The Influence of Harvest Moment and Cultivar on Variability of Some Chemical Constituents and Antiradical Activity of Dehydrated Chokeberry Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Material
2.3. Obtaining the Methanolic Extract
2.4. Obtaining the Aqueous Extract
2.5. Determining the Components with Antiradical Potential
2.6. Determining the Total Phenolic Content
2.7. Determining the Total Tannins Content
2.8. Determining the Total Flavonoids Content
2.9. Determining the Lycopene and β-Carotene Levels
2.10. Determining the Radical Scavenging Activity
2.11. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef]
- Kalpna, R.; Mital, K. Vegetable and fruit peels as a novel source of antioxidants. J. Med. Plant Res. 2011, 5, 63–71. [Google Scholar]
- Choe, E.; Min, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Stoenescu, A.M.; Trandafir, I.; Cosmulescu, S. Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Tolic, M.T.; Krbavcic, I.P.; Vujevic, P.; Milinovic, B.; Jurcevic, I.L.; Vahcic, N. Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Polish J. Food Nutr. Sci. 2017, 67, 67–74. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Mazilu, I.E.; Paraschiv, M.; Dinu, M.; Cosmulescu, S.N. Biochemical changes in two Aronia melanocarpa cultivars’ berries during the harvest season. Not. Bot. Horti Agrobot. 2021, 49, 12393. [Google Scholar] [CrossRef]
- Dinu Diaconescu, M.; Chivu, M.; Enescu, I.; Cosmulescu, S. Preliminary study regarding the growth and yielding processes of two Aronia melanocarpa cultivars in the pedoclimate conditions of Maracineni-Arges area. Curr. Trends Nat. Sci. 2021, 10, 66–71. [Google Scholar] [CrossRef]
- Engin, S.P.; Mert, C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Šic Žlabur, J.; Dobričević, N.; Pliestić, S.; Galić, A.; Bilić, D.P.; Voća, S. Antioxidant potential of fruit juice with added chokeberry powder (Aronia melanocarpa). Molecules 2017, 22, 2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, H.S.; Kim, J.W.; Kim, S.H.; Kim, Y.G.; Eom, H.J. Quality characteristics of bread added with aronia powder (Aronia melanocarpa). J. Korean Soc. Food Sci. Nutr. 2014, 43, 273–280. [Google Scholar] [CrossRef]
- Nguyen, L.; Hwang, E.S. Quality characteristics and antioxidant activity of yogurt supplemented with aronia (Aronia melanocarpa) juice. Prev. Nutr. Food Sci. 2016, 21, 330. [Google Scholar] [CrossRef]
- Catană, M.; Catană, L.; Iorga, E.; Asănică, A.C.; Belc, N. Bakery products fortified with dried fruits of Aronia melanocarpa. Sci. Papers Ser. B Hortic. 2018, 62, 693–701. [Google Scholar]
- Petković, M.; Đurović, I.; Miletić, N.; Radovanović, J. Effect of convective drying method of chokeberry (Aronia melanocarpa L.) on drying kinetics, bioactive components and sensory characteristics of bread with chokeberry powder. Period. Polytech. Chem. Eng. 2019, 63, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Chon, J.W.; Song, K.Y.; Jeong, D.; Seo, K. Sensory attributes of market milk, yogurt, and kefir supplemented with various concentrations of Aronia melanocarpa (black chokeberry) powder: A preliminary study. J. Dairy Sci. Biotechnol. 2019, 37, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Raczkowska, E.; Nowicka, P.; Wojdyło, A.; Styczyńska, M.; Lazar, Z. Chokeberry pomace as a component shaping the content of bioactive compounds and nutritional, health-promoting (anti-diabetic and antioxidant) and sensory properties of shortcrust pastries sweetened with sucrose and erythritol. Antioxidants 2022, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total phenolic, flavonoid distribution and antioxidant capacity in skin, pulp and fruit extracts of plum cultivars. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Ahmed, D.; Fatima, M.; Saeed, S. Phenolic and flavonoid contents and anti-oxidative potential of epicarp and mesocarp of Lagenaria siceraria fruit: A comparative study. Asian Pac. J. Trop. Med. 2014, 7, S249–S255. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic composition, radical scavenging activity and an approach for authentication of Aronia melanocarpa berries, juice, and pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.; Moreira, S.A.; Castro, L.M.; Pintado, M.; Saraiva, J.A. Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Rev. Int. 2018, 34, 581–612. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement Altern. Med. 2016, 16, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwude, D.I.; Iranshahi, K.; Rubinetti, D.; Schudel, S.; Schemminger, J.; Martynenko, A.; Defraeye, T. How much do process parameters affect the residual quality attributes of dried fruits and vegetables for convective drying? Food Bioprod. Process. 2022, 131, 176–190. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Elez-Martínez, P.; Martín-Belloso, O. Stability of health-related compounds in plant foods through the application of non thermal processes. Trends Food Sci. Technol. 2012, 23, 111–123. [Google Scholar] [CrossRef]
- Matić, P.; Sabljić, M.; Jakobek, L. Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. J. AOAC Int. 2017, 100, 1795–1803. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Ionica, M.; Tutulescu, F. Phenolics content, antioxidant activity and color of green walnut extracts for preparing walnut liquor. Not. Bot. Horti Agrobo. 2014, 42, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Giura, S.; Botu, M.; Vulpe, M.; Vîjan, L.E.; Mitrea, R. Evolution of the polyphenols, flavonoids, and tannins content in walnut leaves and green walnut husk during growing season. Not. Bot. Horti Agrobot. 2019, 47, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Matić, P.; Jakobek, L. Spectrophotometric Folin-Ciocalteu and aluminium chloride method validation for the determination of phenolic acid, flavan-3-ol, flavonol, and anthocyanin content. Croat J. Food Sci. Technol. 2021, 13, 176–183. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Trandafir, I.; Cornescu, F. Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes. Not. Bot. Horti Agrobot. 2019, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Radu, M.; Vijan, L.E.; Tudor-Radu, C.M.; Tița, I.; Sima, R.; Mitrea, R. Assessment of ascorbic acid, polyphenols, flavonoids, anthocyanins and carotenoids content in tomato fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Diaz, D.E.; Francis, D.M.; Rodriguez-Saona, L.E. External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. J. Food Compos. Anal. 2011, 24, 121–126. [Google Scholar] [CrossRef]
- El Anany, A.M. Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium myrtaceae) as affected by roasting processes. J. Food Sci. Technol. 2015, 52, 2175–2183. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Yoon, W.B.; Lee, O.H.; Cha, S.J.; Dai Kim, J. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem. 2014, 146, 71–77. [Google Scholar] [CrossRef]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Samoticha, J.; Wojdyło, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT-Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Sójka, M.; Kołodziejczyk, K.; Milala, J. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Ind. Crops Prod. 2013, 51, 77–86. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Milutinović, M.; Nikolić, N.Ć.; Šavikin, K.; Pavlović, D.; Ranđelović, M.; Miladnović, B.; Kitić, D. Chokeberry (Aronia melanocarpa (Michx.) Elliott) waste–from waste to functional pharmaceutical products. Arch. Pharm. 2021, 71, S32. [Google Scholar]
- Thi, N.D.; Hwang, E.S. Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Sci. Biotechnol. 2016, 25, 55–61. [Google Scholar] [CrossRef]
- Georgiev, D.; Ludneva, D. Possibilities for production of nectars and purees from fruits of black chokeberry (Aronia melanocarpa). Acta Hortic. 2009, 825, 595–598. [Google Scholar] [CrossRef]
- Calalb, T.; Onica, E. Content of some natural fruits compounds of chokeberry and sea-buckthorn new forms. Rev. Bot. 2014, 9, 5–9. [Google Scholar]
- Mladin, P.; Mladin, G.; Oprea, E.; Nicola, M.R.C. Variability of the anthocyanins and tannins in berries of some Lonicera caerulea var. kamchatica, Aronia melanocarpa and Berberis thunbergii var. atropurpurea genotypes. Sci. Pap. R.I.F.G. Pitesti 2011, 27. Available online: https://publications.icdp.ro/publicatii/Lucrari%202011/07_%20Lucrare%20P_%20Mladin.pdf (accessed on 10 April 2021).
