Microbiology and Quality Attributes of ‘Pione’ Grapes Stored in Passive and Active MAP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Materials
2.2. Modified Atmosphere Packaging
2.3. Gas Analysis in MA Packages
2.4. Microbial Counts
2.5. Microbial Isolation and Identification
2.6. Storage Quality
2.7. Statistical Analysis
3. Results
3.1. Passive MAP
3.2. Active MAP
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fresh Deciduous Fruit (Apples, Grapes, & Pears): World Markets and Trade. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/1z40ks800/ws859g14s/f1881m32m/decidwm-12-05-2014.pdf (accessed on 22 March 2022).
- Fresh Apples, Grapes, and Pears: World Markets and Trade. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/1z40ks800/736675268/8910kv534/fruit.pdf (accessed on 22 March 2022).
- Carvajal-Millán, E.; Carvallo, T.; Orozco, J.A.; Martínez, M.A.; Tapia, I.; Guerrero, V.M.; Rascón-Chu, A.; Llamas, J.; Gardea, A.A. Polyphenol oxidase activity, color changes, and dehydration in table grape rachis during development and storage as affected by N-(2-chloro-4-pyridyl)-N-phenylurea. J. Agric. Food Chem. 2001, 49, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, C.H.; Garner, D.; Crisosto, G. Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of ‘Redglobe’ table grapes. Postharvest Biol. Technol. 2002, 26, 181–189. [Google Scholar] [CrossRef]
- Carter, M.Q.; Chapman, M.H.; Gabler, F.; Brandl, M.T. Effect of sulfur dioxide fumigation on survival of foodborne pathogens on table grapes under standard storage temperature. Food Microbiol. 2015, 49, 189–196. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R.; Chiarotti, F.; Koyama, R.; Hussain, I.; de Souza, R.T. Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Sci. Hortic. 2015, 193, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Ejsmentewicz, T.; Balic, I.; Sanhueza, D.; Barria, R.; Meneses, C.; Orellana, A.; Prieto, H.; Defilippi, B.G.; Campos-Vargas, R. Comparative study of two table grape varieties with contrasting texture during cold storage. Molecules 2015, 20, 3667–3680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabler, F.M.; Smilanick, J.L.; Ghosoph, J.M.; Margosan, D.A. Impact of postharvest hot water or ethanol treatment of table grapes on gray mold incidence, quality, and ethanol content. Plant Dis. 2005, 89, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez-Hernandez, M.; Navarro, S.; Sanchez-Ballesta, M.T.; Merodio, C.; Escribano, M.I. Short-term high CO2 treatment reduces water loss and decay by modulating defense proteins and organic osmolytes in Cardinal table grape after cold storage and shelf-life. Sci. Hortic. 2018, 234, 27–35. [Google Scholar] [CrossRef]
- Izumi, H. CA/MA requirements for spoilage microorganisms and human pathogens. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce, 1st ed.; Gil, M., Beaudry, R., Eds.; Academic Press: London, UK, 2020; pp. 75–107. [Google Scholar]
- Izumi, H.; Rodov, V.; Bai, J.; Wendakoon, S.K. Physiology and quality of fresh-cut produce in CA/MA storage. In Fresh-Cut Fruits and Vegetables: Technology, Physiology, and Safety, 1st ed.; Pareek, S., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 253–305. [Google Scholar]
- Artés-Hernández, F.; Tomás-Barberán, F.A.; Artés, F. Modified atmosphere packaging preserves quality of SO2-free ‘Superior seedless’ table grapes. Postharvest Biol. Technol. 2006, 39, 146–154. [Google Scholar] [CrossRef]
- Cefola, M.; Damascelli, A.; Lippolis, V.; Cervellieri, S.; Linsalata, V.; Logrieco, A.F.; Pace, B. Relationships among volatile metabolites, quality and sensory parameters of ‘Italia’ table grapes assessed during cold storage in low or high CO2 modified atmospheres. Postharvest Biol. Technol. 2018, 142, 124–134. [Google Scholar] [CrossRef]
- Cefola, M.; Pace, B. High CO2-modified atmosphere to preserve sensory and nutritional quality of organic table grape (cv. ‘Italia’) during storage and shelf-life. Eur. J. Hortic. Sci. 2016, 81, 197–203. [Google Scholar] [CrossRef]
- Poubol, J.; Izumi, H. Shelf life and microbial quality of flesh-cut mango cubes stored in high CO2 atmospheres. J. Food Sci. 2005, 70, M69–M74. [Google Scholar] [CrossRef]
