An Electrostatic Pest Exclusion Strategy for Greenhouse Tomato Cultivation
Abstract
:1. Introduction
2. SDEF-Based Capture-and-Kill Insect Trap
2.1. Fabrication of the Device
2.2. Insect Capture through Discharge-Mediated Positive Electrification
2.3. Insect Death Caused by the Release of Free Electrons during Continuous Capture by the NC-IC
2.4. Fabrication of an Electrostatic Soil Cover (ESC) to Trap Emerging Adult Leaf Miners
3. Single-Charged Dipolar Electric Field Screen (SD Screen)
3.1. Avoidance of the SDEF by Insects
3.2. Fabrication of the SD Screen and Practical Application in Greenhouse Pest Control
3.3. Practical Implementation of the SD Screen
3.4. Modification of the SD Screen to Construct an Electrostatic Insect Sweeper (EIS)
4. Double-Charged Dipolar Electric Field Screen (DD Screen)
4.1. Mechanism and Design of the DD Screen
4.2. Practical Application of 1L, 2L, and 3L DD Screens
4.3. Construction of a Colored 1L DD Ccreen to Capture Phototactic Insects
4.3.1. Combination of a 1L DD Screen and a Yellow Plate
4.3.2. Combination of a 2L DD Screen and Oppositely Charged Yellow Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toyoda, H.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y. Introduction of unremitting wide-ranging application for crop protection. In Phytoprotection Science and Technology: Comprehensive Approaches to Crop Protection; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2015; pp. 1–15. [Google Scholar]
- Integrated Pest Management. The PAMS Approach. Available online: https://www.canr.msu.edu/ipm/uploads/files/NRCS/PAMSapproach2010-9-1new.pdf (accessed on 7 June 2021).
- Jones, E.; Childers, R. Electric charge and electric field. In Physics, 3rd ed.; McGraw-Hill: Boston, MA, USA, 2002; pp. 495–525. [Google Scholar]
- Giancoli, D.C. Electric charge and electric field. In Physics Principles with Applications; Pearson Education International: London, UK, 2005; pp. 439–469. [Google Scholar]
- Toyoda, H.; Matsuda, Y. Basic concepts for constructing an electric field screen. In Electric Field Screen: Principles and Applications; Toyoda, H., Ed.; Nobunkyo Production: Tokyo, Japan, 2015; pp. 3–17. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Toyoda, H. Practical application of an electric field screen to an exclusion of flying insect pests and airborne conidia from greenhouses with a good air penetration. J. Agric. Sci. 2012, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kusakari, S.; Okada, K.; Kimbara, J.; Osamura, K.; Toyoda, H. Electrostatic insect sweeper for eliminating whiteflies colonizing host plants; a complementary pest control device in an electric field screen-guarded greenhouse. Insects 2015, 6, 442–454. [Google Scholar] [CrossRef]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Exclusion of whiteflies from a plastic hoop greenhouse by a bamboo blind-type electric field screen. J. Agric. Sci. 2020, 12, 50–60. [Google Scholar]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Prevention of whitefly entry from a greenhouse entrance by furnishing an airflow-oriented pre-entrance room guarded with electric field screens. J. Agric. Sci. 2014, 6, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, Y.; Nonomura, T.; Sonoda, T.; Matsuda, Y. Developing a phototactic electrostatic insect trap targeting whiteflies, leafminers, and thrips in greenhouses. Insects 2021, 12, 960. [Google Scholar] [CrossRef]
- Nonomura, T.; Toyoda, H. Soil surface-trapping of tomato leaf-miner flies emerging from underground pupae with a simple electrostatic cover of seedbeds in a greenhouse. Insects 2020, 11, 878. [Google Scholar] [CrossRef] [PubMed]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
- Griffith, W.T. Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics; Bruflodt, D., Loehr, B.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 232–252. [Google Scholar]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop. Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Sekoguchi, D.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. J. Electrostat. 2012, 70, 207–211. [Google Scholar] [CrossRef]
- Ishay, J.S.; Shimony, T.B.; Shalom, A.B.; Kristianpoller, N. Photovoltaic effects in the oriental hornet, Vespa orientalis. J. Insect Physiol. 1992, 38, 37–48. [Google Scholar] [CrossRef]
- McGonigle, D.G.; Jackson, C.W. Effect of surface material on electrostatic charging of houseflies (Musca domestica L). Pest Manag. Sci. 2002, 58, 374–380. [Google Scholar] [CrossRef]
- McGonigle, D.G.; Jackson, C.W.; Davidson, J.L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 2002, 54, 167–177. [Google Scholar] [CrossRef]
- Honna, T.; Akiyama, Y.; Morishima, K. Demonstration of insect-based power generation using a piezoelectric fiber. Comp. Biochem. Physiol. Part B 2008, 151, 460. [Google Scholar] [CrossRef]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects are electrified in an electric field by deprivation of their negative charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, N.; Toyoda, H. Physical methods for electrical trap-and-kill fly traps using electrified insulated conductors. Insects 2022, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Helyer, N.; Brown, K.; Cattlin, N.D. Pest profiles. In A Colour Handbook of Biological Control in Plant Protection; Northcott, J., Ed.; Manson Publishing: London, UK, 2004; pp. 21–41. [Google Scholar]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant. Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. J. Phys. Conf. Ser. 2015, 646, 012003. [Google Scholar] [CrossRef] [Green Version]
