Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions
Abstract
:1. Introduction
2. Impact of Changing Climatic Conditions on Pest Monitoring
3. Automatic Pest Monitoring Systems
4. Automatic Monitoring of Apple Pests
4.1. Codling Moth (Cydia pomonella Linnaeus, 1758) (Lepidoptera: Tortricidae)
4.2. Fruit Flies (Tephritidae, Drosophilidae)
4.3. Other Important Apple Pests
4.3.1. Pear Leaf Blister Moth (Leucoptera maifoliella (O. Costa, 1836)) (Lepidoptera: Lyonetiidae)
4.3.2. Brown Marmorated Stink Bug (Halyomorpha halys Stål, 1855)
4.3.3. Oriental Fruit Moth (Grapholita molesta Busck, 1916)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Stafford, J.V. Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the effectiveness of precision agriculture management systems in mediterranean small farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Chen, M. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manag. 2017, 83, 8–31. [Google Scholar] [CrossRef]
- Alatalo, J.M.; Jägerbrand, A.K.; Dai, J.; Mollazehi, M.D.; Abdel-Salam, A.S.G.; Pandey, R.; Molau, U. Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community. Am. J. Bot. 2021, 108, 411–422. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Fraser, A. Land grab/data grab: Precision agriculture and its new horizons. J. Peasant. Stud. 2019, 46, 893–912. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Reid, J.F.; Zhang, Q. Fuzzy logic control of a multispectral imaging sensor for in-field plant sensing. Comput. Electron. Agric. 2008, 60, 279–288. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Pierce, F.J.; Nowak, P. Aspects of precision agriculture. Adv. Agron. 1999, 67, 1–85. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Lind, K.M. (Eds.) Precision Agriculture: Technology and Economic Perspectives, 1st ed.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; pp. 52–53. [Google Scholar]
- Jiang, J.A.; Tseng, C.L.; Lu, F.M.; Yang, E.C.; Wu, Z.S.; Chen, C.P.; Lin, S.H.; Lin, K.C.; Liao, C.S. A GSM-based remote wireless automatic monitoring system for field information: A case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel). Comput. Electron. Agric. 2008, 62, 243–259. [Google Scholar] [CrossRef]
- Demirel, M.; Kumral, N.A. Artificial Intelligence in Integrated Pest Management. In Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture; Tomar, P., Kaur, G., Eds.; IGI Global: Pennsylvania, PA, USA, 2021; pp. 289–313. [Google Scholar]
- Mul, M.F.; Ploegaert, J.P.; George, D.R.; Meerburg, B.G.; Dicke, M.; Koerkamp, P.W.G. Structured design of an automated monitoring tool for pest species. Biosyst. Eng. 2016, 151, 126–140. [Google Scholar] [CrossRef]
- Pajač Živković, I.; Miklečić, I.; Kapuđija, D.; Škorić, M.; Lemić, D. Učinkovitost, trapview “sustava za automatsko praćenje jabukova savijača. Fragm. Phytomed. 2020, 34, 1–15. [Google Scholar]
- Noskov, A.; Bendix, J.; Friess, N. A review of insect monitoring approaches with special reference to radar techniques. Sensors 2021, 21, 1474. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest. Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.N.; Chen, X.L.; Hou, X.W.; Zhou, L.B.; Zhu, C.D.; Ji, L.Q. Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae). Pest Manag. Sci. 2017, 73, 1511–1528. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Xie, C.; Zhang, J.; Li, R.; Liu, L. Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment. Comput. Electron. Agric. 2021, 187, 106268. [Google Scholar] [CrossRef]
- Brzica, K. Voćarstvo za Svakog, 6th ed.; ITP Naprijed: Zagreb, Coatia, 1991. [Google Scholar]
- Brown, S. Apple. In Fruit Breeding, Handbook of Plant Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: Boston, MA, USA, 2012; pp. 329–367. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 June 2022).
