Table-Grape Cultivation in Soil-Less Systems: A Review
Abstract
:1. Introduction
The Rationale for the Soil-Less Table-Grape System Cultivation (TGSC)
2. The Italian Research Activity on TGSC
3. The Research Activity on TGSC Systems in Other Countries
4. Establishing and Managing the Table-Grape Soil-Less System
4.1. The Climate
4.2. The Cover
4.3. The Genetic Factor: Proper Cultivar Selection and Plant Material
4.4. The Substrate
4.5. The Container
4.6. The Table-Grape Soil-Less System Management: Water and Mineral Nutrition
5. Concluding Remarks: Lessons Learned in the Last 20 Years
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Lorenzo, R. Appello per tornare competitivi: Cambiamento strategico e colturale. Frutticoltura 2020, 1, 4–6. [Google Scholar]
- OIV 2021. Databases and Statistics. Available online: https://www.oiv.int/en/statistiques/ (accessed on 28 September 2021).
- OIV 2019. Statistical Report on World Vitiviniculture. 2019. Available online: https://www.oiv.int (accessed on 28 September 2021).
- Velasco, R. Tempo di cambiamenti. Frutticoltura 2019, 1, 4–5. [Google Scholar]
- ISMEA 2020. Available online: https://www.ismeamercati.it/analisi-e-studio-filiere-agroalimentari (accessed on 28 September 2021).
- Fideghelli, C. Situazione e prospettive in Italia di un prodotto sempre più globale. Frutticoltura 2020, 1, 8–11. [Google Scholar]
- Zagaria, D.; Melillo, V.; Catalano, L. Dalla Spagna Grape Attraction 2018, riflessioni per il futuro italiano. Frutticoltura 2019, 1, 12–17. [Google Scholar]
- Rezgui, A.; Vallance, J.; Ben Ghnaya-Chakroun, A.; Bruez, E.; Dridi, M.; Demasse, R.D.; Rey, P.; Sadfi-Zouaoui, N. Study of Lasidiodiplodia pseudotheobromae, Neofusicoccum parvum and Schizophyllum commune, three pathogenic fungi associated with the Grapevine Trunk Diseases in the North of Tunisia. Eur. J. Plant Pathol. 2018, 152, 127–142. [Google Scholar] [CrossRef]
- Sansavini, S.; Neri, D.; Famiani, D.; Silvestroni, O.; Catalano, L.; Tagliavini, M. The fruit industry. In Harvesting the Sun Italy; De Pascale, S., Inglese, P., Tagliavini, M., Eds.; Italian Society for Horticultural Science: Firenze, Italy, 2018; pp. 1–12. ISBN 9788894027655. [Google Scholar]
- Colapietra, M. Le varietà apirene potranno rilanciare le esportazioni. Frutticoltura 2016, 1–2, 12–19. [Google Scholar]
- Colapietra, M. Ampia scelta di nuove varietà senza semi. Ecco come orientarsi. Frutticoltura 2021, 1, 16–23. [Google Scholar]
- Pisciotta, A.; Planeta, D.; Giacosa, S.; Paissoni, M.A.; Di Lorenzo, R.; Rolle, L. Quality of grapes grown inside paper bags in Mediterranean area. Agronomy 2020, 10, 792. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Barbagallo, M.G.; Mafrica, R.; Palermo, G.; Di Mauro, B. Bio-Agronomic and physiological aspects of the training of “soilless” table grapes in Sicily. In Proceedings of the XII Gesco—Groupe Europèen d’Etudes des Systèmes de Conduite de la Vigne, Montpellier, France, 3–7 July 2001. [Google Scholar]
- Fernández, J.A.; Orsini, F.; Baeza, E.; Oztekin, G.B.; Muñoz, P.; Contreras, J.; Montero, J.I. Current trends in protected cultivation in Mediterranean climates. Eur. J. Hortic. Sci. 2018, 83, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Longo, A. La coltivazione delle viti in vaso. L’Italia Agric. 1926, 63, 466–474. [Google Scholar]
- Raviv, M.; Lieth, J.H.; Bar-Tal, A. (Eds.) Significance of soilless culture in agriculture. In Soilless Culture: Theory and Practice, 2nd ed.; Academic Press, Elsevier: Burlington, MA, USA, 2019; pp. 3–14. ISBN 9780444636966. [Google Scholar]
