Effect of Saline–Alkali Stress on Sugar Metabolism of Jujube Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Sample Collection
2.3.1. Plant Sample Collection
2.3.2. Soil Sample Collection
2.4. Experimental Method
2.4.1. Measurement of the Soil Salt Contents
2.4.2. Extraction and Determination of Sugars
2.4.3. Enzyme Extraction and Activity Assays
2.4.4. RNA Extraction
2.4.5. cDNA
2.4.6. RT-qPCR
2.5. Statistical Analysis
3. Results
3.1. Differences in Soil Salt Content under Different Saline–Alkali Treatments
3.2. Effects of Different Saline–Alkali Stress Treatments on the Contents of Sugar Components in Jujube Fruit
3.3. Comparison of Key Enzyme Activities of Sucrose Metabolism under Different Saline–Alkali Stress Treatments
3.4. Effects of Different Saline–Alkali Stress Treatments on Gene Expression of Key Enzymes of Sucrose Metabolism in Jujube Fruit
3.5. Effects of Different Saline–Alkali Treatments on Proline, Malondialdehyde, and Antioxidant Enzymes in Jujube Fruit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPS | sucrose phosphate synthase |
SS-I | Sucrose synthase decomposition direction |
SS-II | Sucrose synthase synthesis direction |
NI | Neutral invertase |
S-AI | Soluble acid invertase |
PRO | Proline |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
CAT | Catalase |
POD | Peroxidase |
ROS | Reactive oxygen species |
References
- Wei, S.; Hongtao, D.; Yanfeng, Z.; Cun, W.; Hairong, L.; Dengke, L. Problems and countermeasures of Chinese jujube industry in Aksu area. J. Fruit Resour. 2021, 2, 84–87. (In Chinese) [Google Scholar]
- Chen, T.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2021, 2, 330–340. [Google Scholar] [CrossRef]
- Hao, Y. Developing and utilizing saline-alkali land to produce high quality fruit. Chin. Fruit Ind. Inf. 2013, 30, 30–31. (In Chinese) [Google Scholar]
- Ladewig, P.; Trejo-TéLlez, L.I.; Servin-Juarez, R.; Contreras-Oliva, A.; Gomez-Merino, F.C. Growth, yield and fruit quality of Mexican tomato landraces in response to salt stress. Not. Bot. Horti Agrobot. Cluj-Napoca. 2021, 49, 12005. [Google Scholar] [CrossRef]
- Juan, Y.; Xing, X.; Yuqing, W.; Rongxia, Z. Sugar sand sucrose-metabolizing enzymesin fruits of Lycium barbarum under salt stress. J. Ningxia Agric. Coll. 2004, 25, 28–31. (In Chinese) [Google Scholar]
- Li, X.L.; Wang, C.R.; Li, X.Y.; Yao, Y.X.; Hao, Y.J. Modifications of Kyoho grape berry quality under long-term NaCl treatment. Food Chem. 2013, 139, 931–937. [Google Scholar] [CrossRef]
- Sun, H.; Sun, T.-Y.; Xu, L.-L.; Du, Y.-P. Effects of the long-term treatment of low-concentrated salt on grape berry quality and transcriptome. Plant Physiol. J. 2017, 53, 2197–2205. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Cai, L.; Long, Z.; Zhang, X.; Zhao, F. Effects of non-uniform salt stress on growth, yield, and quality of tomato. Soil Sci. Plant Nutr. 2021, 67, 545–556. [Google Scholar] [CrossRef]
- Shaowei, L.; Fei, Q.; Tianlai, L. Effects of NaCl stress on photosynthetic characteristics and sucrose metabolism of tomato leaves. North. Hortic. 2012, 3, 14–18. (In Chinese) [Google Scholar] [CrossRef]
- Mascellani, A.; Natali, L.; Cavallini, A.; Mascagni, F.; Caruso, G.; Gucci, R.; Havlik, J.; Bernardi, R. Moderate salinity stress affects expression of main sugar metabolism and transport genes and soluble carbohydrate content in ripe fig fruits (Ficus carica L. cv. Dottato). Plants 2021, 10, 1861. [Google Scholar] [CrossRef]
- Guanglian, L.; Min, Z.; Chunhui, H.; Dongfeng, J.; Xiaobiao, X. Progress in research on sugar metabolism and related enzyme genes in fruit. Acta Agric. Univ. Jiangxiensis 2020, 42, 187–195. [Google Scholar] [CrossRef]
