Aspects of In Vitro Plant Tissue Culture and Breeding of Asparagus: A Review
Abstract
:1. Introduction
2. Micropropagation
2.1. Direct Organogenesis
2.2. Indirect Organogenesis
2.3. Somatic Embryogenesis
3. Manipulation of Ploidy
3.1. Anther Culture: Development of “All-Male” Asparagus Varieties
3.2. Polyploid Induction
4. Protoplast Isolation and Culture
5. Genetic Manipulation
5.1. Protoplast Fusion
5.2. Genetic Transformation and Genome Editing
6. Immature Interspecific Embryo Recovery
7. Germplasm Preservation
7.1. In Vitro Preservation
7.2. In Vitro Slow Growth Preservation
7.3. Cryopreservation
8. Conclusions and Prospects
- To increase the number of micropropagation protocols specifically adapted to different wild asparagus species and hybrid genotypes, with special attention to endangered species at risk of extinction to preserve the genetic pool of the asparagus family.
- To develop more efficient, versatile, and reliable methods for the preservation of asparagus germplasm, such as slow growth in vitro and cryopreservation methods.
- To overcome the barriers of interspecific sexual incompatibility, allowing the introgression of genes from wild species of asparagus to transfer tolerance to pests and diseases or agronomic traits of interest.
- To develop methods for widening the genetic pool of Asparagus officinalis cultivars through the use of landraces and wild species to create interspecific hybrids and generate new varieties able to tolerate and thrive against biotic and abiotic stresses. Some of these methods still to be developed are: intergeneric somatic fusion of protoplasts and the rescue of immature interspecific hybrid embryos, genetic transformation and genetic editing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubituki, K.; Rudall, P.J. Asparagaceae. In The Families and Genera of Vascular Plants; Kubituki, K., Ed.; Springer: Berlin/Heidenberg, Germany, 1998; Volume 3, pp. 125–128. [Google Scholar]
- Kubota, S.; Konno, I.; Kanno, A. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor. Appl. Genet. 2012, 124, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Clifford, H.T.; Conran, J.G. 2. Asparagus, 3. Protoasparagus, 4. Myrsiphyllum. In Flora of Australia; George, A.S., Ed.; Australian Government Publishing Service: Canberra, Australia, 1987; pp. 159–164. [Google Scholar]
- Moreno, R.; Espejo, J.A.; Cabrera, A.; Millan, T.; Gil, J. Ploidic and molecular analysis of ‘Morado de Huetor’ Asparagus (Asparagus officinalis L.) population: A Spanish tetraploid landrace. Genet. Resour. Crop Evol. 2006, 53, 729–736. [Google Scholar] [CrossRef]
- Moreno, R.; Espejo, J.A.; Cabrera, A.; Gil, J. Origin of tetraploid cultivated asparagus landraces inferred from nuclear ribosomal DNA internal transcribed spacers’ polymorphisms. Ann. Appl. Biol. 2008, 153, 233–241. [Google Scholar] [CrossRef]
- Castro, P.; Gil, J.; Cabrera, A.; Moreno, R. Assessment of genetic diversity and phylogenetic relationship in Asparagus species related to Asparagus officinalis. Genet. Resour. Crop Evol. 2013, 60, 1275–1288. [Google Scholar] [CrossRef]
- FAOSTAT Database. Food and Agricultural Organization, UN, Rome. 2021. Available online: http://faostat.fao.org/ (accessed on 15 February 2022).
- Geoffriau, E.; Denoue, D.; Rameau, C. Assessment of genetic variation among asparagus (Asparagus officinalis L.) populations and cultivars: Agromorphological and isozymic data. Euphytica 1992, 61, 169–179. [Google Scholar] [CrossRef]
- Knaflewsky, M. Genealogy of asparagus cultivars. In VIII International Asparagus Symposium 415; Nichols, M., Swain, D., Eds.; Massey University: Palmerston North, New Zealand, 1996; pp. 87–91. [Google Scholar]