- Wearn, J.A.; Mabberley, D.J. Citrus and Orangeries in Northern Europe. Curtis’s Bot. Mag. 2016, 33, 94–107. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Pisciotta, A.; Santamaria, P.; Scariot, V. From soil to soil-less in horticulture: Quality and typicity. Ital. J. Agron. 2013, 8, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D.; Gianquinto, G.; Tüzel, Y.; Gruda, N. Soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., de Pascale, S., Qaryouti, M., Duffy, R., Eds.; FAO: Rome, Italy, 2013; pp. 303–354. ISBN 978-92-5-107650-7. [Google Scholar]
- Ferree, D.C.; Streeter, J.G. Response of container-grown grapevines to soil compaction. HortScience 2004, 39, 1250–1254. [Google Scholar] [CrossRef] [Green Version]
- Carlile, W.R.; Raviv, M.; Prasad, M. Organic soilless media components. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 303–378. ISBN 9780444636966. [Google Scholar]
- Di Lorenzo, R.; Gambino, C.; Dimauro, B. La coltivazione dell’uva da tavola in fuori suolo: Stato attuale e prospettive. Bull. L’oiv 2009, 82, 33–44. [Google Scholar]
- Di Lorenzo, R.; Dimauro, B.; Guarasci, F.; Rinoldo, C.; Gambino, C. Più cicli produttivi in un anno nella viticoltura da tavola in fuori suolo. In Proceedings of the 35th World Congress of OIV Vine and Wine, Izmir, Turkey, 18–22 June 2012. [Google Scholar]
- Buttaro, D.; Santamaria, P. Uva da tavola senza suolo, una prospettiva interessante. L’Informatore Agrar. 2010, 41, 60. [Google Scholar]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Cameron, W.; Petrie, P.R.; Barlow, E.W.R. The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agric. For. Meteorol. 2022, 315, 108841. [Google Scholar] [CrossRef]
- Boubals, D.; Combacal, C.; Combacal, H. Application d’une technique de culture hors-sol à la vigne “Vitis vinifera L.”. In Proceedings of the 3° Symposium International sur la Physiologie de la Vigne, Bordeaux, France, 24–27 June 1987; pp. 455–457. [Google Scholar]
- Vidaud, J. La culture sur substrat: Un nouveau concept de production expérimenté au CTIFL. L’Arboriculture Fruit. 1991, 444, 48–51. [Google Scholar]
- Vidaud, J.; Landry, P. Uva da tavola: Verso nuovi concetti di produzione. Frutticoltura 1994, 10, 39–42. [Google Scholar]
- Di Lorenzo, R.; Mafrica, R. La coltivazione “fuori suolo” dell’uva da tavola: Risultati delle prime esperienze condotte in Sicilia. Frutticoltura 2000, 3, 48–53. [Google Scholar]
- Di Lorenzo, R.; Sottile, I. La coltura protetta dell’uva da tavola per l’ampliamento del calendario di offerta. Frutticoltura 1995, 5, 19–25. [Google Scholar]
- Novello, V.; De Palma, L. Growing grapes under cover. Acta Hortic. 2008, 785, 353–362. [Google Scholar] [CrossRef]
- Vox, G.; Schettini, E.; Mugnozza, G.S.; Tarricone, L.; De Palma, L. Covering plastic films for vineyard protected cultivation. Acta Hortic. 2014, 1037, 897–904. [Google Scholar] [CrossRef]
- Van Os, E.A. Closed soilless growing systems: A sustainable solution for dutch greenhouse horticulture. Water Sci. Technol. 1999, 39, 105–112. [Google Scholar] [CrossRef]
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean greenhouse technology. Chron. Horticult. 2004, 44, 28–34. [Google Scholar]
- Di Lorenzo, R.; Barbagallo, M.G.; Costanza, P.; Gugliotta, E.; Palermo, G.; Mafrica, R.; Di Mauro, B.; Costanza, P. Cultivation of table grapes in “Soilless” in Sicily. Acta Hortic. 2003, 614, 115–122. [Google Scholar] [CrossRef]
- Barbagallo, M.G.; Gambino, C.; Di Mauro, B.; Di Lorenzo, R. Ulteriori considerazioni sulla coltivazione in fuori suolo dell’uva da tavola. Frutticoltura 2005, 1, 32–36. [Google Scholar]
- Gambino, C.; Di Mauro, B.; Di Lorenzo, R. Comportamento vegeto-produttivo ed ecofisiologico di viti allevate fuori suolo in coltura protetta. Frutticoltura 2008, 1, 22–26. [Google Scholar]