- Qijun, M. Molecular Mechanism by which Apple Sucrose Transporter MdSUT2.2 Involves in Regulating Sugar Content in Response to Drought and Salt Stresses. Doctor’s Thesis, Shandong Agricultural University, Taian, China, 2018. (In Chinese). [Google Scholar]
- Gao, Z.; Sagi, M.; Lips, S.H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 1998, 135, 149–159. [Google Scholar] [CrossRef]
- Alhasnawi, A.N.; Kadhimi, A.A.; Isahak, A.; Mohamad, A.; Doni, F.; Mohtar, W.; Yusoff, W.; Zain, C.R.B.M. Salinity stress in plant and an important antioxidant enzyme. Life Sci. J. 2014, 11, 913–920. [Google Scholar] [CrossRef]
- Ali, A.; Yun, D. Salt stress tolerance; what do we learn from halophytes? J. Plant Biol. 2017, 60, 431–439. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Zhang, Y.J.; Li, Z.; Bai, D.F.; Zhong, Y.P.; Fang, J.B. Effect of salt stress on growth, physiological and biochemical characters of four kiwifruit genotypes. Sci. Hortic. 2020, 271, 109473. [Google Scholar] [CrossRef]
- Jia, X.; Wang, H.; Svetla, S.; Zhu, Y.F.; Hu, Y.; Cheng, L.; Zhao, T.; Wang, Y.X. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci. Hortic. 2019, 245, 154–162. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, Y.; Zhang, R.; Zhu, Z.; Zhao, T.; Cheng, L.; Gao, L.; Liu, B.; Zhang, X.; Wang, Y. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiol. Biochem. 2020, 147, 77–90. [Google Scholar] [CrossRef]
- Roitsch, T.; González, M. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci. 2004, 9, 606–613. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, K.; Liu, Y.; Yang, S.; Zhang, J.; Gong, X.; Ma, F. Overexpression of MdMIPS1 enhances salt tolerance by improving osmosis, ion balance, and antioxidant activity in transgenic apple. Plant Sci. 2020, 301, 110654. [Google Scholar] [CrossRef]
- Jie, W.; He-Li, W.; Cui-Yun, W.; Zhang, Q.; Jiang, Y.; Xiang-Yu, L. Effects of mixed salt-alkali stress on the internal quality of Zizyphus jujuba ‘Huizao’. Agric. Res. Arid Areas 2015, 33, 144–147. (In Chinese) [Google Scholar]
- Soltabayeva, A.; Ongaltay, A.; Omondi, J.O.O.; Srivastava, S. Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. Plants 2021, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Ding, T.; Wang, W.; Xiang, Y.; Ye, X.; Li, M.; Liu, D. Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao). J. Sci. Food Agric. 2018, 98, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Chunmei, Z. Molecular Mechanism Related to Themetabolism of Sugar, Acid and Domestication for Ziziphus Jujuba Mill. Doctor’s Thesis, Northwest Agriculture & Forestry University, Yangling, Shanxi, China, 2016. [Google Scholar]
- Tao, H.; Gexiang, Z.; Fuchao, Z.; Yu, C. Research progress in plant salt stress response. Mol. Plant Breed. 2018, 16, 3006–3015. (In Chinese) [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Lastdrager, J.; Hanson, J.; Smeekens, S. Sugar signals and the control of plant growth and development. J. Exp. Bot. 2014, 65, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhu, X.; Jia, H.; Wang, C. Research advances on physiological function of plant sucrose synthase. J. Nanjing Agric. Univ. 2017, 40, 759–768. (In Chinese) [Google Scholar]
- Li, J.; Wu, L.; Foster, R.; Ruan, Y.L. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. J. Integr. Plant Biol. 2017, 59, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Li, T.; Jiang, J. Effects of salinity on sucrose metabolism during tomato fruit development. Afr. J. Biotechnol. 2010, 9, 842–849. [Google Scholar] [CrossRef]
- Lu, S.; Li, T.; Jiang, J. Tomato key sucrose metabolizing enzyme activities and gene expression under NaCl and PEG iso-osmotic stresses. Agric. Sci. China. 2009, 8, 1046–1052. [Google Scholar] [CrossRef]