- Shrestha, S. Effects of climate change in agricultural insect pest. Acta Sci. Agric. 2019, 3, 74–80. [Google Scholar] [CrossRef]
- Parry, M. The potential impact on agriculture of the greenhouse effect. Land Use Policy 1990, 7, M109–M123. [Google Scholar] [CrossRef]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Prakash, A.; Rao, J.; Mukherjee, A.K.; Berliner, J.; Pokhare, S.S.; Adak, T.; Munda, S.; Shashank, P.R. Climate Change: Impact on Crop Pests; Applied Zoologists Research Association (AZRA): Cuttack, India, 2014. [Google Scholar]
- Sharma, H.C. Climate change effects on insects: Implications for crop protection and food security. J. Crop Improv. 2014, 28, 229–259. [Google Scholar] [CrossRef]
- Pareek, A.; Meena, B.M.; Sharma, S.; Tetarwal, M.L.; Kalyan, R.K.; Meena, B.L. Impact of climate change on insect pests and their management strategies. In Climate Change and Sustainable Agriculture; Kumar, P.S., Kanwat, M., Meena, P.D., Kumar, V., Alone, R.A., Eds.; New India Publishing Agency: New Delhi, India, 2017; pp. 253–286. [Google Scholar]
- Yamamura, K.; Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 1998, 33, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.; Aggarwal, P.K.; Singh, S.D. Climate Change Impact, Adaptation and Mitigation in Agriculture: Methodology for Assessment and Applications; Indian Agricultural Research Institute: New Delhi, India, 2012; p. 302. [Google Scholar]
- Raza, M.M.; Khan, M.A.; Arshad, M.; Sagheer, M.; Sattar, Z.; Shafi, J.; Haq, E.U.; Ali, A.; Aslam, U.; Mushtaq, A. Impact of global warming on insects. Arch. Phytopathol. Plant Prot. 2014, 48, 84–94. [Google Scholar] [CrossRef]
- Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. Biol. Sci. 2010, 277, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Andrew, N.R.; Hill, S.J. Effect of climate change on insect pest management. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers, 1st ed.; Coll, M., Wajnberg, E., Eds.; John Wiley & Sons Ltd.: Milton, Australia, 2017; pp. 195–223. [Google Scholar]
- Skendžić, S.; Zovko, M.; Pajač Živković, I.; Lešić, V.; Lemić, D. Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe. Insects 2021, 12, 985. [Google Scholar] [CrossRef]
- Cini, A.; Anfora, G.; Escudero-Colomar, L.A.; Grassi, A.; Santosuosso, U.; Seljak, G.; Papini, A. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J. Pest Sci. 2014, 87, 559–566. [Google Scholar] [CrossRef]
- Gariepy, T.D.; Bruin, A.; Haye, T.; Milonas, P.; Vétek, G. Occurrence and genetic diversity of new populations of Halyomorpha halys in Europe. J. Pest Sci. 2015, 88, 451–460. [Google Scholar] [CrossRef]
- Matošević, D.; Pajač Živković, I. Strane fitofagne vrste kukaca i grinja na drvenastom bilju u Hrvatskoj. Šumarski List 2013, 137, 191–203. [Google Scholar]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, F.; Liu, L.; Du, X.; Ren, B.; Guo, A.; Geng, Y.; Ruan, C.; Ye, H.; Huang, W.; et al. Automatic system for crop pest and disease dynamic monitoring and early forecasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4410–4418. [Google Scholar] [CrossRef]
- Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harrington, R.; Luck, J.; Zalucki, M.P. Adapting to crop pest and pathogen risks under a changing climate. Clim. Chang. 2011, 2, 220–237. [Google Scholar] [CrossRef]
- Hellin, J.; Fisher, E. Climate-smart agriculture and non-agricultural livelihood transformation. Climate 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Faria, P.; Nogueira, T.; Ferreira, A.; Carlos, C.; Rosado, L. AI-powered mobile image acquisition of vineyard insect traps with automatic quality and adequacy assessment. Agronomy 2021, 11, 731. [Google Scholar] [CrossRef]
- Sciarretta, A.; Calabrese, P. Development of automated devices for the monitoring of insect pests. Curr. Agric. Res. J. 2019, 7, 19. [Google Scholar] [CrossRef]
- Heeb, L.; Jenner, E.; Cock, M.J. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Adamides, G. A review of climate-smart agriculture applications in Cyprus. Atmosphere 2020, 11, 898. [Google Scholar] [CrossRef]