- Poni, S.; Palliotti, A.; Mattii, G.; Di Lorenzo, R. Funzionalità fogliare ed efficienza della chioma in Vitis vinifera L. ltalus Hortus 2007, 14, 29–46. [Google Scholar]
- Williams, L.E. The effect of cyanamide on budbreak and vine development of Thompson Seedless grapevines in the San Joaquin Valley of California. Vitis 1987, 26, 107–113. [Google Scholar]
- Lavee, S. Grapevine (Vitis vinifera) growth and performance in warm climates. In Temperate Fruit Crops in Warm Climates; Erez, A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 343–366. [Google Scholar]
- Favero, A.C.; Angelucci De Amorim, D.; Vieira Da Mota, R.; Soares, A.M.; De Souza, C.R.; De Albuquerque Regina, M. Double-pruning of “Syrah” grapevines: A management strategy to harvest wine grapes during the winter in the Brazilian Southeast. Vitis J. Grapevine Res. 2011, 50, 151–158. [Google Scholar]
- Gu, S.; Jacobs, S.D.; Mccarthy, B.S.; Gohil, H.L. Forcing vine regrowth and shifting fruit ripening in a warm region to enhance fruit quality in ‘Cabernet Sauvignon’ grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 2012, 87, 287–292. [Google Scholar] [CrossRef]
- Pedro Júnior, M.J.; Hernandes, J.L.; Bardin-Camparotto, L.; Blain, G.C. Plant parameters and must composition of ‘Syrah’ grapevine cultivated under sequential summer and winter growing seasons. Bragantia 2017, 76, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.K.; Bai, X.J.; Cao, M.M.; Cheng, G.; Cao, X.J.; Guo, R.R.; Wang, Y.; He, L.; Yang, X.H.; He, F.; et al. Dissecting the variations of ripening progression and flavonoid metabolism in grape berries grown under double cropping system. Front. Plant Sci. 2017, 8, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Irshad, M.; Debnath, B.; Lu, X.; Li, M.; Dash, C.K.; Rizwan, H.M.; Qiu, Z.; Qiu, D. Effect of vineyard soil variability on chlorophyll fluorescence, yield and quality of table grape as influenced by soil moisture, grown under double cropping system in protected condition. PeerJ 2018, 6, e5592. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, G.; Qiu, D. Pruning and dormancy breaking make two sustainable grape-cropping productions in a protected environment possible without overlap in a single year. PeerJ 2019, 7, e7412. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Barbagallo, M.G.; Gambino, C.; De Pasquale, F. La doppia produzione annuale nella viticoltura da tavola protetta in Sicilia. Frutticoltura 2006, 2, 24–28. [Google Scholar]
- Di Lorenzo, R.; Gambino, C.; Scafidi, P. Summer pruning in table grape. Adv. Hortic. Sci. 2011, 25, 143–150. [Google Scholar]
- Di Lorenzo, R.; Pisciotta, A.; Scafidi, P. Effect of bunch trimming in Red Globe grape cultivated in soilless condition. In Proceedings of the 8th International Table Grape Symposium Apulia & Sicily, Foggia and Palermo, Italy, 1–7 October 2017; pp. 82–83. [Google Scholar]
- Buttaro, D.; Serio, F.; Santamaria, P. Soilless greenhouse production of table grape under Mediterranean conditions. J. Food Agric. Environ. 2012, 10, 641–645. [Google Scholar]
- Cefola, M.; Pace, B.; Buttaro, D.; Santamaria, P.; Serio, F. Postharvest evaluation of soilless-grown table grape during storage in modified atmosphere. J. Sci. Food Agric. 2011, 91, 2153–2159. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Ristvey, A.G.; Lea-Cox, J.D. Water and nutrient management in the production of container-grown ornamentals. In Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; Volume 38, pp. 253–297. ISBN 9780470872376. [Google Scholar]