- Corpas-Hervias, C.; Melero-Vara, J.M.; Molinero-Ruiz, M.L.; Zurera-Muñoz, C.; Basallote-Ureba, M.J. Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Dis. 2006, 90, 1441–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunitake, H.; Nakashima, T.; Mori, K.; Tanaka, M. Somaclonal and chromosomal effects of genotype, ploidy and culture duration in Asparagus officinalis L. Euphytica 1998, 102, 309–316. [Google Scholar] [CrossRef]
- Marcellán, O.N.; Camadro, E.L. Self- and cross-incompatibility in Asparagus officinalis and Asparagus densiflorus cv. Sprengeri. Can. J. Bot. 1996, 74, 1621–1625. [Google Scholar] [CrossRef]
- Alberti, P.; Casali, P.E.; Barbaglio, E.; Toppino, L.; Mennella, G.; Falavigna, A. Interspecific hybridization for asparagus breeding. In Proceedings of the XLVIII Italian Society of Agricultural Genetics–SIFV-SIGA Joint Meeting, Lecce, Italy, 15–18 September 2004. [Google Scholar]
- Ito, T.; Ochiai, T.; Fukuda, T.; Ashizawa, H.; Sonoda, T.; Kameya, T.; Kanno, A. Potential of interspecific hybrids in Asparagaceae. Acta Hortic. 2008, 776, 279–284. [Google Scholar] [CrossRef]
- Falavigna, A.; Alberti, P.; Casali, P.E.; Toppino, L.; Huaisong, W.; Mennella, G. Interspecific hybridization for asparagus breeding in Italy. Acta Hortic. 2008, 776, 291–298. [Google Scholar] [CrossRef]
- Riccardi, P.; Casali, P.E.; Mercati, F.; Falavigna, A.; Sunseri, F. Genetic characterization of asparagus doubled haploids collection and wild relatives. Sci. Hortic. 2011, 130, 691–700. [Google Scholar] [CrossRef]
- Chen, X.; Tamanian, K.G. Asparagus. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2000; Volume 24, pp. 139–146. [Google Scholar]
- Amian, L.; Rubio, J.; Castro, P.; Gil, J.; Moreno, R. Introgression of wild relative Asparagus spp. germplasm into the Spanish landrace “Morado de Huétor”. Acta Hortic. 2018, 1223, 33–38. [Google Scholar]
- Garcia, V.; Castro, P.; Turbet-Delof, M.; Gil, J.; Moreno, R. Development and diversity analysis of an hexaploid pre-breeding asparagus population with introgressions from wild relative species. Sci. Hortic. 2021, 287, 110273. [Google Scholar]
- Loo, S. Cultivation of Excised Stem Tips of Asparagus In Vitro. Am. J. Bot. 1945, 32, 13–17. [Google Scholar] [CrossRef]
- Yang, H.J.; Clore, W.J. Rapid vegetative propagation of asparagus through lateral bud culture. HortScience 1973, 8, 141–143. [Google Scholar]
- Chin, C.K. Promotion of shoot and root formation in asparagus in vitro by ancymidol. HortScience 1982, 17, 590–591. [Google Scholar]
- Desjardins, Y.; Tiessen, H.; Harney, P.M. The effect of sucrose and ancymidol on the in vitro rooting of nodal sections of asparagus. HortScience 1987, 22, 131–133. [Google Scholar]
- Kunitake, H.; Mii, M. Somatic embryogenesis and plant regeneration from protoplasts of asparagus (Asparagus officinalis L.). Plant Cell Rep. 1990, 8, 706–710. [Google Scholar] [CrossRef]
- Kohmura, H.; Chokyu, S.; Harada, T. Application of a new micropropagation system involving induction of bud clusters and somatic embryogenesis in asparagus. Acta Hortic. 1996, 415, 119–128. [Google Scholar] [CrossRef]
- Limanton-Grevet, A.; Sotta, B.; Brown, S.; Jullien, M. Analysis of habituated embryogenic lines in Asparagus officinalis L.: Growth characteristics, hormonal content and ploidy level of calli and regenerated plants. Plant Sci. 2000, 160, 15–26. [Google Scholar] [CrossRef]
- Pontaroli, A.C.; Camadro, E.L. Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures. Genet. Mol. Biol. 2005, 28, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Encina, C.; Caro, E.; Padilla, I.M.G.; Westendorp, N.; Carmona Martín, E.; Barceló-Muñoz, A.; Vidoy Mercado, I. Procedimiento Para la Propagación In Vitro del Espárrago. Patente ES2349102, 2008. Priority 15 December 2008. Granted Date 3 October 2012. Available online: http://hdl.handle.net/10261/31713 (accessed on 6 April 2022).
