91a | 9.34b |
Scion–rootstock combination | ||||||||||
Scarlet S./M.9 | 0.37cd | 0.24cde | 8.29e | 1.05ab | 3.61bcd | 11.27cd | 1.21de | 17.61a | 2.05a | 11.69a |
Fuji/M.9 | 0.40bcd | 0.22de | 7.78f | 1.03ab | 3.38de | 8.63ı | 0.57h | 14.49f | 1.65cde | 3.48ı |
G.Smith/M.9 | 0.24gh | 0.29b | 8.79d | 1.02ab | 3.49cd | 11.60bc | 1.66a | 12.62h | 2.09a | 8.35f |
G.Gala/M.9 | 0.31ef | 0.22de | 9.39b | 1.06ab | 3.89a | 11.93ab | 1.43bc | 16.72b | 2.11a | 6.88g |
Golden R./M.9 | 0.22h | 0.18f | 7.56f | 0.99bc | 3.50cd | 10.57f | 1.41bc | 15.51de | 1.69bcde | 6.25h |
Red Chief/M.9 | 0.27fg | 0.32a | 9.87a | 1.10a | 3.60bcd | 12.02a | 1.49b | 15.04e | 1.90abcd | 9.10e |
Jeromine/M.9 | 0.28fg | 0.22de | 9.20bc | 1.05ab | 3.64abc | 8.20j | 1.33cd | 15.95cd | 1.99ab | 9.34de |
Scarlet/MM.106 | 0.41bcd | 0.22de | 8.99cd | 1.02ab | 3.43cde | 10.74ef | 0.76g | 16.20c | 1.69bcde | 9.87c |
Fuji/MM.106 | 0.43bc | 0.19f | 6.84g | 1.00abc | 3.44cde | 9.12h | 0.41ı | 11.51ı | 1.43e | 2.41j |
G.Smith/MM.106 | 0.45ab | 0.22de | 8.37e | 0.90cd | 3.21e | 11.00de | 1.04f | 17.78a | 1.94abc | 9.70cd |
G.Gala/MM.106 | 0.42bc | 0.19f | 6.98g | 0.99bc | 3.45cde | 12.15a | 1.03f | 17.75a | 1.58de | 6.43gh |
Golden/MM.106 | 0.36de | 0.14g | 6.78g | 0.85d | 3.37de | 12.15a | 0.62h | 11.31ı | 1.44e | 3.87ı |
R.Chief/MM.106 | 0.43b | 0.25c | 8.29e | 1.02ab | 3.85ab | 10.00g | 0.81g | 13.37g | 1.94abcd | 12.36a |
Jeromine/MM.106 | 0.50a | 0.24cde | 9.01cd | 1.04ab | 3.66abc | 7.62k | 1.10ef | 16.19c | 1.84abcd | 9.34de |
N | P | K | Mg | Ca | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|
Rootstock | ||||||||||
M.9 | 1.3a | 2.6b | 1.4b | 1.7b | 1.7b | 3.3a | 9.6b | 1.5b | 11.9b | 10.5b |
MM.106 | 0.9b | 5.0a | 2.8a | 4.8a | 3.2a | 2.6b | 14.1a | 6.6a | 14.2a | 15.0a |
Cultivar | ||||||||||
Scarlet Spur | 0.9c | 8.0a | 2.2d | 0.1e | 0.8d | 5.6b | 11.3c | -2.3f | 22.2a | 27.9a |
Fuji | −1.6e | 5.4c | 2.4d | −1.5g | 5.7b | −1.0f | 32.1a | 4.2cd | 7.7f | 26.1b |
Granny Smith | 3.6a | 0.4f | 3.2c | 10.8a | 9.6a | 1.2e | 6.7d | 2.9d | 10.2d | −0.8g |
Galaxy Gala | 1.2c | −0.9g | −1.6e | −1.1f | −2.0f | 3.8d | 5.3e | −1.2ef | 8.5e | 8.8d |
Golden Reinders | 2.1b | 4.8d | 5.4a | 9.8b | 3.6c | 4.7c | 0.1f | 6.6bcd | 20.5b | 14.3c |
Red Chief | 2.0b | 1.6e | −1.8e | 1.0d | −1.2e | 8.5a | 13.7b | 13.6a | 13.3c | 7.4e |
Jeromine | −0.4d | 7.4b | 5.1b | 3.9c | 0.6d | −1.9g | 13.6b | 9.6b | 8.6e | 5.5f |
Scion–rootstock combination | ||||||||||
Scarlet S./M.9 | 3.3c | 8.5b | 3.8d | 2.6cd | 1.8e | 7.8ab | 14.7d | −2.9h | 24.3a | 20.5b |