- Sottile, F.; Del Signore, M.B.; Barone, E. Ornacitrus: Citrus plants (Citrus spp.) as ornamentals. Folia Hortic. 2019, 31, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, C.; Di Lorenzo, R.; Angelino, G.; Scaglione, G.; Gambino, C.; Di Vaio, C. Root hydraulic conductivity in three self-rooted and grafted table grape cultivars. J. Int. Sci. Vigne Vin 2012, 46, 177–183. [Google Scholar] [CrossRef]
- Schettini, E.; de Salvador, F.R.; Scarascia Mugnozza, G.; Vox, G. Radiometric properties of photoselective and photoluminescent greenhouse plastic films and their effects on peach and cherry tree growth. J. Hortic. Sci. Biotechnol. 2011, 86, 79–83. [Google Scholar] [CrossRef]
- Melgarejo, P.; Martínez, J.J.; Hernández, F.; Salazar, D.M.; Martínez, R. Preliminary results on fig soil-less culture. Sci. Hortic. 2007, 111, 255–259. [Google Scholar] [CrossRef]
- Mendoza-Castillo, V.M.; Vargas-Canales, J.M.; Calderón-Zavala, G.; Mendoza-Castillo, M.D.C.; Santacruz-Varela, A. Intensive production systems of fig (Ficus carica L.) under greenhouse conditions. Exp. Agric. 2017, 53, 339–350. [Google Scholar] [CrossRef]
- Erez, A.; Nir, G.; Lerner, H.; Yablowitz, Z. Container grown peach trees: Evaluation of a commercial endeavor. Acta Hortic. 1993, 349, 43–47. [Google Scholar] [CrossRef]
- Ran, I.; Erez, A. Advancement of ripening of apricot and sweet cherry. Preliminary study with a mobile orchard system. Acta Hortic. 1993, 349, 48. [Google Scholar] [CrossRef]
- Demiral, S.; Ulger, S. The effect of greenhouse production on the earliness of containerized plums. Acta Hortic. 2019, 1260, 71–75. [Google Scholar] [CrossRef]
- Rubio-Asensio, J.S.; Franch, V.; López, F.; Bonet, L.; Buesa, I.; Intrigliolo, D.S. Towards a near-soilless culture for woody perennial crops in open field conditions. Sci. Hortic. 2018, 240, 460–467. [Google Scholar] [CrossRef]
- Tüzel, Y.; Öztekin, G.B. Protected cultivation in Turkey. Chron. Horticult. 2015, 55, 21–26. [Google Scholar]
- Bahar, E.; Kök, D.; Korkutal, I.; Celik, S. Possibility of rooting of the pruned canes in grapevine (Vitis vinifera L.) then obtaining yield grown in hydroponic system. Pakistan J. Biol. Sci. 2004, 7, 1481–1487. [Google Scholar]
- Sabir, A.; Sabir, F.; Yazar, K.; Kara, Z. Investigations on development of some grapevine cultivars (V. vinifera L.) in soilless culture under controlled glasshouse condition. Curr. Trends Technol. Sci. 2012, 5, 622–626. [Google Scholar]
- Tangolar, S.; Baştaş, P.C.; Torun, A.A.; Tangolar, S. Effects of substrate and crop load on yield and mineral nutrition of ’Early Sweet’ grape cultivar grown in soilless culture. Erwerbs-Obstbau 2019, 61, 33–40. [Google Scholar] [CrossRef]
- Castilla, N.; Baeza, E. Greenhouse site selection. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., de Pascale, S., Qaryouti, M., Duffy, R., Eds.; FAO: Rome, Italy, 2013; pp. 21–34. ISBN 978-92-5-107650-7. [Google Scholar]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Kittas, C.; Katsoulas, N.; Bartzanas, T. Structures: Design, technology and climate control. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries. Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; FAO: Rome, Italy, 2017; pp. 29–51. ISBN 978-92-5-109622-2. [Google Scholar]
- Zepner, L.; Karrasch, P.; Wiemann, F.; Bernard, L. ClimateCharts.net—An interactive climate analysis web platform. Int. J. Digit. Earth 2021, 14, 338–356. [Google Scholar] [CrossRef]
- Caruso, T.; Motisi, A.; Marra, F.P.; Barone, E. The use of phenoclimatic models to characterize environments for chilling and heat requirements of deciduous fruit trees: Methodological approaches and initial results. Adv. Hortic. Sci. 1992, 6, 65–73. [Google Scholar]
- Dokoozlian, N.K. Chilling temperature and duration interact on the budbreak of “Perlette” grapevine cuttings. HortScience 1999, 34, 1054–1056. [Google Scholar] [CrossRef] [Green Version]
