Comparative Examination of Phytonutrients and Antioxidant Activity of Commonly Consumed Nuts and Seeds Grown in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Determination of B-Vitamins
2.4. Estimation of Carotenoids
2.5. HPLC-MS/MS Analysis of Phenolic Compounds
2.6. Evaluation of Antioxidant Activity
2.6.1. DPPH Assay
2.6.2. ABTS Assay
2.6.3. FRAP Assay
2.6.4. Reducing Power Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Carotenoids and B-Vitamins
3.2. Flavonoids
3.3. Phenolic Acids
3.4. Principal Component Analysis and Heat Map
3.5. Antioxidant Activity
3.6. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Eaton, S.B.; Konner, M. Paleolithic nutrition: A consideration of its nature and current implications. N. Engl. J. Med. 1985, 312, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Alasavar, C.; Shahidi, F. Tree nuts: Composition, phytochemicals, and health effects: An overview. In Tree Nuts Composition, Phytochemicals, and Health Effects; Alasavar, C., Shahidi, F., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–10. [Google Scholar]
- Jiang, R.; Jacobs, D.R., Jr.; Mayer-Davis, E.; Szklo, M.; Herrington, D.; Jenny, N.S.; Kronmal, R.; Barr, R.G. Nut and seed consumption and inflammatory markers in the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 2006, 163, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorji, N.; Moeini, R.; Memariani, Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: A neuropharmacological review of their bioactive constituents. Pharmacol. Res. 2018, 129, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, Z. A prospective Association of nut Consumption with cognitive function in Chinese adults aged 55+ _ China health and nutrition survey. J. Nutr. Health Aging 2019, 23, 211–216. [Google Scholar] [CrossRef]
- Long, J.; Ji, Z.; Yuan, P.; Long, T.; Liu, K.; Li, J.; Cheng, L. Nut consumption and risk of cancer: A meta-analysis of prospective studies. Cancer Epidemiol. Biomark. Prev. 2020, 29, 565–573. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Kalhoro, M.S.; Kalhoro, D.H.; Adebowale, T.O.; Mazhar, M.U.; Ur Rehman, Z.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef]
- Kim, B.W.; Jeong, K.H.; Kim, J.H.; Jin, M.; Kim, J.H.; Lee, M.G.; Choi, D.K.; Won, S.Y.; McLean, C.; Jeon, M.T.; et al. Pathogenic upregulation of glial lipocalin-2 in the parkinsonian dopaminergic system. J. Neurosci. 2016, 36, 5608–5622. [Google Scholar] [CrossRef] [Green Version]
- Gelders, G.; Baekelandt, V.; Van der Perren, A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res. 2018, 2018, 4784268. [Google Scholar] [CrossRef] [Green Version]
- Stalker, T.; Wilson, R.F. (Eds.) Peanuts: Genetics, Processing, and Utilization; Academic Press: Cambridge, MA, USA; AOCS Press: Champaign, IL, USA, 2016. [Google Scholar]
- Peng, R.; Lan, L.P.; Christian, K. Weaver ant role in cashew orchards in Vietnam. J. Econ. Entomol. 2014, 107, 1330–1338. [Google Scholar] [CrossRef] [Green Version]
- United Nations Conference On Trade And Development (UNCTAD). Commodities at a Glance. Special Issue on Cashew Nuts. No 14. 2021. Available online: https://unctad.org/system/files/official-document/ditccom2020d1_en.pdf (accessed on 1 February 2022).
- Vietnam Cashew Association (VINACAS). Vietnam’s Cashew Kernel Export Market. 2021. Available online: http://www.vinacas.com.vn/uploads/download/so-lieu-thong-ke-xuat-khau-dieu-nhan-ca-nam-2020-tu-t-1-t-12-1610696183-mdpal.pdf (accessed on 1 February 2022).
- World Agroforestry (ICRAF). NW Vietnam: New fruit Species Brings Ripe Opportunity for Poverty Reduction. 2013. Available online: https://worldagroforestry.org/news/nw-vietnam-new-fruit-species-brings-ripe-opportunity-poverty-reduction (accessed on 10 February 2022).