- Carmona-Martin, E.; Regalado, J.J.; Padilla, I.M.G.; Westendorp, N.; Encina, C.L. A new and efficient micropropagation method and its breeding applications in Asparagus genera. Plant Cell Tissue Organ Cult. 2014, 119, 479–488. [Google Scholar] [CrossRef]
- Ghosh, B.; Sen, S. Stable regeneration in Asparagus cooperi Baker as controlled by different factors. Plant Sci. 1992, 82, 119–124. [Google Scholar] [CrossRef]
- Ghosh, B.; Sen, S. Plant Regeneration in Asparagus verticillatus L. J. Herbs Spices Med. Plants 1996, 4, 9–17. [Google Scholar] [CrossRef]
- Benmoussa, M.; Mukhopadhyay, S.; Desjardins, Y. Optimization of callus culture and shoot multiplication of Asparagus densiflorus. Plant Cell Tissue Organ Cult. 1996, 47, 91–94. [Google Scholar] [CrossRef]
- Benmoussa, M.; Mukhopadhyay, S.; Desjardins, Y. Factors influencing regeneration from protoplasts of Asparagus densiflorus cv. Sprengerii. Plant Cell Rep. 1997, 17, 123–128. [Google Scholar] [CrossRef]
- Dasgupta, C.N.; Mukhopadhyay, M.J.; Mukhopadhyay, S. Somatic Embryogenesis in Asparagus densiflorus (Kunth) Jessop cv. Sprengeri. J. Plant Biochem. Biotechnol. 2007, 16, 145–149. [Google Scholar] [CrossRef]
- Mousavizadeh, S.J.; Mashayekhia, K.; Hassandokht, M.R. Indirect somatic embryogenesis on rare octoploid Asparagus breslerianus plants. Sci. Hortic. 2017, 226, 84–190. [Google Scholar] [CrossRef]
- Regalado, J.J.; Carmona-Martín, E.; Castro, P.; Moreno, R.; Gil, J.; Encina, C.L. Micropropagation of wild species of the genus Asparagus L. and their interspecific hybrids with cultivated A officinalis L., and verification of genetic stability using EST-SSRs. Plant Cell Tissue Organ Cult. 2015, 121, 501–510. [Google Scholar] [CrossRef]
- Regalado, J.J.; Carmona-Martin, E.; López-Granero, M.; Jiménez-Araujo, A.; Castro, P.; Encina, C.L. Micropropagation of Asparagus macrorrhizus, a Spanish endemic species in extreme extinction risk. Plant Cell Tissue Organ Cult. 2018, 132, 573–578. [Google Scholar] [CrossRef]
- Kim, Y.G.; Okello, D.; Yang, S.; Komakech, R.; Rahmat, E.; Kang, Y. Histological assessment of regenerating plant at callus, shoot organogenesis and plantlet stages during in vitro micropropagation of Asparagus cochinchinensis. Plany Cell Tissue Organ Cult. 2021, 144, 421–433. [Google Scholar] [CrossRef]
- Murashige, T.; Shabde, M.N.; Hasegawa, P.M.; Takatori, F.H.; Jones, J.B. Propagation of asparagus through shoot apex culture. I. Nutrient medium for formation of plantlets. J. Am. Soc. Hort. Sci. 1972, 97, 158–161. [Google Scholar]
- Hasegawa, P.M.; Murashige, T.; Takatori, F.H. Propagation of asparagus through shoot apex culture. II Light and temperatura requirements, transplantability of plants, and cyto-histological characteristics. J. Am. Soc. Hort. Sci. 1973, 98, 143–148. [Google Scholar]
- Doré, C. Chromosome doubling of Asparagus (Asparagus officinalis) haploids by in vitro culture of colchicine treated meristems. Ann. L’amelioration Plantes 1976, 26, 647–653. [Google Scholar]
- Yang, H.J. Tissue culture technique developed for asparagus propagation. HortScience 1977, 12, 16–17. [Google Scholar]
- Khunachak, A.; Chin, C.K.; Le, T.; Gianfagna, T. Promotion of asparagus shoot and root growth by growth retardants. Plant Cell Tissue Organ Cult. 1987, 11, 97–110. [Google Scholar] [CrossRef]
- Volokita, M.; Levi, I.; Sink, K.C. A revised protocol for micropropagation of asparagus. Asparagus Res. Newsl. 1987, 5, 8–17. [Google Scholar]
- Ulukapi, K.; Nasircilar, A.G.; Onus, A.N.; Baktir, I. In vitro propagation and determination of the nutrient content of naturally grown Asparagus stipularis, Forssk. Arch. Biol. Sci. 2014, 66, 1333–1338. [Google Scholar] [CrossRef]
- Conner, A.J.; Falloon, P.G. Osmotic versus nutritional effects when rooting in vitro asparagus minicrowns on high sucrose media. Plant Sci. 1993, 89, 101–106. [Google Scholar] [CrossRef]
- Shigeta, J.; Sato, K.; Tanaka, S.; Nakayama, M.; Mii, M. Efficient plant regeneration of asparagus by inducing normal roots from in vitro multiplied shoot explants using gellam gum and glucose. Plant Sci. 1996, 113, 99–104. [Google Scholar] [CrossRef]
- Chang, D.C.N.; Peng, K.H. Phloroglucinol and tryptone enhance in vitro rooting and survival rate of asparagus nodal sections. Acta Hortic. 1996, 415, 411–416. [Google Scholar] [CrossRef]
- Bopana, N.; Saxena, S. In vitro propagation of a high value medicinal plant: Asparagus racemosus Willd. In Vitro Cell. Dev. Biol.-Plant 2008, 44, 525–532. [Google Scholar] [CrossRef]