- Londo, J.P.; Johnson, L.M. Variation in the chilling requirement and budburst rate of wild Vitis species. Environ. Exp. Bot. 2014, 106, 138–147. [Google Scholar] [CrossRef]
- Fila, G.; Gardiman, M.; Belvini, P.; Meggio, F.; Pitacco, A. A comparison of different modelling solutions for studying grapevine phenology under present and future climate scenarios. Agric. For. Meteorol. 2014, 195–196, 192–205. [Google Scholar] [CrossRef]
- Bonhomme, R. Bases and limits to using “degree.day” units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Prats-Llinàs, M.T.; Nieto, H.; DeJong, T.M.; Girona, J.; Marsal, J. Using forced regrowth to manipulate Chardonnay grapevine (Vitis vinifera L.) development to evaluate phenological stage responses to temperature. Sci. Hortic. 2020, 262, 109065. [Google Scholar] [CrossRef]
- Ferguson, L. Effect of Hydrogen Cyanamide on bloom date, quality, and yield of ‘Kerman’ pistachios on three different rootstocks. HortScience 1997, 32, 436. [Google Scholar] [CrossRef] [Green Version]
- Barone, E.; La Mantia, M.; Marra, F.P.; Motisi, A.; Sottile, F. Manipulation of the vegetative and reproductive cycle of pistachio (Pistacia vera L.). Options Méditerranéennes 2005, 63, 355–363. [Google Scholar]
- Campoy, J.A.; Ruiz, D.; Egea, J. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 2011, 130, 357–372. [Google Scholar] [CrossRef]
- Cartabellotta, D.; Di Lorenzo, R.; Giuffrida, S.; Sottile, I. Ulteriori risultati dell’uso della cianamide idrogeno nella viticoltura da tavola. Frutticoltura 1994, 10, 61–68. [Google Scholar]
- El Masri, I.Y.; Rizkallah, J.; Sassine, Y.N. Effects of dormex (Hydrogen Cyanamide) on the performance of three seedless table grape cultivars grown under greenhouse or open-field conditions. Agron. Res. 2018, 16, 2026–2036. [Google Scholar]
- Sassine, Y.N.; Al Turk, S.M.; El Sebaaly, Z.; Bachour, L.; El Masri, I.Y. Finding alternatives for Dormex (hydrogen cyanamid) as dormancy breaking agent. Fresenius Environ. Bull. 2019, 28, 10214–10224. [Google Scholar]
- Kubota, N.; Yamane, Y.; Toriu, K. Breaking bud dormancy in grape cuttings with non-volatile and volatile compounds of several Allium species. J. Jpn. Soc. Hortic. Sci. 2002, 71, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Arispuro, I.; Corrales-Maldonado, C.; Martinez-Téllez, M.A. Compounds derived from garlic as bud induction. Chil. J. Agric. Res. 2008, 68, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Corrales-Maldonado, C.; Martinez-Téllez, M.A.; Gardea, A.A.; Orozco-Avitia, A.; Vargas-Arispuro, I. Organic alternative for breaking dormancy in table grapes grown in hot Regions. Am. J. Agric. Biol. Sci. 2010, 5, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Orrantia-Araujo, M.A.; Martínez-Téllez, M.A.; Corrales-Maldonado, C.; Rivera-Domínguez, M.; Vargas-Arispuro, I. Changes in glutathione and glutathione disulfide content in dormant grapevine buds treated with garlic compound mix to break dormancy. Sci. Hortic. 2019, 246, 407–410. [Google Scholar] [CrossRef]
- El-Kaed, S.A.; Mikhail, W.Z.; Abd-El-Moneim, M.L.; Soliman, A. Use of the bioagent Bacillus subtilis to break dormancy of buds in table grape, Flame seedless, under organic farming condition. Int. J. Sci. Eng. Res. 2016, 7, 33–38. [Google Scholar]
- Mohamed, A.A.; Gouda, F.E.M. Effect of Dormex, fructose and methionine spraying on bud dormancy release of “Superior” grapevines. Assiut J. Agric. Sci. 2017, 48, 75–87. [Google Scholar]
- Sabry, G.H.; El-Helw, H.A.; Abd El-Rahman, A.S. A study on jasmine oil as a breaking bud dormancy for Flame seedless grape vines. Rep. Opin. 2011, 3, 48–56. [Google Scholar]