- Razungles, A.; Oszmianski, J.A.N.; Sapis, J.C. Determination of carotenoids in fruits of Rosa sp. (Rosa canina and Rosa rugosa) and of chokeberry (Aronia melanocarpa). J. Food Sci. 1989, 54, 774–775. [Google Scholar] [CrossRef]
- Tanaka, T.; Tanaka, A. Chemical components and characteristics of black chokeberry. Nippon Shokuhin Kagaku Kogaku Kaishi 2001, 48, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewska, J.; Sadowska, K.; Klóska, Ł.; Rogowski, L. The effect of plant age and harvest time on the content of chosen components and antioxidative potential of black chokeberry fruit. Acta Sci. Pol. Hortorum Cultus 2015, 14, 105–114. [Google Scholar]
- Jakobek, L.; Drenjančević, M.; Jukić, V.; Šeruga, M.; Turalija, A.; Milić, M. Polyphenols, anthocyanins and antiradical activity of chokeberries. Electron. J. Environ. Agric. Food Chem. 2011, 11, 76–84. [Google Scholar]
- Keskin-Šašić, I.; Tahirović, I.; Topčagić, A.; Klepo, L.; Salihović, M.B.; Ibragić, S.; Toromanović, J.; Ajanović, A.; Velispahić, E. Total phenolic content and antioxidant capacity of fruit juices. Bull. Chem. Technol. Bosnia Herzeg. 2012, 39, 25–28. [Google Scholar]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; He, W.; Fan, X.; Guo, A. Biological function of plant tannin and its application in animal health. Front. Veter Sci. 2021, 8, 803657. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur. J. Med. Chem. 2013, 70, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef]
Statistics | TPC (mg GAE/100 g) | TTC (mg GAE/100 g) | TFC (mg CE/100 g) | Lycopene (mg/100 g) | β-Carotene (mg/100 g) | RSA % |
---|---|---|---|---|---|---|
Mean | 12747.93 | 7243.42 | 3971.86 | 1.04 | 0.30 | 88.84 |
Std. dev. | 1348.12 | 850.74 | 777.07 | 0.35 | 0.08 | 8.14 |
CV% | 10.5 | 11.7 | 19.5 | 33.90 | 26.50 | 9.17 |
Minimum | 10,112.17 | 5219.1 | 2660.8 | 0.58 | 0.18 | 59.62 |
Maximum | 15,288.3 | 9092.5 | 5244.4 | 2.04 | 0.45 | 98.68 |
p cultivar | <0.001 | <0.001 | <0.001 | 0.007 | n.s.* | <0.001 |
p harvest period | <0.001 | <0.001 | <0.001 | 0.004 | n.s. | 0.017 |
p cultivar × harvest period | n.s. | <0.001 | <0.001 | n.s. | n.s. | 0.021 |
Harvest Period | TPC (mg GAE/100 g) | TFC (mg CE/100 g) | ||||
---|---|---|---|---|---|---|
‘Melrom’ | ‘Nero’ | Average | ‘Melrom’ | ‘Nero’ | Average | |
13th Aug. | 10,240.8 ± 128.4 d | 10,467.0 ± 272.9 e | 10,353.9 ± 227.5 d | 2927.3 ± 336.7 c | 4004.8 ± 113.1 c | 3466.0 ± 631.4 bc |