- Costa, C.; Lucera, A.; Conte, A.; Mastromatteo, M.; Speranza, B.; Antonacci, A.; Del Nobile, M.A. Effects of passive and active modified atmosphere packaging conditions on ready-to-eat table grape. J. Food Eng. 2011, 102, 115–121. [Google Scholar] [CrossRef]
- Liguori, G.; Sortino, G.; De Pasquale, C.; Inglese, P. Effects of modified atmosphere packaging on quality parameters of minimally processed table grapes during cold storage. Adv. Hort. Sci. 2015, 29, 152–154. [Google Scholar]
- Liguori, G.; D’Aquino, S.; Sortino, G.; De Pasquale, C.; Inglese, P. Effects of passive and active modified atmosphere packaging conditions on quality parameters of minimally processed table grapes during cold storage. J. Berry Res. 2015, 5, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Nakata, Y.; Izumi, H. Microbiological and quality responses of strawberry fruit to high CO2 controlled atmosphere and modified atmosphere storage. HortScience 2020, 55, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Ozaki, Y.; Izumi, H. Microbiological quality and shelf life of enzyme-peeled fresh-cut persimmon slices stored in high CO2 atmospheres. HortScience 2012, 47, 1758–1763. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Garner, D.; Crisosto, G. High carbon dioxide atmospheres affect stored ‘Thompson Seedless’ table grapes. HortScience 2002, 37, 1074–1078. [Google Scholar] [CrossRef] [Green Version]
- Retamales, J.; Defilippi, B.G.; Arias, M.; Castillo, P.; Manríquez, D. High-CO2 controlled atmospheres reduce decay incidence in Thompson Seedless and Red Globe table grapes. Postharvest Biol. Technol. 2003, 29, 177–182. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Aguayo, E.; Artés, F. Alternative atmosphere treatment for keeping quality of ‘Autumn seedless’ table grapes during long-term cold storage. Postharvest Biol. Technol. 2004, 31, 59–67. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, Y.; Li, Y. Physiological responses and quality attributes of ‘Kyoho’ grapes to controlled atmosphere storage. LWT 2006, 39, 584–590. [Google Scholar] [CrossRef]
- Gilbert, J.A.; van der Lelie, D.; Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. USA 2014, 111, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostert, L.; Crous, P.W.; Petrini, O. Endophytic fungi associated with shots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 2000, 52, 46–58. [Google Scholar]
- Kántor, A.; Mare ček, J.; Ivanišová, E.; Terentjeva, M.; Kačánivá, M. Microorganisms of grape berries. Proc. Latvian Acad. Sci. Sect. B 2017, 71, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Izumi, H.; Tsukada, Y.; Poubol, J.; Hisa, K. On-farm sources of microbial contamination of persimmon fruit in Japan. J. Food. Prot. 2008, 71, 52–59. [Google Scholar] [CrossRef]
- Izumi, H.; Poubol, J.; Hisa, K.; Sera, K. Potential sources of microbial contamination of satsuma mandarin fruit in Japan, from production through packing shed. J. Food Prot. 2008, 71, 530–538. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of gray mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
Low OTR | High OTR | ||
---|---|---|---|
Bacteria | Fungi | Bacteria | Fungi |
Chryseobacterium taeanense | Alternaria alternata | Chryseobacterium lineare | Alternaria alternata |
Chryseobacterium taichungense | Alternaria doliconidium | Cutibacterium acnes | Alternaria doliconidium |
Cutibacterium acnes | Candida carpophila | Pantoea vagans |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, K.; Izumi, H. Microbiology and Quality Attributes of ‘Pione’ Grapes Stored in Passive and Active MAP. Horticulturae 2022, 8, 524. https://doi.org/10.3390/horticulturae8060524
Sato K, Izumi H. Microbiology and Quality Attributes of ‘Pione’ Grapes Stored in Passive and Active MAP. Horticulturae. 2022; 8(6):524. https://doi.org/10.3390/horticulturae8060524
Chicago/Turabian StyleSato, Kiyoshi, and Hidemi Izumi. 2022. "Microbiology and Quality Attributes of ‘Pione’ Grapes Stored in Passive and Active MAP" Horticulturae 8, no. 6: 524. https://doi.org/10.3390/horticulturae8060524
APA StyleSato, K., & Izumi, H. (2022). Microbiology and Quality Attributes of ‘Pione’ Grapes Stored in Passive and Active MAP. Horticulturae, 8(6), 524. https://doi.org/10.3390/horticulturae8060524