- Ahmed, F.; Ibrahim, H.; Abada, M.; Osman, M. using plant extracts and chemical rest breakages for breaking bud dormancy and improving productivity of Superior grapevines growing under hot climates. World Rural Obs. 2014, 6, 8–18. [Google Scholar]
- Novello, V.; Avenant, E.; Hayes, P.; Peres de Sousa, L. Alternatives of Dormancy Breaking and Other Production Agents for Table Grapes, 1st ed.; OIV Publications: Paris, France, 2019; ISBN 9782850380082. [Google Scholar]
- Montero, J.I.; Teitel, M.; Baeza, E.; Lopez, J.C.; Kacira, M. Greenhouse design and covering materials. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., de Pascale, S., Qaryouti, M., Duffy, R., Eds.; FAO: Rome, Italy, 2013; pp. 35–62. ISBN 9789251076491. [Google Scholar]
- Holcman, E.; Sentelhas, P.C.; Conceição, M.A.F.; Couto, H.T.Z. Vineyard microclimate and yield under different plastic covers. Int. J. Biometeorol. 2018, 62, 925–937. [Google Scholar] [CrossRef] [Green Version]
- Novello, V.; De Palma, L.; Tarricone, L.; Vox, G. Effects of different plastic sheet coverings on microclimate and berry ripening of table grape CV “Matilde”. J. Int. Sci. Vigne Vin 2000, 34, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Tarricone, L.; Gentilesco, G.; Di Gennaro, D.; Amendolagine, A.M.; Vox, G.; Scarascia Mugnozza, G.; Schettini, E.; De Palma, L. Radiometric properties, vine physiology and yield parameters of irrigated “Sublima” table grape under different plastic films in South Italy. Acta Hortic. 2017, 1170, 365–372. [Google Scholar] [CrossRef]
- Blanco, I.; Loisi, R.V.; Sica, C.; Schettini, E.; Vox, G. Agricultural plastic waste mapping using GIS. A case study in Italy. Resour. Conserv. Recycl. 2018, 137, 229–242. [Google Scholar] [CrossRef]
- Di Vaio, C.; Russo, R.; Nocerino, S.; Di Mola, I.; Famiani, F. Effects of films on table grapes: Italia and Red Globe cultivars. Bulg. J. Agric. Sci. 2016, 22, 942–947. [Google Scholar]
- Hemming, S.; Kempkes, F.; Van der Braak, N.; Dueck, T.; Marissen, N. Greenhouse cooling by NIR-reflection. Acta Hortic. 2006, 719, 97–106. [Google Scholar] [CrossRef] [Green Version]
- De Palma, L.; Limosani, P.; Vox, G.; Schettini, E.; Antoniciello, D.; Laporta, F.; Brossé, V.; Novello, V. Technical properties of new agrotextile fabrics improving vineyard microclimate, table grape yield and quality. Acta Hortic. 2020, 1276, 271–278. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Scarascia Mugnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Kliewer, W.M. Effect of high temperatures during the bloom-set period on fruit set, ovule fertility and berry growth of several grape cultivars. Am. J. Enol. Vitic. 1977, 28, 215–222. [Google Scholar]
- Greer, D.H.; Weedon, M.M. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front. Plant Sci. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.I.; Muñoz, P.; Sánchez-Guerrero, M.C.; Medrano, E.; Piscia, D.; Lorenzo, P. Shading screens for the improvement of the night-time climate of unheated greenhouses. Span. J. Agric. Res. 2013, 11, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Antonacci, D.; Morelli, D.; Crupi, P.; Anna, R.; Colma, A.; Caputo, A.R.; Perniola, R. La qualità dipende anche dagli apporti idrici: Il caso della cv Red Globe. Frutticoltura 2009, 1–2, 40–44. [Google Scholar]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Raviv, M. Composts in growing media: What’s new and what’s next? Acta Hortic. 2013, 982, 39–47. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, S.; Barbieri, G.; Rouphael, Y.; Gallardo, M.; Orsini, F.; Pardossi, A. Irrigation management: Challenges and opportunities. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries. Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; FAO: Rome, Italy, 2017; pp. 79–104. ISBN 978-92-5-109622-2. [Google Scholar]