- Lima, M.C.F.; de Almeida Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of insect pests—A review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Blommers, L.H. Integrated pest management in european apple orchards. Ann. Rev. Entomol. 1994, 39, 213–241. [Google Scholar] [CrossRef]
- Preti, M.; Favaro, R.; Knight, A.L.; Angeli, S. Remote monitoring of Cydia pomonella adults among an assemblage of nontargets in sex pheromone-kairomone-baited smart traps. Pest Manag. Sci. 2021, 77, 4084–4090. [Google Scholar] [CrossRef] [PubMed]
- Rydhmer, K.; Bick, E.; Still, L.; Strand, A.; Luciano, R.; Helmreich, S.; Beck, B.D.; Grønne, C.; Malmros, L.; Poulsen, K.; et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 2022, 12, 2603. [Google Scholar] [CrossRef] [PubMed]
- Holguin, G.A.; Lehman, B.L.; Hull, L.A.; Jones, V.P.; Park, J. Electronic traps for automated monitoring of insect populations. IFAC Proc. Vol. 2010, 43, 49–54. [Google Scholar] [CrossRef]
- Segalla, A.; Fiacco, G.; Tramarin, L.; Nardello, M.; Brunelli, D. Neural networks for pest detection in precision agriculture. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020. [Google Scholar] [CrossRef]
- Fresco, R.; Ferrari, G. Enhancing precision agriculture by internet of things and cyber physical systems. Atti Soc. Tosc. Sci. Nat. Mem. Suppl. 2018, 125, 53–60. [Google Scholar]
- Potamitis, I.; Eliopoulos, P.; Rigakis, I. Automated Remote Insect Surveillance at a Global Scale and the Internet of Things. Robotics 2017, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Why, A.; Batista, G.; Mafra-Neto, A.; Keogh, E. Flying insect classification with inexpensive sensors. J. Insect. Behav. 2014, 27, 657–677. [Google Scholar] [CrossRef] [Green Version]
- Potamitis, I.; Ganchev, T.; Kontodimas, D. On automatic bioacoustic detection of pests: The cases of Rhynchophorus ferrugineus and Sitophilus oryzae. J. Econ. Entomol. 2009, 102, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Goldshtein, E.; Cohen, Y.; Hetzroni, A.; Gazit, Y.; Timar, D.; Rosenfeld, L.; Grinshpon, Y.; Hoffman, A.; Mizrach, A. Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency. Comput. Electron. Agric. 2017, 139, 115–125. [Google Scholar] [CrossRef]
- Hernández-Serna, A.; Jiménez-Segura, L.F. Automatic identification of species with neural networks. PeerJ 2014, 2, e563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrader, M.J.; Smytheman, P.; Beers, E.H.; Khot, L.R. An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines 2022, 10, 52. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.H.; Han, Z.; Wang, H.; Gao, C. Object class detection: A survey. ACM Comput. Surv. 2013, 46, 1–53. [Google Scholar] [CrossRef]
- Miresmailli, S.; Badulescu, D.; Mahdaviani, M.; Zamar, R.H.; Isman, M.B. Integrating plant chemical ecology, sensors and artificial intelligence for accurate pest monitoring. In Tomatoes: Agricultural Procedures, Pathogen Interactions and Health Effects; Aube, E.D., Poole, F.H., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 1–17. [Google Scholar]
- Almryad, A.S.; Kutucu, H. Automatic identification for field butterflies by convolutional neural networks. Int. J. Eng. Sci. Technol. 2020, 23, 189–195. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Miranda, J.L.; Gerardo, B.D.; Tanguilig, B.T., III. Pest detection and extraction using image processing techniques. Int. J. Comput. Commun. Eng. 2014, 3, 189–192. [Google Scholar] [CrossRef]
- Khalifa, N.E.M.; Loey, M.; Taha, M.H.N. Insect pests recognition based on deep transfer learning models. J. Theor. Appl. Inf. Technol. 2020, 98, 60–68. [Google Scholar]
- Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y.A. Novel Object Detection Model Based on Faster R-CNN for Spodoptera frugiperda According to Feeding Trace of Corn Leaves. Agriculture 2022, 12, 248. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [Google Scholar] [CrossRef]
- Preti, M.; Moretti, C.; Scarton, G.; Giannotta, G.; Angeli, S. Developing a smart trap prototype equipped with camera for tortricid pests remote monitoring. Bull. Insectol. 2021, 74, 147–160. [Google Scholar]
- Ciglar, I. Integrirana Zaštita Voćnjaka i Vinograda; Zrinski d.d.: Čakovec, Croatia, 1998; p. 82. [Google Scholar]