- Saxena, S.; Bopana, N. In vitro clonal propagation of Asparagus racemosus, a high value medicinal plant. Methods Mol. Biol. 2009, 547, 179–189. [Google Scholar] [PubMed]
- Aynsley, J.S.; Marston, M.E. Aerial plantlet formation in Asparagus officinalis L. Sci. Hortic. 1975, 3, 149–155. [Google Scholar] [CrossRef]
- Regalado, J.J.; Carmona-Martin, E.; Castro, P.; Moreno, R.; Gil, J.; Encina, C.L. Study of the somaclonal variation produced by different methods of polyploidization in Asparagus officinalis L. Plant Cell Tissue Organ Cult. 2015, 122, 31–34. [Google Scholar] [CrossRef]
- Carmona-Martin, E.; Regalado, J.J.; Padilla, I.M.G.; Peran-Quesada, R.; Encina, C.L. Cryopreservation of rhizome bud of Asparagus officinalis L. (cv. Morado de Huetor) and evaluation of their genetic stability. Plant Cell Tissue Organ Cult. 2018, 133, 395–403. [Google Scholar] [CrossRef]
- Bui-Dang-Ha, D.; Norreel, B.; Masset, A. Regeneration of Asparagus officinalis L. through callus cultures derived from protoplasts. J. Exp. Bot. 1975, 26, 263–270. [Google Scholar]
- Dan, Y.H.; Stephens, C.T. Regeneration of plants from protoplasts of Asparagus officinalis L. In Plant Protoplasts and Genetic Engineering V. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; Volume 29, pp. 3–15. [Google Scholar]
- Mukhopadhyay, S.; Overney, S.; Yelle, S.; Desjardins, Y. Regeneration of transgenic plants from electroporated protoplasts of Asparagus officinalis L. J. Plant Biochem. Biotech. 2002, 11, 57–60. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Desjardins, Y. Direct gene transfer to protoplasts of two genotypes of Asparagus officinalis L by electroporation. Plant Cell Rep. 1994, 13, 421–424. [Google Scholar] [CrossRef]
- Nayak, S.; Sen, S. Regeneration of Asparagus robustus. Hort. J. Herbs Species Med. Plants 1998, 5, 43–50. [Google Scholar] [CrossRef]
- Regalado, J.J.; Carmona-Martin, E.; Madrid, E.; Moreno, R.; Gil, J.; Encina, C.L. Production of “super-males” of asparagus by anther culture and its detection with SSR-ESTs. Plant Cell Tissue Organ Cult. 2016, 124, 119–135. [Google Scholar] [CrossRef]
- Azad, M.A.; Amin, M.N. Regeneration of Asparagus officinalis L. through Embryogenic Callus. Plant Tissue Cult. Biotechnol. 2017, 27, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Pontaroli, A.C.; Camadro, E.L. Plant regeneration after long-term callus culture in clones of Asparagus officinalis. Biocell 2005, 29, 313–317. [Google Scholar] [CrossRef]
- Delbreil, B.; Goebel-Tourand, I.; Lefrancois, C.; Jullien, M. Isolation and Characterization of Long-term Embryogenic Lines in Asparagus officinalis L. J. Plant Physiol. 1994, 144, 194–200. [Google Scholar] [CrossRef]
- Li, B.; Wolyn, D.J. Temperature and genotype affect asparagus somatic embryogenesis. In Vitro Cell. Dev. Biol.-Plant 1996, 32, 136–139. [Google Scholar] [CrossRef]
- Chen, G.Y.; Conner, A.J.; Christey, M.C.; Fautrier, A.G.; Field, R.J. Culture and Regeneration of Protoplasts from Shoots of Asparagus Cultures. Int. J. Plant Sci. 1997, 158, 543–551. [Google Scholar]
- Kunitake, H.; Mii, M. Somatic Embryogenesis and Its Application for Breeding and Micropropagation in Asparagus (Asparagus officinalis L.). Plant Biotechnol. 1998, 15, 51–61. [Google Scholar] [CrossRef]
- Ghosh, B.; Sen, S. Plant regeneration through somatic embryogenesis from spear callus culture of Asparagus cooperi Baker. Plant Cell Rep. 1991, 9, 667–670. [Google Scholar] [CrossRef]
- Ghosh, B.; Sen, S. Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi Baker. Plant Cell Rep. 1994, 13, 381–385. [Google Scholar] [CrossRef]
- Ghosh, B.; Sen, S. Suspension culture, somatic embryogenesis and stable regeneration in Asparagus cooperi Baker. Cytobios 1996, 87, 189–200. [Google Scholar]
- Saito, T.; Nishizawa, S. Improved culture conditions for somatic embryogenesis from Asparagus officinalis L using and aseptic ventilate filter. Plant Cell Rep. 1991, 10, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Odake, Y.; Udagawa, A.; Saga, H.; Mii, M. Somatic embryogenesis of tetraploid plants from internodal segments of a diploid cultivar of Asparagus officinalis L. grown in liquid culture. Plant Sci. 1993, 94, 173–177. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Desjardins, Y. Plant regeneration from Protoplast-derived Somatic Embryos of Asparagus officinalis L. J. Plant Physiol. 1994, 144, 94–99. [Google Scholar] [CrossRef]