- Popsimonova, G.; Benko, B.; Karic, L.; Gruda, N. Production systems: Integrated and organic production, and soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries. Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; FAO: Rome, Italy, 2017; pp. 207–226. ISBN 978-92-5-109622-2. [Google Scholar]
- Stanghellini, C.; Kempkes, F.L.K.; Knies, P. Enhancing environmental quality in agricultural systems. Acta Hortic. 2003, 609, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Qaryouti, M.; Leonardi, C. Growing media. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., de Pascale, S., Qaryouti, M., Duffy, R., Eds.; FAO: Rome, Italy, 2013; pp. 271–301. ISBN 978-92-5-107650-7. [Google Scholar]
- De Pascale, S.; Maggio, A.; Barbieri, G. La sostenibilità delle colture protette in ambiente mediterraneo: Limiti e prospettive. Italus Hortus 2006, 13, 33–48. [Google Scholar]
- Sax, M.S.; Scharenbroch, B.C. Assessing alternative organic amendments as horticultural substrates for growing trees in containers. J. Environ. Hortic. 2017, 35, 66–78. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, Á. Optimization of nutrition in soilless systems: A Review. Adv. Bot. Res. 2010, 53, 193–245. [Google Scholar]
- Majsztrik, J.C.; Fernandez, R.T.; Fisher, P.R.; Hitchcock, D.R.; Lea-Cox, J.; Owen, J.S.; Oki, L.R.; White, S.A. Water use and treatment in container-grown specialty crop production: A Review. Water. Air. Soil Pollut. 2017, 228, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savvas, D.; Ntatsi, G.; Barouchas, P.E. Soil conservation, soil fertility and plant nutrition management. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries. Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; FAO: Rome, Italy, 2017; pp. 53–78. ISBN 978-92-5-109622-2. [Google Scholar]
Related Area or Terms of Comparison in Conventional Soil-Grown Cultivation | Alternatives Used in TGSC | Advantages |
---|---|---|
Soil | Mixtures of substrates | Overcoming soil replant problems, quality, and soil-borne diseases |
Growing environment | Containers | Make the most of the available space |
Yield increase per unit area | ||
Maximum control of water and nutrients | ||
Reuse of nutrient solution | ||
Plant material | Own-rooted cuttings | No graft requirement |
Low cost | ||
Quick varietal turnover | ||
Rapid adaptation to consumers’ preferences | ||
Cultural techniques | Greenhouse | Manipulation of vegetative and reproductive cycle |
Anticipate and/or delay ripening and harvesting | ||
Multiple cropping cycles in a year | ||
High productivity | ||
Reduce pesticide and labor requirements | ||
Improve product quality | ||
High water and fertilizer use efficiency |
Parameters | Average | ±s.e. |
---|---|---|
Transpiration rate (E) (mmol m−2 s−1) | 2.33 | 0.10 |
Stomatal conductance (GS) (mmol m−2 s−1) | 165.82 | 11.80 |
Net assimilation rate (A) (µmolm−2 s−1) | 5.27 | 0.23 |
Water use efficiency (WUE) (µmol mmol−1) | 2.46 | 0.10 |
Leaf water potential (Ψl) (MPa) | −0.68 | 0.28 |
Cropping Cycle | Start | Budbreak | Flowering | Veraison | Harvest |
---|---|---|---|---|---|
‘Black Magic’ | |||||
1st | 5 January | 12 February | 5 April | 10 May | 21 June |
2nd | 9 July | 15 July | 10 August | 16 September | 16 October |
‘Victoria’ | |||||
1st | 5 January | 14 Feb. | 10 April | 10 May | 21 June |
2nd | 9 July | 18 July | 14 August | 12 September | 16 October |
New (Cold Stored) Vines | Same Vines of 1st Cycle | |||
---|---|---|---|---|
‘Victoria’ | ‘Black Magic’ | ‘Victoria’ | ‘Black Magic’ | |