- Šubić, M.; Braggio, A.; Bassanetti, C.; Aljinović, S.; Tomšić, A.; Tomšić, T. Suzbijanje jabučnog savijača (Cydia pomonella L.) metodom konfuzije ShinEtsu® (Isomate C/OFM i Isomate CTT + OFM rosso FLEX) u Međimurju tijekom 2014. Glas. Biljn. Zaštite 2015, 15, 277–290. [Google Scholar]
- Lacey, L.A.; Thomson, D.; Vincent, C.; Arthurs, S.P. Codling moth granulovirus: A comprehensive review. Biocontrol. Sci. Technol. 2008, 18, 639–663. [Google Scholar] [CrossRef]
- Kadoić Balaško, M.; Bažok, R.; Mikac, K.M.; Lemic, D.; Pajač Živković, I. Pest management challenges and control practices in codling moth: A review. Insects 2020, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Ju, D.; Mota-Sanchez, D.; Fuentes-Contreras, E.; Zhang, Y.L.; Wang, X.Q.; Yang, X.Q. Insecticide resistance in the Cydia pomonella (L): Global status, mechanisms, and research directions. Pestic. Biochem. Physiol. 2021, 178, 104925. [Google Scholar] [CrossRef]
- Franck, P.; Reyes, M.; Olivares, J.; Sauphanor, B. Genetic architecture in codling moth populations: Comparison between microsatellite and insecticide resistance markers. Mol. Ecol. 2007, 16, 3554–3564. [Google Scholar] [CrossRef]
- Reyes, M.; Franck, P.; Charmillot, P.J.; Ioriatti, C.; Olivares, J.; Pasqualini, E.; Sauphanor, B. Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Manag. Sci. 2007, 63, 890–902. [Google Scholar] [CrossRef]
- Pajač, I.; Pejić, I.; Barić, B. Codling moth, Cydia pomonella (Lepidoptera: Tortricidae)–major pest in apple production: An overview of its biology, resistance, genetic structure and control strategies. Agric. Conspec. Sci. 2011, 76, 87–92. [Google Scholar]
- Stoeckli, S.; Hirschi, M.; Spirig, C.; Calanca, P.; Rotach, M.W.; Samietz, J. Impact of climate change on voltinism and prospective diapause induction of a global pest insect–Cydia pomonella (L.). PLoS ONE 2012, 7, e35723. [Google Scholar] [CrossRef] [PubMed]
- Samietz, J.; Stoeckli, S.; Hirschi, M.; Spirig, C.; Höhn, H.; Calanca, P.; Rotach, M. Modelling the impact of climate change on sustainable management of the codling moth (Cydia pomonella) as key pest in apple. In Proceedings of the IX International Symposium on Modelling in Fruit Research and Orchard Management 1068, Saint-Jean-sur-Richelieu, QC, Canada, 19 June 2011; pp. 35–42. [Google Scholar] [CrossRef]
- Pajač, I.; Barić, B.; Mikac, K.M.; Pejić, I. New insights into the biology and ecology of Cydia pomonella from apple orchards in Croatia. Bull. Insectol. 2012, 65, 185–193. [Google Scholar]
- Guarnieri, A.; Maini, S.; Molari, G.; Rondelli, V. Automatic trap for moth detection in integrated pest management. Bull. Insectol. 2011, 64, 247–251. [Google Scholar]
- Wen, C.; Wu, D.; Hu, H.; Pan, W. Pose estimation-dependent identification method for field moth images using deep learning architecture. Biosyst. Eng. 2015, 136, 117–128. [Google Scholar] [CrossRef]
- Albanese, A.; Nardello, M.; Brunelli, D. Automated Pest Detection with DNN on the Edge for Precision Agriculture. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 458–467. [Google Scholar] [CrossRef]
- Raga, A.; De Souza-Filho, M.F.; Machado, R.A.; Sato, M.E.; Siloto, R.C. Host ranges and infestation indices of fruit flies (Tephritidae) and lance flies (Lonchaeidae) in São Paulo State, Brazil. Fla. Entomol. 2011, 94, 787–794. [Google Scholar] [CrossRef]
- Benito, N.P.; Lopes-da-Silva, M.; Santos, R.S.S.D. Potential spread and economic impact of invasive Drosophila suzukii in Brazil. Pesqui. Agropecu. Bras. 2016, 51, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Karadjova, O.; Ilieva, Z.; Petrova, E.; Laginova, M. Predicted and actual distribution of the invasive species Drosophila suzukii (Diptera: Drosophilidae) in Bulgaria. Agric. Sci./Agrar. Nauk. 2016, 8, 45–52. [Google Scholar]
- Akbar, S.A.; Nabi, S.U.; Mansoor, S.; Khan, K.A. Morpho-molecular identification and a new host report of Bactrocera dorsalis (Hendel) from the Kashmir valley (India). Int. J. Trop. Insect Sci. 2020, 40, 315–325. [Google Scholar] [CrossRef]