- Khomura, H.; Ito, T.; Shigemoto, N.; Imoto, M.; Yoshikawa, H. Comparison of growth, yield, and flowering characteristics between micropropagated asparagus clones derived by somatic embryogenesis and seed-propagated progenies. J. Jpn. Soc. Hort. Sci. 1996, 65, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Ozaki, Y.; Sonoda, T.; Inoue, N.; Narikiyo, K.; Okubo, H. Sex-conversion from male to female during somatic embryogenesis from protoplasts in asparagus (Asparagus officinalis L.). J. Fac. Agric. Kyushu Univ. 2005, 50, 585–592. [Google Scholar] [CrossRef]
- Levi, A.; Sink, K.C. Somatic embryogenesis in asparagus: The role of explants and growth regulators. Plant Cell Rep. 1991, 10, 71–75. [Google Scholar] [CrossRef]
- Levi, A.; Sink, K.C. Asparagus somatic embryos: Production in suspension culture and conversion to plantlets on solidified medium as influences by carbohydrate regime. Plant Cell Tissue Organ Cult. 1992, 31, 115–122. [Google Scholar] [CrossRef]
- Kohmura, H.; Chokyu, S.; Harada, J.T. An effective micropropagation system using embryogenic calli induced from bud clusters in Asparagus officinalis. J. Jpn. Soc. Hort. Sci. 1994, 63, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wolyn, D.J. The effects of ancymidol, abscisic acid, uniconazole and paclobutrazol on somatic embryogenesis of asparagus. Plant Cell Rep. 1995, 14, 29–533. [Google Scholar] [CrossRef]
- Li, B.; Wolyn, D.J. Abscisic acid and ancymidol promote conversion of somatic embryos to plantlets and secondary embryogenesis in Asparagus officinalis L. In Vitro Cell Dev. Biol.-Plant 1996, 32, 223–226. [Google Scholar] [CrossRef]
- Li, B.; Wolyn, D.J. Interactions of ancymidol with sucrose and α-naphthaleneacetic acid in promoting asparagus (Asparagus officinalis L.) somatic embryogenesis. Plant Cell Rep. 1997, 16, 879–883. [Google Scholar] [CrossRef] [PubMed]
- May, R.A.; Sink, K.C. Effect of genotype and auxin on direct somatic embryogenesis from protoplasts derived from embryogenic suspension cultures of Asparagus officinalis L. Acta Hortic. 1996, 415, 237–248. [Google Scholar] [CrossRef]
- May, R.A.; Sink, K.C. Genotype and auxin influence on direct somatic embryogenesis from protoplasts derived from embryogenic cell suspensions of Asparagus officinalis L. Plant Sci. 1995, 108, 71–84. [Google Scholar] [CrossRef]
- Mamiya, K.; Sakamoto, Y. Effects of Sugar Concentration and Strength of Basal Medium on Conversion of Somatic Embryos in Asparagus officinalis L. Sci. Hortic. 2000, 84, 15–26. [Google Scholar] [CrossRef]
- Mamiya, K.; Sakamoto, Y. Nitrilo triacetate increases the rate of single somatic embryos on Asparagus officinalis. J. Plant Physiol. 2002, 159, 553–556. [Google Scholar] [CrossRef]
- Dasgupta, C.N.; Mukhopadhyay, M.J.; Mukhopadhyay, S. Regeneration of a Tetraploid Clone from Callus Culture of Asparagus officinalis L. through Somatic Embryogenesis. Cytologia 2003, 68, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Kunitake, H.; Nakashima, T.; Mori, K.; Tanaka, M. Normalization of asparagus somatic embryogenesis using a maltose-containing medium. J. Plant Physiol. 1997, 150, 458–461. [Google Scholar] [CrossRef]
- Raimondi, J.P.; Masuelli, R.W.; Camadro, E.L. Assessment of somaclonal variation in asparagus by RAPD fingerprinting and cytogenetic analysis. Sci. Hort. 2001, 90, 19–29. [Google Scholar] [CrossRef]
- Ellison, J.H.; Kinelski, J.J. ‘Greenwich, a male asparagus hybrid’. HortScience 1986, 21, 1249. [Google Scholar]
- Lopez-Anido, F.; Cointry, E. Asparagus. In Vegetables II: Fabaceae, Liliacea, Solanaceae, and Umbeliferae; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 87–119. [Google Scholar]
- Flory, W.S. Genetic and cytological investigations on Asparagus officinalis L. Genetics 1932, 17, 432–467. [Google Scholar] [CrossRef]
- Löptien, H. Identification of the sex choromosome pair in asparagus (Asparagus officinalis L.). Z. Pflanzenzuchtg. 1979, 82, 162–173. [Google Scholar]
- Ellison, J.H.; Kinelski, J.J. Jersey Giant, an all-male asparagus hybrid. HortScience 1985, 20, 1141. [Google Scholar]
- Ellison, J.H.; Garrison, S.A.; Kinelski, J.J. Male asparagus hybrids—Jersey Gem, Jersey General, Jersey King, Jersey Knight, and Jersey Titan. HortScience 1990, 25, 816–817. [Google Scholar] [CrossRef]
- Sneep, J. The significance of andromonoecy for the breeding of Asparagus officinalis L. Euphytica 1953, 2, 89–95. [Google Scholar] [CrossRef]