- Son, N.H.; Thang, N.T.; Thuyet, D.V.; Hung, N.Q.; Thinh, N.H.; Lam, V.T.; Khuong, N.V.; Tuan, N.V.; Trung, P.D.; Quy, T.H.; et al. Fruit And Nut Characteristics Of Promising Persian Walnut Trees In Vietnam. Plant Cell Biotechnol. Mol. Biol. 2019, 20, 561–567. [Google Scholar]
- Ndaw, S.; Bergaentzle, M.; Aoude-Werner, D.; Hasselmann, C. Extraction procedures for the liquid chromatographic determination of thiamin, riboflavin and vitamin B6 in foodstuffs. Food Chem. 2000, 71, 129–138. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents; Portland Press Ltd.: London, UK, 1983. [Google Scholar]
- D’Souza, M.C.; Singha, S.; Ingle, M. Lycopene concentration of tomato fruit can be estimated from chromaticity values. HortScience 1992, 27, 465–466. [Google Scholar] [CrossRef] [Green Version]
- Vu, D.C.; Alvarez, S. Phenolic, Carotenoid and Saccharide Compositions of Vietnamese Camellia sinensis Teas and Herbal Teas. Molecules 2021, 26, 6496. [Google Scholar] [CrossRef]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J. Funct. Foods 2014, 10, 210–222. [Google Scholar] [CrossRef]
- Leung, P.H.; Zhao, S.; Ho, K.P.; Wu, J.Y. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009, 114, 1251–1256. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Stuetz, W.; Schlörmann, W.; Glei, M. B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chem. 2017, 221, 222–227. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef]
- Win, M.M.; Abdul-Hamid, A.; Baharin, B.S.; Anwar, F.; Sabu, M.C.; Pak-Dek, M.S. Phenolic compounds and antioxidant activity of peanut’s skin, hull, raw kernel and roasted kernel flour. Pak. J. Bot. 2011, 43, 1635–1642. [Google Scholar]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef]
- Uslu, N.; Özcan, M.M. Effect of microwave heating on phenolic compounds and fatty acid composition of cashew (Anacardium occidentale) nut and oil. J. Saudi Soc. Agric. Sci. 2019, 18, 344–347. [Google Scholar] [CrossRef]
- Bittner, K.; Rzeppa, S.; Humpf, H.-U. Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes. J. Agric. Food Chem. 2013, 61, 9148–9154. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S.; Karathanos, V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.H. Identification and characterization of phenolic compounds in black walnut kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits–A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Chukwumah, Y.; Walker, L.; Vogler, B.; Verghese, M. Profiling of bioactive compounds in cultivars of Runner and Valencia peanut market-types using liquid chromatography/APCI mass spectrometry. Food Chem. 2012, 132, 525–531. [Google Scholar] [CrossRef]
- Žilić, S.; Dragišić, J.M.; Maksimović, V.; Maksimović, M.; Basić, Z.; Crevar, M.; Stanković, G. The content of antioxidants in sunflower seed and kernel. Helia 2010, 33, 75–84. [Google Scholar] [CrossRef]
- Nguyen, T.H.D.; Vu, D.C. A Review on Phytochemical Composition and Potential Health-promoting Properties of Walnuts. Food Rev. Int. 2021, 1–27. [Google Scholar] [CrossRef]