- Sultana, S.; Baumgartner, J.B.; Dominiak, B.C.; Royer, J.E.; Beaumont, L.J. Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE 2020, 15, e0213820. [Google Scholar] [CrossRef] [PubMed]
- Malacrida, A.R.; Gomulski, L.M.; Bonizzoni, M.; Bertin, S.; Gasperi, G.; Guglielmino, C.A. Globalization and fruitfly invasion and expansion: The medfly paradigm. Genetica 2007, 131, 1. [Google Scholar] [CrossRef] [PubMed]
- Duyck, P.F.; David, P.; Quilici, S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 2004, 29, 511–520. [Google Scholar] [CrossRef]
- Hill, M.P.; Bertelsmeier, C.; Clusella-Trullas, S.; Garnas, J.; Robertson, M.P.; Terblanche, J.S. Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol. Invasions 2016, 18, 1105–1119. [Google Scholar] [CrossRef] [Green Version]
- Capinera, J.L. Encyclopedia of Entomology, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; p. 1486. [Google Scholar]
- Badii, K.B.; Billah, M.K.; Afreh-Nuamah, K.; Obeng-Ofori, D.; Nyarko, G. Review of the pest status, economic impact and management of fruit-infesting flies (Diptera: Tephritidae) in Africa. Afr. J. Agric. Res. 2015, 10, 1488–1498. [Google Scholar] [CrossRef] [Green Version]
- Little, C.M.; Chapman, T.W.; Hillier, N.K. Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef]
- Reyes, J.A.; Lira-Noriega, A. Current and future global potential distribution of the fruit fly Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 2020, 152, 587–599. [Google Scholar] [CrossRef]
- Robinson, A.S. Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programs. Genetica 2002, 116, 5–13. [Google Scholar] [CrossRef]
- Villalobos, J.; Flores, S.; Liedo, P.; Malo, E.A. Mass trapping is as effective as ground bait sprays for the control of Anastrepha (Diptera: Tephritidae) fruit flies in mango orchards. Pest Manag. Sci. 2017, 73, 2105–2110. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, D.J.; Xu, Y.J.; Lei, W.; Cheng, D.F.; Qi, Y.X.; Zeng, L.; Lu, Y. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J. Integr. Agric. 2019, 18, 771–787. [Google Scholar] [CrossRef]
- Dyck, V.A.; Flores, J.R.; Vreysen, M.J.B.; Fernández, E.R.; Barnes, B.N.; Loosjes, M.; Gomez Riera, P.; Teruya, T.; Lindquist, D. Management of area-wide pest management programmes that integrate the Sterile Insect Technique. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 781–814. [Google Scholar]
- Klassen, W.; Vreysen, M.J.B. Area-wide integrated pest management and the sterile insect technique. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, 2nd ed.; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 75–112. [Google Scholar] [CrossRef]
- Jin, T.; Zeng, L.; Lin, Y.; Lu, Y.; Liang, G. Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in mainland China. Pest Manag. Sci. 2010, 67, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Brun, L.; Guinaudeau, J.; Sauphanor, B. Pesticide use in current and innovative apple orchard systems. Agron. Sustain. Dev. 2011, 31, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Shaked, B.; Amore, A.; Ioannou, C.; Valdés, F.; Alorda, B.; Papanastasiou, S.; Goldshtein, E.E.; Shenderey, C.; Leza, M.; Pontikakos, C.; et al. Electronic traps for detection and population monitoring of adult fruit flies (Diptera: Tephritidae). J. Appl. Entomol. 2018, 142, 43–51. [Google Scholar] [CrossRef]
- Roosjen, P.P.; Kellenberger, B.; Kooistra, L.; Green, D.R.; Fahrentrapp, J. Deep learning for automated detection of Drosophila suzukii: Potential for UAV-based monitoring. Pest Manag. Sci. 2020, 76, 2994–3002. [Google Scholar] [CrossRef]
- Mankin, R.W.; Malavasi, A.; Aquino, C. Acoustical comparisons of calling songs from Anastrepha species in Brazil. In Fruit Fly Pests: A World Assessment of Their Biology and Management, 1st ed.; McPheron, B.A., Steck, G.J., Eds.; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 1996; pp. 37–42. [Google Scholar]
- Potamitis, I.; Rigakis, I.; Vidakis, N.; Petousis, M.; Weber, M. Affordable bimodal optical sensors to spread the use of automated insect monitoring. J. Sens. 2018, 2018, 3949415. [Google Scholar] [CrossRef] [Green Version]