- Na, C.; DongDong, H.; Daoyuan, W.; Lijuan, P.; Xiaoyuan, C.; Ming, C.; Tong, W.; Mian, W.; Zhen, Y.; Shanlin, Y. Expression analysis of the sucrose synthase gene AhSuSy in different tissue and under abiotic stresses in peanut. J. Peanut Sci. 2013, 42, 25–32. (In Chinese) [Google Scholar]
- Jietang, Z. Advances in research on invertase in plant development and response to abiotic and biotic stresses. J. Trop. Subtrop. Bot. 2016, 24, 352–358. (In Chinese) [Google Scholar]
- Dahro, B.; Wang, F.; Peng, T.; Liu, J.-H. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biol. 2016, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-W.; Nie, Y.-X.; Wan, Y.-Y.; Chen, S.-Y.; Sun, Y.; Wang, X.-J.; Bai, J.-G. Exogenous glucose regulates activities of antioxidant enzyme, soluble acid invertase and neutral invertase and alleviates dehydration stress of cucumber seedlings. Sci. Hortic. 2013, 162, 20–30. [Google Scholar] [CrossRef]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Lu, B.; Zhiguo, Z.; Shijie, Z.; Dongmei, H.; Qiaoping, Q. Solation of three types of invertase genes from Hemerocallis fulva and their responses to low temperature and osmotic stress. Acta Hortic. Sin. 2021, 48, 300–312. (In Chinese) [Google Scholar] [CrossRef]
- Yang, S.Y.; Chen, X.Y.; Hui, W.K.; Ren, Y.; Ma, L. Progress in responses of antioxidant enzyme systems in plant to environmental stresses. J. Fujian Agric. For. Univ. 2016, 45, 481–489. (In Chinese) [Google Scholar] [CrossRef]
- Arteaga, S.; Yabor, L.; Díez, M.J.; Prohens, J.; Boscaiu, M.; Vicente, O. The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy 2020, 10, 817. [Google Scholar] [CrossRef]
- Yu, Z. Effects of Exogenous Proline on Growth and Proline Metabolism of Trifoliate Orange Rootstock under Boron Stress. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2021. [Google Scholar]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2021, 24, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Naliwajski, M.; Skłodowska, M. The Relationship between the Antioxidant System and Proline Metabolism in the Leaves of Cucumber Plants Acclimated to Salt Stress. Cells 2021, 10, 609. [Google Scholar] [CrossRef]
- Sanoubar, R.; Cellini, A.; Gianfranco, G.; Spinelli, F. Osmoprotectants and antioxidative enzymes as screening tools for salinity tolerance in radish (Raphanus sativus). Hortic. Plant J. 2020, 6, 14–24. [Google Scholar] [CrossRef]
- Mansour, M.M.F. The plasma membrane transport systems and adaptation to salinity. J. Plant Physiol. 2014, 171, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.K.; Saha, D.; Skalicky, M.; Mishra, U.N.; Chauhan, J.; Behera, L.P.; Lenka, D.; Chand, S.; Kumar, V.; Dey, P.; et al. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. Front. Plant Sci. 2021, 12, 670369. [Google Scholar] [CrossRef]
- Tahjib-Ul-Arif, M.; Sohag, A.A.M.; Afrin, S.; Bashar, K.K.; Afrin, T.; Mahamud, A.G.M.S.U.; Polash, M.A.S.; Hossain, M.T.; Sohel, M.A.T.; Brestic, M.; et al. Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil–Pot Culture. Agriculture 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Ellouzi, H.; Ben Hamed, K.; Cela, J.; Munné-Bosch, S.; Abdelly, C. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol. Plant. 2011, 142, 128–143. [Google Scholar] [CrossRef]
- Gapińska, M.; Skłodowska, M.; Gabara, B. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Plant. 2008, 30, 11–18. [Google Scholar] [CrossRef]
- Gong, B.; Wen, D.; Vanden Langenberg, K.; Wei, M.; Yang, F.; Shi, Q.; Wang, X. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci. Hortic. 2013, 157, 1–12. [Google Scholar] [CrossRef]