18th Aug. | 11,232.9 ± 398.0 c | 12,224.6 ± 601.4 d | 11,728.8 ± 709.3 c | 3236.02 ± 142.4 bc | 3963.8 ± 150.1 c | 3599.9 ± 419.6 bc |
23th Aug. | 12,587.7 ± 522.6 b | 12,818.1 ± 493.7 cd | 12,702.9 ± 471.9 b | 3267.1 ± 139.7 bc | 4295.9 ± 182.6 b | 3781.5 ± 581.9 b |
28th Aug. | 13,206.4 ± 337.2 ab | 13,190.1 ± 611.0 c | 13,198.3 ± 441.4 b | 3348.9 ± 85.5 b | 4932.7 ± 211.0 a | 4140.8 ± 879.3 a |
3rd Sep. | 13,632.7 ± 205.1 a | 14,126.0 ± 270.3 b | 13,879.4 ± 345.1 a | 3274.8 ± 119.8 bc | 5131.4 ± 124.7 a | 4203.1 ± 1022.7 a |
8th Sep. | 12,816.0 ± 407.2 b | 13,425.7 ± 470.4 bc | 13,120.8 ± 516.1 b | 3708.0 ± 170.9 a | 4992.0 ± 184.1 a | 4350.0 ± 720.9 a |
13th Sep. | 13,543.2 ± 537.6 a | 14,959.2 ± 327.4 a | 14,251.0 ± 1350.5 a | 3448.8 ± 200.4 ab | 5073.8 ± 91.8 a | 4261.3 ± 900.9 a |
Average | 12,465.7 ± 1248.1 | 13,030.1 ± 1414.4 | 3315.9 ± 272.9 | 4627.8 ± 509.6 |
Harvest Period | TTC (mg GAE/100 g) | Lycopene (mg/100 g) | ||||
---|---|---|---|---|---|---|
‘Melrom’ | ‘Nero’ | Average | ‘Melrom’ | ‘Nero’ | Average | |
13th Aug. | 5475.4 ± 242.4 e | 6970.9 ± 184.9 c | 6223.1 ± 841.5 d | 0.603 ± 0.02 b | 0.880 ± 0.11 b | 0.741 ± 0.18 c |
18th Aug. | 6298.8 ± 145.3 d | 8206.1 ± 365.3 a | 7252.4 ± 1073.8 b | 0.938 ± 0.07 b | 1.081 ± 0.19 ab | 1.009 ± 0.15 bc |
23th Aug. | 7035.2 ± 248.7 c | 7771.9 ± 270.9 ab | 7403.6 ± 465.7 b | 0.822 ± 0.56 b | 0.965 ± 0.18 ab | 0.893 ± 0.14 bc |
28th Aug. | 8896.7 ± 227.1 a | 7807.4 ± 295.9 ab | 8352.1 ± 641.6 a | 0.867 ± 0.14 b | 0.908 ± 0.18 ab | 0.887 ± 0.15 bc |
3rd Sep. | 6850.8 ± 250.6 c | 7550.0 ± 146.5 b | 7200.4 ± 424.6 b | 0.967 ± 0.10 ab | 1.419 ± 0.46 ab | 1.193 ± 0.39 ab |
8th Sep. | 6850.5 ± 259.1 c | 6884.7 ± 317.2 c | 6867.6 ± 259.7 c | 0.895 ± 0.16 b | 1.384 ± 0.57 ab | 1.140 ± 0.46 ab |
13th Sep. | 7790.2 ± 348.0 b | 7018.6 ± 174.4 c | 7404.4 ± 489.1 b | 1.329 ± 0.48 a | 1.558 ± 0.36 a | 1.444 ± 0.40 a |
Average | 7028.2 ± 1051.7 | 7458.5 ± 569.4 | 0.917 ± 0.27 | 1.171 ± 0.38 |
Harvest Period | β- Carotene (mg/100 g) | RSA (%) | ||||
---|---|---|---|---|---|---|
‘Melrom’ | ‘Nero’ | Average | ‘Melrom’ | ‘Nero’ | Average | |
13th Aug. | 0.230 ± 0.02 a | 0.237 ± 0.05 a | 0.233 ± 0.04 a | 94.62 ± 1.79 a | 74.39 ± 12.41 c | 84.51 ± 13.5 bc |
18th Aug. | 0.360 ± 0.08 a | 0.292 ± 0.06 a | 0.326 ± 0.07 a | 90.40 ± 3.68 a | 77.05 ± 10.56 bc | 83.71 ± 10.23 c |