- Sandrini Moraes, F.; Edson Nava, D.; Scheunemann, T.; Santos da Rosa, V. Development of an optoelectronic sensor for detecting and classifying fruit fly (diptera: Tephritidae) for use in real-time intelligent traps. Sensors 2019, 19, 1254. [Google Scholar] [CrossRef] [Green Version]
- Liebhold, A.M.; Tobin, P.C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 2008, 53, 387–408. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, T.; Yang, E.C.; Chen, C.P.; Lin, T.S.; Chuang, C.L.; Jiang, J.A. Using automated monitoring systems to uncover pest population dynamics in agricultural fields. Agric. Syst. 2011, 104, 666–670. [Google Scholar] [CrossRef]
- Jiang, J.A.; Lin, T.S.; Yang, E.C.; Tseng, C.L.; Chen, C.P.; Yen, C.W.; Zheng, X.Y.; Liu, C.Y.; Liu, R.H.; Chen, Y.F.; et al. Application of a web-based remote agro-ecological monitoring system for observing spatial distribution and dynamics of Bactrocera dorsalis in fruit orchards. Precis. Agric. 2013, 14, 323–342. [Google Scholar] [CrossRef]
- Liao, M.S.; Chuang, C.L.; Lin, T.S.; Chen, C.P.; Zheng, X.Y.; Chen, P.T.; Liao, K.C.; Jiang, J.A. Development of an autonomous early warning system for Bactrocera dorsalis (Hendel) outbreaks in remote fruit orchards. Comput. Electron. Agric. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Chuang, C.L.; Yang, E.C.; Tseng, C.L.; Chen, C.P.; Lien, G.S.; Jiang, J.A. Toward anticipating pest responses to fruit farms: Revealing factors influencing the population dynamics of the Oriental Fruit Fly via automatic field monitoring. Comput. Electron. Agric. 2014, 109, 148–161. [Google Scholar] [CrossRef]
- Jiang, J.A.; Syue, C.H.; Wang, C.H.; Liao, M.S.; Shieh, J.S.; Wang, J.C. Precisely forecasting population dynamics of agricultural pests based on an interval type-2 fuzzy logic system: Case study for oriental fruit flies and the tobacco cutworms. Precis. Agric. 2022, 1–31. [Google Scholar] [CrossRef]
- Zhong, Y.; Gao, J.; Lei, Q.; Zhou, Y. A vision-based counting and recognition system for flying insects in intelligent agriculture. Sensors 2018, 18, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Liao, M.; Huang, W.; Deng, H.; Ao, L.; Hua, J. Fruit fly classification via convolutional neural network. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018. [Google Scholar] [CrossRef]
- Leonardo, M.M.; Avila, S.; Zucchi, R.A.; Faria, F.A. Mid-level image representation for fruit fly identification (Diptera: Tephritidae). In Proceedings of the 2017 IEEE 13th International Conference on e-Science (e-Science), Auckland, New Zealand, 24–27 October 2017. [Google Scholar] [CrossRef]
- Faria, F.A.; Perre, P.; Zucchi, R.A.; Jorge, L.R.; Lewinsohn, T.M.; Rocha, A.; Torres, R.D.S. Automatic identification of fruit flies (Diptera: Tephritidae). J. Vis. Commun. 2014, 25, 1516–1527. [Google Scholar] [CrossRef]
- Blasco, J.; Gómez-Sanchís, J.; Gutierrez, A.; Chueca, P.; Argilés, R.; Moltó, E. Automatic sex detection of individuals of Ceratitis capitata by means of computer vision in a biofactory. Pest Manag. Sci. Former. Pestic. Sci. 2009, 65, 99–104. [Google Scholar] [CrossRef]
- Ciglar, I. Ispitivanje djelotvornosti nekih insekticida na lisne minere. Agron. Glas. Glas. Hrvat. Agron. Društva 1972, 36, 663–670. [Google Scholar]
- Baufeld, P.; Freier, B. Artificial injury experiments on the damaging effect of Leucoptera malifoliella on apple trees. Entomol. Exp. Appl. 1991, 61, 201–209. [Google Scholar] [CrossRef]
- Maceljski, M. Poljoprivredna Entomologija, 2nd ed.; Zrinski d.d.: Čakovec, Croatia, 2008. [Google Scholar]
- Francke, W.; Franke, S.; Toth, M.; Szöcs, G.; Guerin, P.; Arn, H. Identification of 5, 9-dimethylheptadecane as a sex pheromone of the moth Leucoptera scitella. Naturwissenschaften 1987, 74, 143–144. [Google Scholar] [CrossRef]
- Šubić, M. Mogućnosti i ograničenja suzbijanja moljca kružnih mina (Leucoptera malifoliella Costa) (Lepidoptera: Lionetiidae) u Međimurju. Glas. Biljne Zaštite 2015, 15, 195–206. [Google Scholar]
- Rovesti, L.; Deseö, K.V. Effectiveness of neem seed kernel extract against Leucoptera malifoliella Costa (Lep., Lyonetiidae). J. App. Entomol. 1991, 111, 231–236. [Google Scholar] [CrossRef]
- Grünig, M.; Razavi, E.; Calanca, P.; Mazzi, D.; Wegner, J.D.; Pellissier, L. Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere 2021, 12, 16. [Google Scholar] [CrossRef]