- Newland, P.L.; Hunt, E.; Sharkh, S.M.; Hama, N.; Takahata, M.; Jackson, C.W. Static electric field detection and behavioural avoidance in cockroaches. J. Exper. Biol. 2008, 211, 3682–3690. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Nonomura, T.; Toyoda, H. Turkestan cockroaches avoid entering a static electric field upon perceiving an attractive force applied to antennae inserted into the field. Insects 2021, 12, 621. [Google Scholar] [CrossRef]
- Jonassen, N. Electrostatic effects and abatement of static electricity. In Electrostatics, 2nd ed.; Jonassen, N., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2002; pp. 75–120. [Google Scholar]
- Rendina, N.; Nuzzaci, M.; Scopa, A.; Cuypers, A.; Sofo, A. Chitosan-elicited defense responses in cucumber mosaic virus (CMV)-infected tomato plants. J. Plant. Physiol. 2019, 234, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Houle, J.L.; Kennedy, G.G. Tomato spotted wilt virus can infect resistant tomato when western flower thrips inoculate blossoms. Plant. Dis. 2017, 101, 1666–1670. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Guo, J.-F.; Reitz, S.R.; Lei, Z.-R.; Wu, S.-Y. A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management. Insect Sci. 2020, 27, 626–645. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, S.; Kato, S.; Yoshida, K.; Mizukami, Y.; Ishida, A.; Ueda, J.; Kanbe, M.; Ishimoto, Y. Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. J. Virol. Methods 2003, 112, 35–40. [Google Scholar] [CrossRef]
- Riley, D.G.; Srinivasan, R. Integrated management of tomato yellow leaf curl virus and its whitefly vector in tomato. J. Econ. Entomol. 2019, 112, 1526–1540. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.R.; Menzies, J.G. Fungus gnats vector Fusarium oxysporum f. sp. radicis-lycopersici. Ann. Appl. Biol. 1993, 23, 539–544. [Google Scholar] [CrossRef]
- El-Hamalawi, Z.A. Attraction, acquisition, retention and spatiotemporal distribution of soilborne plant pathogenic fungi by shore flies. Ann. Appl. Biol. 2008, 152, 169–177. [Google Scholar] [CrossRef]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Practical implementation of single-charged dipolar electric field screen. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 41–49. [Google Scholar]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. An oppositely charged insect exclusion screen with gap-free multiple electric fields. J. Appl. Phys. 2012, 112, 116103. [Google Scholar] [CrossRef] [Green Version]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Osamura, K.; Toyoda, H. Remote-controlled monitoring of flying pests with an electrostatic insect capturing apparatus carried by an unmanned aerial vehicle. Agriculture 2021, 11, 176. [Google Scholar] [CrossRef]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Toyoda, H. Elimination of whiteflies colonizing greenhouse tomato plants using an electrostatic flying insect catcher. Int. J. Curr. Adv. Res. 2017, 6, 5517–5521. [Google Scholar]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Okada, K.; Toyoda, H. An electrostatic nursery shelter for raising pest and pathogen free tomato seedlings in an open-window greenhouse environment. J. Agric. Sci. 2016, 8, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M. Recent advances in the optical control of insect pests using light and color. In Proceedings of the 2018 International Symposium on Proactive Technologies for Enhancement of Integrated Pest Management of Key Crops, Taichung, Taiwan, 3–5 April 2018; pp. 87–98. [Google Scholar]
- Guo, Z.-G.; Wang, M.-X.; Cui, L.; Han, B.-Y. Advance in insect phototaxis and the development and application of colored sticky boards. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2019, 30, 3615–3626. [Google Scholar]
Insect Pests Tested | Pole Distance (mm) a | ||
---|---|---|---|
5 | 7 | 10 | |
Whiteflies | 2.7 | 4.2 | 6.2 |
Green peach aphids | 3.2 | 4.5 | 6.5 |
Western flower thrips | 4.2 | 6.3 | 7.3 |
Tomato leaf miner flies | 3.6 | 5.1 | 6.2 |
Shore flies | 4.8 | 5.9 | 7.5 |
Insect Pests Tested | Voltage Required to Completely Capture Insects (-kV) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Single-Layered Type | Two-Layered Type | Three-Layered Type | |||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 a | |
Whiteflies | 0.8 | 1 | 1.2 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Green peach aphids | 1 | 1 | 1.2 | 0.8 | 1 | 1 | 0.8 | 1 | 1 |
Western flower thrips | 1.5 | 2 | 2 | 0.8 | 1 | 1 | 0.8 | 1 | 1 |
Tomato leaf miner flies | 1.2 | 1.5 | 1.5 | 1 | 1 | 1.2 | 1 | 1 | 1.2 |
Shore flies | 1.5 | 2.1 | 2.3 | 1 | 1.2 | 1.2 | 1 | 1 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakutani, K.; Matsuda, Y.; Nonomura, T.; Toyoda, H. An Electrostatic Pest Exclusion Strategy for Greenhouse Tomato Cultivation. Horticulturae 2022, 8, 543. https://doi.org/10.3390/horticulturae8060543
Kakutani K, Matsuda Y, Nonomura T, Toyoda H. An Electrostatic Pest Exclusion Strategy for Greenhouse Tomato Cultivation. Horticulturae. 2022; 8(6):543. https://doi.org/10.3390/horticulturae8060543
Chicago/Turabian StyleKakutani, Koji, Yoshinori Matsuda, Teruo Nonomura, and Hideyoshi Toyoda. 2022. "An Electrostatic Pest Exclusion Strategy for Greenhouse Tomato Cultivation" Horticulturae 8, no. 6: 543. https://doi.org/10.3390/horticulturae8060543
APA StyleKakutani, K., Matsuda, Y., Nonomura, T., & Toyoda, H. (2022). An Electrostatic Pest Exclusion Strategy for Greenhouse Tomato Cultivation. Horticulturae, 8(6), 543. https://doi.org/10.3390/horticulturae8060543