- Esfandiari, E.; Gohari, G. Response of ROS-Scavenging systems to salinity stress in two different wheat (Triticum aestivum L.) cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca. 2017, 45, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.E.; Mao, J.J.; Sun, L.Q.; Huang, B.; Ding, C.B.; Gu, Y.; Liao, J.Q.; Hu, C.; Zhang, Z.W.; Yuan, S.; et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant. 2018, 164, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, M.; Xia, Z. Overexpression of a maize SUMO conjugating enzyme gene (ZmSCE1e) increases Sumoylation levels and enhances salt and drought tolerance in transgenic tobacco. Plant Sci. 2019, 281, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Aleem, M.; Aleem, S.; Sharif, I.; Wu, Z.; Aleem, M.; Tahir, A.; Atif, R.M.; Cheema, H.M.N.; Shakeel, A.; Lei, S.; et al. Characterization of SOD and GPX Gene Families in the Soybeans in Response to Drought and Salinity Stresses. Antioxidants 2022, 11, 460. [Google Scholar] [CrossRef]
- Wang, C.; Wen, D.; Sun, A.; Han, X.; Zhang, J.; Wang, Z.; Yin, Y. Differential activity and expression of antioxidant enzymes and alteration in osmolyte accumulation under high temperature stress in wheat seedlings. J. Cereal Sci. 2014, 60, 653–659. [Google Scholar] [CrossRef]
- Rasel, M.; Tahjib-Ul-Arif, M.; Hossain, M.A.; Hassan, L.; Farzana, S.; Brestic, M. Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism multidimensional roles in salt-stressed plants. J. Plant Growth Regul. 2020, 40, 1853–1868. [Google Scholar] [CrossRef]
Sugar Constituent | Regression Equation | Correlation Coefficient |
---|---|---|
Fructose | y = 749.23 X1.6239 | R2 = 0.9993 |
Glucose | y = 1046.9 X1.5509 | R2 = 0.9991 |
Sucrose | y = 1055.0 X1.6852 | R2 = 0.9989 |
Gene Symbol | Primer Sequence (5′–3′) | Primer Sequence (3′–5′) |
---|---|---|
ZjSPS1 | AGTCCCACTCGCTACTTCGT | TCCAAATCCTCCAGCACATA |
ZjSPS2 | TCCCAAGCCCTCAGGTATTT | GTAGTTTCTGTTTGCGTGTAG |
ZjSPS4 | GCTATGACAGCAACGGAGAT | AACAGCACAAAGCCTACACG |
ZjSS1 | AAGTCATAAGATCCGCACAG | AACACGAACATATTCCCAAA |
ZjSS2 | ACTGTCTATTTCCCTTTCACG | TCATTGTTATCCTCCCTGCT |
ZjSS3 | ATTGGGTGTAACGCAGTGTA | TGTGGTTCATGGCTATAAGAT |
ZjnINV1 | TTTCTCGATGTTGACCCTGTT | TTATGCAAGCCTTCCCTTCT |
ZjnINV3 | AACAGAGGAATACTCCCACA | CATGAAATCGAATACCCAAT |
ZjcINV3 | TTTCTCGATGTTGACCCTGTT | TTATGCAAGCCTTCCCTTCT |
ZjvINV1 | ATTCCAAAGGGTCCCAAAGC | TGGTTAAGCCAGGGTCAGTG |
ZjvINV2 | ACCCGATAACCCGAAGGAAG | GTCTGTACGGACGCCCAACC |
UBQ2 | CACCCGTTACTTGCTTTC | CTCTTCCCATTGTCCTCC |
Saline–Alkali Stress | Fructose (mg/g) | Glucose (mg/g) | Sucrose (mg/g) | Sum of Soluble Sugars (mg/g) |
---|---|---|---|---|
0 mM | 80.25 ± 3.10 c | 69.17 ± 2.63 c | 168.05 ± 5.38 c | 317.47 ± 11.03 c |
30 mM | 92.95 ± 2.61 a,b | 79.43 ± 1.34 a,b | 187.25 ± 4.42 b | 359.62 ± 7.52 b |
60 mM | 95.16 ± 0.46 a,b | 80.94 ± 0.64 a,b | 206.11 ± 1.74 a | 382.20 ± 2.77 a,b |
90 mM | 99.03 ± 2.49 a | 86.34 ± 2.29 a | 202.15 ± 2.24 a | 387.52 ± 6.94 a |
120 mM | 89.23 ± 2.16 b | 75.01 ± 1.66 b,c | 200.15 ± 2.08 a | 364.38 ± 3.13 a,b |
150 mM | 86.82 ± 3.97 b,c | 77.98 ± 4.40 b | 199.91 ± 2.30 a | 364.71 ± 9.64 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Feng, Y.; Yan, M.; Yu, J.; Zhou, X.; Bao, J.; Zhang, Q.; Wu, C. Effect of Saline–Alkali Stress on Sugar Metabolism of Jujube Fruit. Horticulturae 2022, 8, 474. https://doi.org/10.3390/horticulturae8060474
Wang Y, Feng Y, Yan M, Yu J, Zhou X, Bao J, Zhang Q, Wu C. Effect of Saline–Alkali Stress on Sugar Metabolism of Jujube Fruit. Horticulturae. 2022; 8(6):474. https://doi.org/10.3390/horticulturae8060474
Chicago/Turabian StyleWang, Yan, Yifeng Feng, Min Yan, Ju Yu, Xiaofeng Zhou, Jingkai Bao, Qiaoqiao Zhang, and Cuiyun Wu. 2022. "Effect of Saline–Alkali Stress on Sugar Metabolism of Jujube Fruit" Horticulturae 8, no. 6: 474. https://doi.org/10.3390/horticulturae8060474
APA StyleWang, Y., Feng, Y., Yan, M., Yu, J., Zhou, X., Bao, J., Zhang, Q., & Wu, C. (2022). Effect of Saline–Alkali Stress on Sugar Metabolism of Jujube Fruit. Horticulturae, 8(6), 474. https://doi.org/10.3390/horticulturae8060474