- Boonen, P. Espárrago: Variedades, investigación científica y producción comercial de la semilla en los Países Bajos. In Proceedings of the II Jornadas técnicas del espárrago, Pamplona, Spain, 1 June 1988; pp. 267–275. [Google Scholar]
- Galli, L.; Viégas, J.; Augustin, E.; Eckert, M.I.; Da Silva, J.B. Meiosis of anther culture regenerants in asparagus (Asparagus officinalis L.). Genet. Mol. Biol. 1998, 21, 93–97. [Google Scholar] [CrossRef]
- Regalado, J.J.; Gil, J.; Castro, P.; Moreno, R.; Encina, C.L. Employment of molecular markers to develop tetraploid “supermale” asparagus from andromonoecious plants of the landrace ‘Morado de Huétor’. Span. J. Agric. Res. 2014, 12, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Doré, C. Production de plantes homozygotes mâles et females à partir d’anthères d’asperge, cultivées in vitro. CR Acad. Sci. 1974, 278, 2135–2138. [Google Scholar]
- Doré, C. Asparagus anther culture and field trials of dihaploids and F1 hybrids. In Haploids in Crop Improvement. I. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 12, pp. 322–345. [Google Scholar]
- Corriols, L.; Doré, C.; Rameau, C. Commercial release in France of Andreas, the first asparagus all male F1 hybrid. Acta Hortic. 1990, 271, 249–252. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Ma, Y.; Kang, Y. Regeneration of haploid plants from isolated microspores of asparagus (Asparagus officinalis L.). Plant Cell Rep. 1994, 13, 637–640. [Google Scholar] [CrossRef]
- Delaitre, C.; Ochatt, S.; Deleury, E. Electroporation modulates the embryogénie responses of asparagus (Asparagus officinalis L.) microspores. Protoplasma 2001, 216, 39–46. [Google Scholar] [CrossRef]
- Qiao, Y.M.; Falavigna, A. An improved in vitro anther culture method for obtaining double-haploid clones of asparagus. Acta Hortic. 1990, 271, 145–150. [Google Scholar] [CrossRef]
- Feng, X.R.; Wolyn, D.J. High frequency production of haploid embryos in asparagus anther culture. Plant Cell Rep. 1991, 10, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Falavigna, A.; Casali, P.E.; Battaglia, A. Achievement of asparagus breeding in Italy. Acta Hortic. 1999, 479, 67–74. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M. Androgenesis Revisited. Bot. Rev. 2010, 76, 377–404. [Google Scholar] [CrossRef]
- Wolyn, D.J.; Feng, X. Genotype, temperature, and sampling date affect embryogeneis in Asparagus anther culture. HortScience 1993, 28, 216–217. [Google Scholar] [CrossRef]
- Zaki, M.A.M.; Dickinson, H.G. Microspore-derived embryos in Brassica: The significance of division symmetry in pollen mitosis I to embryogenic development. Sex. Plant Reprod. 1991, 4, 48–55. [Google Scholar] [CrossRef]
- Simmonds, D.H.; Keller, W.A. Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 1999, 208, 383–391. [Google Scholar] [CrossRef]
- Smykal, P. Pollen embryogenesis—the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biol. Plant 2000, 43, 481–489. [Google Scholar] [CrossRef]
- Shariatpanahi, M.E.; Bal, U.; Heberle-Bors, E.; Touraev, A. Stresses applied for the reprogramming of plant microspores towards in vitro embryogenesis. Physiol. Plant 2006, 127, 519–534. [Google Scholar] [CrossRef]
- Aionesei, T.; Touraev, A.; Heberle-Bors, E. Pathways to microspore embryogenesis. In Haploids in Crop Improvement II; Palmer, C.E., Keller, W.A., Kasha, K.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 56, pp. 11–34. [Google Scholar]
- Bairu, M.W.; Aremu, A.O.; Van Staden, J. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul. 2011, 63, 147–173. [Google Scholar] [CrossRef]
- Shiga, I.; Uno, Y.; Kanechi, M.; Inagaki, N. Identification of polyploidy of in vitro anther-derived shoots of Asparagus officinalis L. by flow cytometry analysis and measurement of stomatal length. J. Jpn. Soc. Hort. Sci. 2009, 78, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Jamsari, A.; Nitz, I.; Reamon-Büttner, S.M.; Jung, C. BAC-derived diagnostic markers for sex determination in asparagus. Theor. Appl. Genet. 2004, 108, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Falavigna, A.; Casali, P.E.; Tacconi, M.G. Advances in asparagus breeding following in vitro anther culture. Acta Hortic 1996, 415, 137–142. [Google Scholar] [CrossRef]
- Eimert, K.; Reutter, G.; Strolka, B. Fast and reliable detection of doubled-haploids in Asparagus officinalis by stringent RAPD-PCR. J. Agric. Sci. 2003, 141, 73–78. [Google Scholar] [CrossRef]