- Vinson, J.A.; Cai, Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012, 3, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luu, H.N.; Blot, W.J.; Xiang, Y.B.; Cai, H.; Hargreaves, M.K.; Li, H.; Yang, G.; Signorello, L.; Gao, Y.T.; Zheng, W.; et al. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern. Med. 2015, 175, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Gayathri, R.; Jaacks, L.M.; Lakshmipriya, N.; Anjana, R.M.; Spiegelman, D.; Jeevan, R.G.; Balasubramaniam, K.K.; Shobana, S.; Jayanthan, M.; et al. Cashew nut consumption increases HDL cholesterol and reduces systolic blood pressure in Asian Indians with type 2 diabetes: A 12-week randomized controlled trial. J. Nutr. 2018, 148, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Comparison of phenol content and antioxidant capacity of nuts. Food Sci. Technol. 2010, 30, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Ozer, H.K. Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. Int. J. Food Prop. 2017, 20, 2772–2781. [Google Scholar] [CrossRef] [Green Version]
- Vu, D.C.; Park, J.; Ho, K.V.; Sumner, L.W.; Lei, Z.; Greenlief, C.M.; Mooney, B.; Coggeshall, M.V.; Lin, C.H. Identification of health-promoting bioactive phenolics in black walnut using cloud-based metabolomics platform. J. Food Meas. Charact. 2020, 14, 770–777. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Vietnamese Name | Product Description | Purchase Location |
---|---|---|---|---|
Cashew | Anacardium occidentale | hạt điều | raw nut | Southeast |
Macadamia | Macadamia integrifolia | mắc ca | dried nut | Central Highlands |
Peanut | Arachis hypogaea | đậu phộng | roasted nut | Mekong delta |
Sachi inchi | Plukenetia volubilis | sachi | dried nut | Central Highlands |
Walnut | Juglans sp. | hạt óc chó | dried nut | Northwest |
Pumpkin seed | Cucurbita sp. | hạt bí | roasted seed | Southeast |
Sunflower seed | Helianthus annuus | hạt hướng dương | dried seed | Southeast |
Watermelon seed | Citrullus lanatus | hạt dưa | roasted seed | Southeast |
Cashew | Macadamia | Peanut | Sachi Inchi | Walnut | Pumpkin Seed | Sunflower Seed | Watermelon Seed | RDA * | |
---|---|---|---|---|---|---|---|---|---|
Lutein | 79.7 | nd | nd | nd | 60.7 | nd | 61.9 | 157.3 | 800 |
Zeaxanthin | nd | nd | nd | nd | 84.9 | nd | 89.9 | nd | |
β-Carotene | 19.4 | 7.3 | 28.5 | 49.6 | 48.0 | 89.3 | 17.2 | 24.7 | |
% RDA for β-Carotene ** | <0.5 | <0.1 | <0.5 | <1 | 0.5 | <1 | <0.5 | <0.5 | |
Vitamin B1 | 406.4 | 947.1 | 551.6 | 3449.1 | 290.0 | 2564.5 | 3381.1 | nd | 1150 |
% RDA | 35 | 82 | 48 | 300 | 26 | 223 | 294 | - | |
Vitamin B6 | 799.1 | nd | 648.8 | 1672.5 | 730.5 | 779.3 | 2537.2 | 202.6 | 1300 |
% RDA | 61 | - | 50 | 130 | 56 | 60 | 195 | 16 | |
Vitamin B9 | nd | nd | 90.7 | 724.3 | nd | nd | 674.3 | 58.8 | 400 |
% RDA | - | - | 23 | 181 | - | - | 168 | 15 |