- Delbac, L.; Rouzes, R.; Hamidi, R.; Thiéry, D. First occurrence of Halyomorpha halys in Bordeaux vineyards. OENO One 2022, 56, 253–257. [Google Scholar] [CrossRef]
- Ogburn, E.C.; Ohmen, T.M.; Huseth, A.S.; Reisig, D.D.; Kennedy, G.G.; Walgenbach, J.F. Temperature-driven differences in phenology and habitat suitability for brown marmorated stink bug, Halyomorpha halys, in two ecoregions of North Carolina. J. Pest. Sci. 2022, 1–15. [Google Scholar] [CrossRef]
- Rice, K.B.; Bergh, C.J.; Bergmann, E.J.; Biddinger, D.J.; Dieckhoff, C.; Dively, G.; Fraser, H.; Gariepy, T.; Hamilton, G.; Haye, T.; et al. Biology, ecology, and management of brown marmorated stink bug (Hemiptera: Pentatomidae). J. Integr. Pest Manag. 2014, 5, A1–A13. [Google Scholar] [CrossRef]
- Bariselli, M.; Bugiani, R.; Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. Eppo Bull. 2016, 46, 332–334. [Google Scholar] [CrossRef]
- Leskey, T.C.; Short, B.D.; Butler, B.R.; Wright, S.E. Impact of the invasive brown marmorated stink bug, Halyomorpha halys (Stål), in mid-Atlantic tree fruit orchards in the United States: Case studies of commercial management. Psyche 2012, 2012, 535062. [Google Scholar] [CrossRef] [Green Version]
- Funayama, K. Oviposition and development of Halyomorpha halys (Stal) and Homalogonia obtusa (Walker) (Heteroptera: Pentatomidae) on apple trees. Jpn. J. Appl. Entomol. Zool. 2002, 46, 1–6. [Google Scholar] [CrossRef] [Green Version]
- EPP. EPPO Standard PP 1/313 (1) Halyomorpha halys on fruit tree crops. Bull. OEPP/EPPO Bull. 2019, 49, 43–47. [Google Scholar] [CrossRef]
- Candian, V.; Pansa, M.G.; Briano, R.; Peano, C.; Tedeschi, R.; Tavella, L. Exclusion nets: A promising tool to prevent Halyomorpha halys from damaging nectarines and apples in NW Italy. Bull. Insectol. 2018, 71, 21–30. [Google Scholar]
- Leskey, T.C.; Short, B.D.; Lee, D.H. Efficacy of insecticide residues on adult Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) mortality and injury in apple and peach orchards. Pest Manag. Sci. 2013, 70, 1097–1104. [Google Scholar] [CrossRef]
- Pajač Živković, I.; Jurić, S.; Vinceković, M.; Galešić, M.A.; Marijan, M.; Vlahovićek-Kahlina, K.; Mikac, K.M.; Lemic, D. Polyphenol-Based Microencapsulated Extracts as Novel Green Insecticides for Sustainable Management of Polyphagous Brown Marmorated Stink Bug (Halyomorpha halys Stål, 1855). Sustainability 2020, 12, 79. [Google Scholar] [CrossRef]
- Kistner, E.J. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) with Special Reference to North America and Europe. Environ. Entomol. 2017, 46, 1212–1224. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, M.T.; Matsuura, K.; Yoshimura, T.; Yang, C.C.S. Improving invasive species management using predictive phenology models: An example from brown marmorated stink bug (Halyomorpha halys) in Japan. Pest Manag. Sci. 2021, 77, 5489–5497. [Google Scholar] [CrossRef] [PubMed]
- Lippi, M.; Bonucci, N.; Carpio, R.F.; Contarini, M.; Speranza, S.; Gasparri, A. A yolo-based pest detection system for precision agriculture. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021. [Google Scholar] [CrossRef]
- Il’ichev, A.L.; Williams, D.G. Combined control of codling moth ‘Cydia pomonella’ L. and oriental fruit moth ‘Grapholita molesta’ Busck (Lepidoptera: Tortricidae) by mating disruption on pears in Australia. Gen. Appl. Entomol. J. Entomol. Soc. N. S. W. 2006, 35, 29–37. [Google Scholar]
- Kutinkova, H.Y.; Arnaudov, V.A.; Dzhuvinov, V.T. Sustainable Control of Oriental Fruit Moth, Cydia molesta Busck, Using Isomate OFM Rosso Dispensers in Peach Orchards in Bulgaria. Chem. Eng. Trans. 2015, 44, 229–234. [Google Scholar]
- Barić, B.; Pajač Živković, I.; Šubić, M. Smjernice za Praćenje Jabukova Savijača u Voćnjacima s Konfuzijom; Agronomski Fakultet, Zavod za Poljoprivrednu Zoologiju: Zagreb, Croatia, 2018; pp. 24–25. [Google Scholar]
- Neven, L.G.; Kumar, S.; Yee, W.L.; Wakie, T. Current and future potential risk of establishment of Grapholita molesta (Lepidoptera: Tortricidae) in Washington State. Environ. Entomol. 2018, 47, 448–456. [Google Scholar] [CrossRef]