- Ozaki, Y.; Narikiyo, K.; Fujita, C.; Okubo, H. Ploidy variation of progenies from intra- and inter-ploidy crosses with regard to trisomic production in asparagus (Asparagus officinalis L.). Sex. Plant Reprod. 2004, 17, 157–164. [Google Scholar] [CrossRef]
- Ozaki, Y.; Nariyiko, K.; Hiramatsu, M.; Ureshino, K.; Okubo, H. Application of flow cytometry for rapid determination of ploidy levels in asparagus (Asparagus officinalis L.). J. Fac. Agric. Kyushu Univ. 1998, 43, 83–88. [Google Scholar] [CrossRef]
- Carmona-Martin, E.; Regalado, J.J.; Raghavan, L.; Encina, C.L. In vitro induction of autooctoploid asparagus genotypes. Plant Cell Tissue Organ Cult. 2015, 121, 249–254. [Google Scholar] [CrossRef]
- Skiebe, K.; Stein, M.; Gottwald, J.; Wolterstorff, B. Breeding of polyploid Asparagus (Asparagus officinalis L.). Plant Breed 1991, 106, 99–106. [Google Scholar] [CrossRef]
- Nakashima, T.; Kunitake, H.; Tanaka, M. Intercrossing between diploid, triploid and tetraploid of Asparagus officinalis L. Jpn. J. Breed 1992, 42, 462–463. [Google Scholar]
- Castro, P.; Rubio, J.; Gil, J.; Moreno, R. Introgression of new germplasm in current diploid cultivars of garden asparagus from tetraploid Spanish landrace “Morado de Huetor”. Sci. Hortic. 2014, 168, 157–160. [Google Scholar] [CrossRef]
- Moreno, R.; Espejo, J.A.; Gil, J. Development of triploid hybrids in Asparagus breeding employing a tetraploid landrace. Euphytica 2019, 173, 369–375. [Google Scholar] [CrossRef]
- Wagner, J.J.; Ellison, J.H. Incompatibility between diploid and autotetraploid Asparagus officinalis L. Proc. Am. Soc. Hortic. Sci. 1964, 85, 344–349. [Google Scholar]
- Mishiba, K.I.; Tawada, K.I.; Mii, M. Ploidy distribution in the explant tissue and the calluses induced during the initial stage of internode segment culture of Asparagus officinalis L. In Vitro Cell. Dev. Biol.-Plant 2006, 42, 83–88. [Google Scholar] [CrossRef]
- Wacker, T.I.; Smither, M.I.; Stebbins, T.C.; Stephens, C.T. Methods used to screen for Fusarium resistance in asparagus plants regenerated from protoplasts. Acta Hortic. 1990, 271, 331–336. [Google Scholar] [CrossRef]
- Kunitake, H.; Nakashima, T.; Mori, K.; Tanaka, M.; Saito, A.; Mii, M. Production of interspecific somatic hybrid plants between Asparagus officinalis and A. macowanii through electrofusion. Plant Sci. 1996, 116, 213–222. [Google Scholar] [CrossRef]
- Bui-Dang-Ha, D.; Mackenzie, I.A. The Division of Protoplasts from Asparagus officinalis L. and their growth and differentiation. Protoplasma 1973, 78, 215–221. [Google Scholar]
- Kong, Y.; Chin, C.K. Culture of asparagus protoplasts on porous polypropylene membrane. Plant Cell Rep. 1988, 7, 67–69. [Google Scholar] [CrossRef]
- Chin, C.K.; Kong, Y.; Pedersen, H. Culture of droplets containing asparagus cells and protoplasts on polypropylene membrane. Plant Cell Tissue Organ Cult. 1988, 15, 59–65. [Google Scholar] [CrossRef]
- Ball, T.; Elmer, W.H.; Volokita, M.; Sink, K.C. Plant regeneration from callus derived protoplasts of asparagus. HortScience 1988, 23, 753–754. [Google Scholar]
- Elmer, W.H.; Ball, T.; Volokita, M.; Stephens, C.T.; Sink, K.C. Plant regeneration from callus-derived protoplasts of asparagus. J. Am. Soc. Hortic. Sci. 1989, 114, 1019–1024. [Google Scholar]
- Sink, K.C.; Ball, T.; Volokita, M.; Stephens, C.T.; Elmer, W.H. Regeneration of asparagus plants from callus-derived protoplasts. Acta Hortic. 1990, 271, 117–127. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Desjardins, Y. A comparative-study on mode of culture and plant-regeneration from protoplast-derived somatic embryos of 2 genotypes of Asparagus officinalis L. Plant Sci. 1994, 100, 97–104. [Google Scholar] [CrossRef]
- Dan, Y.H.; Stephens, C.T. Studies of protoplast culture types and plant-regeneration from callus-derived protoplasts of Asparagus officinalis L cv Lucullus-234. Plant Cell Tissue Organ Cult. 1991, 27, 321–331. [Google Scholar] [CrossRef]
- Kunitake, H.; Godo, T.; Mii, M. Isolation and culture of Asparagus microspore protoplast. Jpn. J. Breed. 1993, 43, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Conner, A.J.; Christey, M.C.; Fautrier, A.G.; Field, R.J. Protoplast isolation from shoots of asparagus cultures. Int. J. Plant Sci. 1997, 158, 537–542. [Google Scholar]
- Delbreil, B.; Guerche, P.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep. 1993, 12, 129–132. [Google Scholar] [CrossRef]