Cashew | Macadamia | Peanut | Sacha Inchi | Walnut | Pumpkin Seed | Sunflower Seed | Watermelon Seed | |
---|---|---|---|---|---|---|---|---|
Apigenin | 2.02 ± 0.04 b | nd | 2.70 ± 0.05 b | 1.06 ± 0.03 b | 4.15 ± 0.57 b | nd | nd | 240.00 ± 19.09 a |
Catechin * | 256.99 ± 7.69 a | 2.56 ± 0.05 bc | 13.41 ± 0.36 b | 0.12 ± 0.01 bc | 11.73 ± 0.42 bc | 0.05 ± 0.00 c | 0.03 ± 0.00 c | nd |
Epicatechin * | 182.67 ± 6.58 a | 3.02 ± 0.03 b | 4.09 ± 0.10 b | nd | nd | nd | nd | nd |
Genistein | nd | 4.57 ± 0.32 c | 9.25 ± 0.39 a | nd | 7.38 ± 0.07 b | nd | nd | 6.86 ± 0.10 b |
Hesperetin | nd | 1.99 ± 0.08 c | nd | nd | 9.03 ± 0.18 b | nd | nd | 12.37 ± 0.55 a |
Kaempferol | 84.03 ± 1.75 | nd | nd | nd | nd | nd | nd | nd |
Luteolin | 2.67 ± 0.34 b | 6.32 ± 0.10 b | 3.88 ± 0.25 b | 9.88 ± 0.79 b | 6.01 ± 0.16 b | 4.06 ± 0.10 b | 12.14 ± 1.44 b | 1792.65 ± 65.68 a |
Naringenin | 18.27 ± 0.18 b | nd | nd | nd | 26.64 ± 1.28 a | nd | 7.07 ± 0.08 d | 12.74 ± 0.76 c |
Procyanidin B2 * | 13.45 ± 0.42 | nd | nd | nd | nd | nd | nd | nd |
Phloretin | 1.23 ± 0.01 b | 1.12 ± 0.04 c | nd | nd | 6.33 ± 0.04 a | nd | nd | nd |
Q3G | 1043.49 ± 47.52 a | 42.34 ± 1.38 c | 5.82 ± 0.40 c | 3.94 ± 0.35 c | 416.09 ± 21.85 b | 3.85 ± 0.48 c | 38.48 ± 2.10 c | 2.97 ± 0.05 c |
Q3GA | 92.69 ± 5.96 a | nd | nd | nd | 100.01 ± 2.91 a | nd | 56.25 ± 3.12 b | nd |
Quercetin | 48.50 ± 1.32 a | 3.67 ± 0.02 cd | 2.85 ± 0.16 cd | nd | 11.43 ± 1.06 b | nd | 5.52 ± 0.05 c | 1.96 ± 0.02 d |
Resveratrol ** | 4.80 ± 0.22 b | 4.62 ± 0.27 b | 14.18 ± 1.46 a | 0.94 ± 0.23 c | nd | nd | 1.38 ± 0.21 c | 0.90 ± 0.11 c |
Rutin | nd | nd | 97.75 ± 2.23 a | nd | nd | nd | 6.21 ± 0.62 b | nd |
Sum of flavonoids | 466.04 ± 5.34 | 6.19 ± 0.06 | 18.72 ± 0.50 | 0.27 ± 0.00 | 17.60 ± 0.67 | 0.13 ± 0.01 | 1.29 ± 0.03 | 20.69 ± 0.57 |
Cashew | Macadamia | Peanut | Sacha Inchi | Walnut | Pumpkin Seed | Sunflower Seed | Watermelon Seed | |
---|---|---|---|---|---|---|---|---|
Hydroxycinnamic acids | ||||||||
Caffeic acid | 0.07 ± 0.00 b | 0.23 ± 0.02 b | 1.90 ± 0.03 b | 0.30 ± 0.00 b | 0.44 ± 0.02 b | 0.11 ± 0.00 b | 51.89 ± 3.68 a | 0.36 ± 0.01 b |
Chlorogenic acid | 3.52 ± 0.33 b | 5.94 ± 0.51 b | 2.62 ± 0.11 b | 4.48 ± 0.19 b | 34.24 ± 2.75 b | 4.77 ± 0.30 b | 1478.68 ± 131.83 a | 3.02 ± 0.17 b |
Neochlorogenic acid * | 0.09 ± 0.00 c | 0.16 ± 0.02 c | 0.12 ± 0.00 c | 0.09 ± 0.00 c | 16.74 ± 1.77 b | 0.07 ± 0.01 c | 308.30 ± 11.09 a | 0.06 ± 0.00 c |
Cinnamic acid | 0.44 ± 0.00 c | 0.77 ± 0.01 b | 0.75 ± 0.04 b | 0.12 ± 0.01 d | 0.16 ± 0.02 d | 0.56 ± 0.00 c | 3.69 ± 0.04 a | 0.85 ± 0.03 b |
p-Coumaric acid | 3.95 ± 0.19 b | 0.86 ± 0.05 b | 138.25 ± 13.35 a | 0.28 ± 0.00 b | 0.90 ± 0.03 b | 0.44 ± 0.00 b | 14.84 ± 0.67 b | 20.10 ± 0.19 b |
Ferulic acid | 0.96 ± 0.04 d | 0.60 ± 0.03 d | 5.43 ± 0.07 a | 0.22 ± 0.01 d | 3.73 ± 0.63 b | 0.83 ± 0.00 d | 0.92 ± 0.03 d | 2.28 ± 0.04 c |
Hydroxybenzoic acids | ||||||||
Gallic acid | 19.31 ± 1.35 b | 0.36 ± 0.04 c | 0.30 ± 0.00 c | 0.10 ± 0.00 c | 70.46 ± 1.37 a | nd | 0.38 ± 0.01 c | 0.37 ± 0.00 c |