Cropping Cycle | t ha−1 | |||
1st | 39 | 45.2 | 39 | 45.3 |
2nd | 23 | 29.6 | 39 | 21.8 |
Total | 62 | 74.8 | 78 | 67.1 |
Crop Cycle | Budbreak- Setting | Setting- Veraison | Veraison- Harvest | Budbreak- Harvest | Yield |
---|---|---|---|---|---|
Interval (No. of Days) | t ha−1 | ||||
1st | 65 | 62 | 30 | 157 | 20 |
2nd | 33 | 48 | 18 | 99 | 10 |
(%) | |||||
2nd/1st | 50.8 | 77.4 | 60.0 | 63.1 | 50.0 |
Bunch Treatment (z) | Bunch Weight | Berry /Bunch | Berry Weight | Berry Diameter | Rachis Length | Compactness Index |
---|---|---|---|---|---|---|
g | n° | g | mm | cm | ||
9 shoulders | 1175 c | 91 c | 12.7 a | 25.8 a | 18.9 c | 4.8 a |
13 shoulders | 1201 b | 103 b | 11.5 b | 24.7 b | 27.7 b | 3.7 b |
Untrim. Control | 1424 a | 128 a | 10.9 c | 24.9 b | 36.7 a | 3.5 b |
Bunch Treatment (z) | TSS | TSS/TA | Berry Firmness | a* Chroma |
---|---|---|---|---|
Brix | Brix/g L–1 | N | ||
9 Shoulders | 13.9 a | 21.9 c | 16.4 a | 8.1 a |
13 Shoulders | 14.7 a | 23.3 b | 14.4 b | 8.8 a |
Untrim. Control | 11.8 b | 19.2 a | 12.6 c | 6.3 b |
Cult. System | Budbreak | Flowering | Veraison | Harvest | Tot. Duration | Maturity Gain |
---|---|---|---|---|---|---|
‘Matilde’ | (no. of days) | |||||
CSG | 3 February | 4 April | 16 May | 6 June | 134 | |
TGSC | 16 December | 3 March | 2 May | 20 May | 145 | −17 |
‘Victoria’ | ||||||
CSG | 1 March | 28 April | 6 May | 28 June | 119 | |
TGSC | 20 December | 7 March | 2 May | 23 May | 154 | −36 |
Budbreak–Flowering | Flowering–Veraison | Veraison–Harvest | Budbreak–Harvest | |
---|---|---|---|---|
Climatic Parameter | ||||
Air temperature (°C) | +9.7 | +3.5 | +2.0 | +5.7 |
Relative humidity (%) | −1.7 | −12 | +11.4 | −0.20 |
Global radiation accumulation (W/m2) | +1272 | −28 | −916 | +165 |
VPD (kPa) | 0.65 | +12.68 | −0.20 | +0.40 |
Mineral Element | N | P | K | Mg | Fe | Mn | Zn | |
---|---|---|---|---|---|---|---|---|
Nutrient Solution (Z) (mg L−1) | ||||||||
1 | 44.25 | 10.98 | 42.50 | 25.66 | 5.31 | 0.66 | 0.33 | |
2 | 103.50 | 30.60 | 137.0 | 52.71 | 0.53 | 1.06 | 0.53 | |
3 | 36.86 | 9.18 | 44.39 | 30.43 | 0.16 | 0.32 | 0.16 | |
Total amount per plant(g) | 29.20 | 7.80 | 34.80 | 18.30 | 1.00 | 0.30 | 0.20 |
Phenophase | Irrigation per | Water Supplied per | Water Recycled per | ||
---|---|---|---|---|---|
Day | Irrigation | Day | Period | Day | |
(No.) | (mL) | (L) | (L) | (L) | |
BB-F | 4–5 | 220–280 | 1.12–1.40 | 57.2–72.8 | 0.33–0.42 |
F-V | 7–8 | 233–333 | 1.80–2.66 | 65.2–93.2 | 0.70–0.94 |
V-H | 10–15 | 333 | 3.33–4.99 | 139.9–209.6 | 0.99–1.49 |
BB-H | 262.3–375.6 |
Phenophase | N | P | K | Ca | Mg |
---|---|---|---|---|---|
(g) | |||||
BB–F | 8.7–9.1 | 2.6–5.8 | 17.0–21.4 | 11.2–19.6 | 3.6–7.3 |
F–V | 6.4–9.8 | 1.4–4.2 | 13.4–17.3 | 13.0–25.1 | 3.5–10.0 |
V–H | 13.2–20.7 | 4.8–6.5 | 35.4–66.3 | 30.7–46.0 | 12.7–16.4 |
BB–H | 28.4–39.5 | 8.8–16.5 | 65.7–105 | 55.0–91.0 | 19.8–33.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisciotta, A.; Barone, E.; Di Lorenzo, R. Table-Grape Cultivation in Soil-Less Systems: A Review. Horticulturae 2022, 8, 553. https://doi.org/10.3390/horticulturae8060553
Pisciotta A, Barone E, Di Lorenzo R. Table-Grape Cultivation in Soil-Less Systems: A Review. Horticulturae. 2022; 8(6):553. https://doi.org/10.3390/horticulturae8060553
Chicago/Turabian StylePisciotta, Antonino, Ettore Barone, and Rosario Di Lorenzo. 2022. "Table-Grape Cultivation in Soil-Less Systems: A Review" Horticulturae 8, no. 6: 553. https://doi.org/10.3390/horticulturae8060553
APA StylePisciotta, A., Barone, E., & Di Lorenzo, R. (2022). Table-Grape Cultivation in Soil-Less Systems: A Review. Horticulturae, 8(6), 553. https://doi.org/10.3390/horticulturae8060553