- Pérez-Aparicio, A.; Llorens Calveras, J.; Rosell Polo, J.R.; Martí, J.; Gemeno Marín, C. A cheap electronic sensor automated trap for monitoring the flight activity period of moths. Eur. J. Entomol. 2021, 118, 315–321. [Google Scholar] [CrossRef]
- Ascolese, R.; Gargiulo, S.; Pace, R.; Nappa, P.; Griffo, R.; Nugnes, F.; Bernardo, U. E-traps: A valuable monitoring tool to be improved. EPPO Bull. 2022, 52, 175–184. [Google Scholar] [CrossRef]
Pest | Trap | Website |
---|---|---|
Cydia pomonella (Linnaeus, 1758) | TrapView (Slovenia) | https://trapview.com/ (accessed on 15 April 2022) |
SightTrap™ (USA) | https://www.insectslimited.com/ (accessed on 15 April 2022) | |
DTN Smart Trap (USA) | https://www.dtn.com/ (accessed on 15 April 2022) | |
iSCOUT® PHEROMONE (Austria) | https://metos.at/ (accessed on 15 April 2022) | |
Semios trap (Canada) | https://semios.com/ (accessed on 15 April 2022) | |
CropVue trap (Canada) | https://www.cropvue.com/ (accessed on 15 April 2022) |
Category | Pest | Trap | Website |
---|---|---|---|
Fruit flies | Drosophila suzukii (Matsumura, 1931) | iSCOUT® FRUIT FLY (Austria) | https://metos.at/ (accessed on 26 April 2022) |
TrapView (Slovenia) | https://trapview.com/ (accessed on 26 April 2022) | ||
Ceratitis capitata (Wiedemann, 1824) | iSCOUT® FRUIT FLY (Austria) | https://metos.at/ (accessed at 15 April 2022) | |
TrapView (Slovenia) | https://trapview.com/ (accessed on 15 April 2022) | ||
Rhagoletis pomonella (Walsh, 1867) | iSCOUT® COLOR TRAP (Austria) | https://metos.at/ (accessed on 26 April 2022) | |
RapidAIM (Australija) | https://rapidaim.io/ (accessed on 26 April 2022) |
Category | Pest | Trap | Website |
---|---|---|---|
Moths | Adoxophyes orana (Fischer Röslerstamm, 1834) | iSCOUT® PHEROMONE (Austria) | https://metos.at/ (accessed on 15 April 2022) |
Synanthedon myopaeformis (Borkhausen, 1789) | iSCOUT® PHEROMONE (Austria) | https://metos.at/ (accessed at 15 April 2022) | |
Zeuzera pyrina (Linnaeus, 1761) | iSCOUT® PHEROMONE (Austria) | https://metos.at/ (accessed at 15 April 2022) | |
Pammene rhediella (Clerck, 1759) | iSCOUT® PHEROMONE (Austria) | https://metos.at/ (accessed at 15 April 2022) | |
Choristoneura rosaceana (Harris, 1841) | TrapView (Slovenia) | https://trapview.com/ (accessed at 15 April 2022) | |
Semios trap (Canada) | https://semios.com/ (accessed at 15 April 2022) | ||
Cydia molesta (Busck. 1916) | TrapView (Slovenia) | https://trapview.com/ (accessed at 15 April 2022) | |
Semios trap (Canada) | https://semios.com/ (accessed at 15 April 2022) | ||
True bugs | Halyomorpha halys (Stål, 1855) | iSCOUT® BUG (Austria) | https://metos.at/ (accessed at 15 April 2022) |
Thrips | Frankliniella occidentalis (Pergande, 1895) | iSCOUT® COLOR TRAP (Austria) | https://metos.at/ (accessed at 15 April 2022) |
Whiteflies | Quadraspidiotus perniciosus (Comstock, 1881) | iSCOUT ® PHEROMONE (Austria) | https://metos.at/ (accessed at 15 April 2022) |
Wasps | Hoplocampa testudinea (Klug, 1816) | iSCOUT ® COLOR TRAP (Austria) | https://metos.at/ (accessed at 15 April 2022) |
Hoplocampa flava (Linnaeus, 1761) | iSCOUT ® COLOR TRAP (Austria) | https://metos.at/ (accessed at 15 April 2022) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čirjak, D.; Miklečić, I.; Lemić, D.; Kos, T.; Pajač Živković, I. Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions. Horticulturae 2022, 8, 520. https://doi.org/10.3390/horticulturae8060520
Čirjak D, Miklečić I, Lemić D, Kos T, Pajač Živković I. Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions. Horticulturae. 2022; 8(6):520. https://doi.org/10.3390/horticulturae8060520
Chicago/Turabian StyleČirjak, Dana, Ivana Miklečić, Darija Lemić, Tomislav Kos, and Ivana Pajač Živković. 2022. "Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions" Horticulturae 8, no. 6: 520. https://doi.org/10.3390/horticulturae8060520
APA StyleČirjak, D., Miklečić, I., Lemić, D., Kos, T., & Pajač Živković, I. (2022). Automatic Pest Monitoring Systems in Apple Production under Changing Climatic Conditions. Horticulturae, 8(6), 520. https://doi.org/10.3390/horticulturae8060520