Protocatechuic acid | 2.88 ± 0.00 c | 0.67 ± 0.04 e | 1.40 ± 0.03 d | 2.89 ± 0.01 c | 3.04 ± 0.12 c | 0.17 ± 0.01 e | 4.88 ± 0.02 b | 37.33 ± 0.29 a |
Syringic acid | 0.11 ± 0.01 b | 2.13 ± 0.28 a | 0.20 ± 0.03 b | 0.08 ± 0.00 b | 0.24 ± 0.02 b | 0.15 ± 0.01 b | 2.78 ± 0.28 a | 0.27 ± 0.02 b |
Vanillic acid | 1.09 ± 0.03 e | 8.41 ± 0.34 b | 4.17 ± 0.27 d | 1.15 ± 0.06 e | 5.50 ± 0.37 c | 1.11 ± 0.06 e | 4.04 ± 0.17 d | 16.53 ± 0.28 a |
Sum of phenolic acids | 32.44 ± 1.81 | 20.14 ± 1.99 | 155.17 ± 13.92 | 9.71 ± 0.28 | 135.45 ± 6.99 | 7.46 ± 0.64 | 1870.41 ± 241.28 | 81.18 ± 0.27 |
TPC ** | 6.03 ± 0.19 c | 5.69 ± 0.12 d | 2.84 ± 0.08 d | 8.83 ± 0.24 b | 49.87 ± 0.18 a | 2.71 ± 0.02 d | 18.82 ± 0.65 a | 2.47 ± 0.06 c |
DPPH | ABTS | FRAP | Reducing Power | |
---|---|---|---|---|
μg AAE/g | μg AAE/g | mM TE/g | mg AAE/g | |
Cashew | 277.54 ± 20.60 c | 793.71 ± 33.81 a | 2.04 ± 0.25 c | 4.68 ± 0.20 e |
Macadamia | 108.68 ± 17.00 d | 776.43 ± 32.64 a | 3.80 ± 0.15 c | 9.92 ± 0.52 b |
Peanut | 78.97 ± 13.76 d | 786.18 ± 36.62 a | 0.43 ± 0.05 c | 3.89 ± 0.19 f |
Sacha inchi | 487.33 ± 85.08 b | 689.54 ± 29.26 bc | 2.31 ± 0.02 c | 4.08 ± 0.11 f |
Walnut | 704.74 ± 10.68 a | 783.52 ± 28.53 a | 133.12 ± 3.91 a | 11.29 ± 0.01 a |
Pumpkin seed | 66.15 ± 27.35 d | 652.75 ± 26.91 c | 0.95 ± 0.13 c | 2.42 ± 0.12 g |
Sunflower seed | 741.07 ± 13.45 a | 758.69 ± 33.96 ab | 57.36 ± 0.49 b | 5.33 ± 0.11 d |
Watermelon seed | 280.09 ± 40.95 c | 743.62 ± 24.39 ab | 0.40 ± 0.09 c | 8.74 ± 0.43 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.H.D.; Vu, D.C.; Alvarez, S.; Nguyen, K.D.; Nguyen, T.L.T.; Tuan, N.N.; Minh-Nguyet, N.T.; Tam, L.N.; Ho, T.L.; Vo, X.T. Comparative Examination of Phytonutrients and Antioxidant Activity of Commonly Consumed Nuts and Seeds Grown in Vietnam. Horticulturae 2022, 8, 521. https://doi.org/10.3390/horticulturae8060521
Nguyen THD, Vu DC, Alvarez S, Nguyen KD, Nguyen TLT, Tuan NN, Minh-Nguyet NT, Tam LN, Ho TL, Vo XT. Comparative Examination of Phytonutrients and Antioxidant Activity of Commonly Consumed Nuts and Seeds Grown in Vietnam. Horticulturae. 2022; 8(6):521. https://doi.org/10.3390/horticulturae8060521
Chicago/Turabian StyleNguyen, Trang H. D., Danh C. Vu, Sophie Alvarez, Khoa D. Nguyen, Thuong L. T. Nguyen, Nguyen N. Tuan, Nguyen T. Minh-Nguyet, Le N. Tam, Thi L. Ho, and Xuyen T. Vo. 2022. "Comparative Examination of Phytonutrients and Antioxidant Activity of Commonly Consumed Nuts and Seeds Grown in Vietnam" Horticulturae 8, no. 6: 521. https://doi.org/10.3390/horticulturae8060521
APA StyleNguyen, T. H. D., Vu, D. C., Alvarez, S., Nguyen, K. D., Nguyen, T. L. T., Tuan, N. N., Minh-Nguyet, N. T., Tam, L. N., Ho, T. L., & Vo, X. T. (2022). Comparative Examination of Phytonutrients and Antioxidant Activity of Commonly Consumed Nuts and Seeds Grown in Vietnam. Horticulturae, 8(6), 521. https://doi.org/10.3390/horticulturae8060521