23th Aug. | 0.338 ± 0.08 a | 0.292 ± 0.08 a | 0.315 ± 0.07 a | 89.95 ± 2.21 a | 87.67 ± 6.62 ab | 88.81 ± 4.73 abc |
28th Aug. | 0.314 ± 0.06 a | 0.291 ± 0.07 a | 0.302 ± 0.06 a | 95.14 ± 4.12 a | 91.12 ± 5.35 a | 93.13 ± 4.91 a |
3rd Sep. | 0.335 ± 0.06 a | 0.329 ± 0.10 a | 0.332 ± 0.07 a | 95.89 ± 0.74 a | 90.66 ± 4.97 a | 93.27 ± 4.32 a |
8th Sep. | 0.274 ± 0.06 a | 0.324 ± 0.11 a | 0.299 ± 0.08 a | 90.62 ± 5.29 a | 90.98 ± 4.82 a | 90.80 ± 4.69 ab |
13th Sep. | 0.340 ± 0.12 a | 0.297 ± 0.12 a | 0.319 ± 0.11 a | 88.37 ± 9.40 a | 87.05 ± 3.65 ab | 87.71 ± 6.64 abc |
Average | 0.313 ± 0.07 | 0.294 ± 0.08 | 92.14 ± 5.02 | 85.56 ± 9.35 |
Pearson Correlation Coefficient (r) | TPC | TFC | TTC | Lycopene | β- Carotene | |
---|---|---|---|---|---|---|
RSA % | Pearson Correlation | 0.342 * | −0.102 | −0.054 | 0.179 | 0.526 ** |
Sig. (2-tailed) | 0.027 | 0.519 | 0.732 | 0.257 | 0.000 | |
TPC | Pearson Correlation | 1 | 0.568 ** | 0.487 ** | 0.567 ** | 0.356 * |
Sig. (2-tailed) | 0.000 | 0.001 | 0.000 | 0.021 | ||
TFC | Pearson Correlation | 1 | 0.273 | 0.543 ** | 0.084 | |
Sig. (2-tailed) | 0.080 | 0.000 | 0.598 | |||
TTC | Pearson Correlation | 1 | 0.221 | 0.265 | ||
Sig. (2-tailed) | 0.159 | 0.090 | ||||
Lycopene | Pearson Correlation | 1 | 0.588 ** | |||
Sig. (2-tailed) | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazilu, I.E.; Vîjan, L.E.; Cosmulescu, S. The Influence of Harvest Moment and Cultivar on Variability of Some Chemical Constituents and Antiradical Activity of Dehydrated Chokeberry Pomace. Horticulturae 2022, 8, 544. https://doi.org/10.3390/horticulturae8060544
Mazilu IE, Vîjan LE, Cosmulescu S. The Influence of Harvest Moment and Cultivar on Variability of Some Chemical Constituents and Antiradical Activity of Dehydrated Chokeberry Pomace. Horticulturae. 2022; 8(6):544. https://doi.org/10.3390/horticulturae8060544
Chicago/Turabian StyleMazilu, Ivona Enescu, Loredana Elena Vîjan, and Sina Cosmulescu. 2022. "The Influence of Harvest Moment and Cultivar on Variability of Some Chemical Constituents and Antiradical Activity of Dehydrated Chokeberry Pomace" Horticulturae 8, no. 6: 544. https://doi.org/10.3390/horticulturae8060544
APA StyleMazilu, I. E., Vîjan, L. E., & Cosmulescu, S. (2022). The Influence of Harvest Moment and Cultivar on Variability of Some Chemical Constituents and Antiradical Activity of Dehydrated Chokeberry Pomace. Horticulturae, 8(6), 544. https://doi.org/10.3390/horticulturae8060544