Fuji/M.9 | −1.8h | 3.2f | 3.0e | −2.5fg | 6.8b | −1.0g | 22.4b | 4.7e | 4.7f | 18.5bc |
G.Smith/M.9 | 4.9a | −1.6ı | 3.7d | 6.8b | 5.7c | 0.0g | 10.6de | 2.4ef | 13.3d | 0.1gh |
G.Gala/M.9 | 0.0f | −4.0j | −4.9j | −3.5g | −5.7j | 5.1b−d | 3.4fg | −0.1fg | 4.8f | 5.7ef |
Golden R./M.9 | 0.0f | 3.4f | 3.0e | 6.4b | 1.5f | 6.2b | −1.3h | 3.7e | 18.2c | 12.8cd |
Red Chief/M.9 | 2.4d | 4.1e | −3.9ı | −0.9ef | 0.8g | 9.5a | 8.4def | 12.9ab | 13.7d | 7.6e |
Jeromine/M.9 | 0.0f | 4.5e | 5.4b | 3.3cd | 1.2f | −4.3h | 8.7de | 7.3d | 4.1f | 8.0e |
Scarlet/MM.106 | −1.6h | 7.6c | 0.7g | −2.3fg | −0.3h | 3.4de | 7.8ef | −1.8fgh | 20.2bc | 35.4a |
Fuji/MM.106 | −1.5h | 7.6c | 1.8f | −0.5ef | 4.7d | −1.0g | 41.8a | 3.7e | 10.7d | 33.6a |
G.Smith/MM.106 | 2.3d | 2.4g | 2.7e | 14.8a | 13.5a | 2.3ef | 2.7fg | 3.4e | 7.2ef | −1.7h |
G.Gala/MM.106 | 2.4d | 2.2g | 1.7f | 1.3de | 1.8e | 2.4ef | 7.2ef | −2.4gh | 12.3d | 11.8d |
Golden/MM.106 | 4.2b | 6.2d | 7.9a | 13.3a | 5.7c | 3.2de | 1.4gh | 9.5cd | 22.9ab | 15.8c |
R.Chief/MM.106 | 1.5e | −0.8h | 0.3h | 2.9cd | −3.2ı | 7.5ab | 19.0bc | 14.3a | 12.9d | 7.2e |
Jeromine/MM.106 | −0.8g | 10.3a | 4.8c | 4.4bc | −0.1h | 0.5fg | 18.6c | 11.8bc | 13.2d | 3.1fg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, E.; Yaman, M.; Ercisli, S.; Sumbul, A.; Sonmez, O.; Gunes, A.; Bozhuyuk, M.R.; Kviklys, D. Effects of Rhizobacteria Application on Leaf and Fruit Nutrient Content of Different Apple Scion–Rootstock Combinations. Horticulturae 2022, 8, 550. https://doi.org/10.3390/horticulturae8060550
Yildiz E, Yaman M, Ercisli S, Sumbul A, Sonmez O, Gunes A, Bozhuyuk MR, Kviklys D. Effects of Rhizobacteria Application on Leaf and Fruit Nutrient Content of Different Apple Scion–Rootstock Combinations. Horticulturae. 2022; 8(6):550. https://doi.org/10.3390/horticulturae8060550
Chicago/Turabian StyleYildiz, Ercan, Mehmet Yaman, Sezai Ercisli, Ahmet Sumbul, Osman Sonmez, Adem Gunes, Mehmet Ramazan Bozhuyuk, and Darius Kviklys. 2022. "Effects of Rhizobacteria Application on Leaf and Fruit Nutrient Content of Different Apple Scion–Rootstock Combinations" Horticulturae 8, no. 6: 550. https://doi.org/10.3390/horticulturae8060550
APA StyleYildiz, E., Yaman, M., Ercisli, S., Sumbul, A., Sonmez, O., Gunes, A., Bozhuyuk, M. R., & Kviklys, D. (2022). Effects of Rhizobacteria Application on Leaf and Fruit Nutrient Content of Different Apple Scion–Rootstock Combinations. Horticulturae, 8(6), 550. https://doi.org/10.3390/horticulturae8060550