- Delbreil, B.; Jullien, M. Genetic Transformation in Asparagus officinalis L. In Plant Protoplasts and Genetic Engineering VII. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 38, pp. 164–177. [Google Scholar]
- Limanton-Grevet, A.; Jullien, M. Agrobacterium-mediated transformation of Asparagus officinalis L.: Molecular and genetic analysis of transgenic plants. Mol. Breed. 2001, 7, 141–150. [Google Scholar]
- Cabrera-Ponce, J.L.; López, L.; Assad-Garcia, N.; Medina-Arevalo, C.; Bailey, A.M.; Herrera-Estrella, L. An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.). Plant Cell Rep. 1997, 16, 255–260. [Google Scholar]
- Li, B.; Wolyn, D.J. Recovery of transgenic asparagus plants by particle gun bombardment of somatic cells. Plant Sci. 1997, 126, 59–68. [Google Scholar] [CrossRef]
- Klocke, E.; Nothnagel, T.; Schumann, G. Vegetables. In Genetic Modification of Plants, Biotechnology in Agriculture and Forestry; Kempken, F., Jung, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 64, pp. 499–550. [Google Scholar]
- Cardi, T.; D’Agostino, N.; Tripodi, P. Genetic Transformation and Genomic Resources for Next-Generation Precise Genome Engineering in Vegetable Crops. Front. Plant Sci. 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sala, T.; Losa, A.; Ferrari, L.; Casali, P.E.; Campion, B.; Schiavi, M.; Rotino, G.L. Attempts of genetic transformation in Asparagus officinalis L. Acta Hortic. 2018, 1223, 67–72. [Google Scholar] [CrossRef]
- Chen, H.; Guo, A.; Lu, Z.; Tan, S.; Wang, J.; Gao, J.; Zhang, S.; Huang, X.; Zheng, J.; Xi, J.; et al. Agrobacterium tumefaciens-mediated transformation of a hevein-like gene into asparagus leads to stem wilt resistance. PLoS ONE 2019, 14, e0223331. [Google Scholar]
- Harkess, A.; Kun, H.; van der Hulst, R.; Tissen, B.; Caplan, J.L.; Koppula, A.; Batish, M.; Blake, C.; Meyers, B.C.; Leebens-Mack, J. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 2020, 32, 1790–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrahman, M.; Al-Sadi, A.M.; Pour-Aboughadareh, A.; Burritt, D.J.; Tran, L.P. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol. Biochem. 2018, 31, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Francesco Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef]
- Renner, S.S.; Müller, N.A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nat. Plants 2021, 7, 392–402. [Google Scholar] [CrossRef]
- Elmer, W.H. The economically important diseases of Asparagus in the United States. Plant Health Prog. 2001, 2, 13. [Google Scholar] [CrossRef]
- Shen, X.; Gmitter, F.G.; Grosser, J.W. Immature Embryo rescue and Culture. In Plant Embryo Culture Methods in Molecular Biology (Methods and Protocols); Thorpe, T., Yeung, E., Eds.; Humana Press: Clifton, NJ, USA, 2011; Volume 710, pp. 75–92. [Google Scholar]
- Jersey Asparagus Varieties Being Discontinued-Next Steps. Fruit and Vegetable News. University of Minnesota Extension. Available online: https://blog-fruit-vegetable-ipm.extension.umn.edu/2021/01/jersey (accessed on 6 April 2022).
- Thakur, S.; Tiwari, K.L.; Jadhav, S.K. In vitro approaches for conservation of Asparagus racemosus Willd. In Vitro Cell. Dev. Biol. Plant 2015, 51, 619–625. [Google Scholar] [CrossRef]
- Koo, B.; Pardey, P.G.; Wright, B.D. The economic costs of conserving genetic resources at the CGIAR centres. Agric. Econ. 2003, 29, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Kameswara Rao, N.; Hanson, J.; Dulloo, M.E.; Ghosh, K.; Nowell, A.; Larinde, M. Manual of Seed Handling in Genebanks; SGRP (System-Wide Genetic Resources Programme): Rome, Italy, 2006; 147p. [Google Scholar]
- Jullien, M. Medium-term preservation of mesophyll cells isolated from Asparagus officinalis L.: Development of a simple method by storage at reduced temperature. Plant Cell Tissue Organ Cult. 1983, 2, 305–316. [Google Scholar] [CrossRef]
- Fletcher, P.J. In vitro long-term storage of asparagus. N. Z. J. Crop Hortic. Sci. 1994, 22, 351–359. [Google Scholar] [CrossRef]
- Bekheet, S. In vitro Preservation of Asparagus officinalis. Biol. Plant. 2000, 43, 179–183. [Google Scholar] [CrossRef]
- Pandey, A.; Sinha, A. Effect of mannitol, sorbitol and sucrose on growth inhibition and in vitro conservation of germplasm of Asparagus racemosus—an important medicinal plant. Med. Plants Int. J. Phytomed. Relat. Ind. 2013, 5, 71–74. [Google Scholar] [CrossRef]
- Barun, S.A. Review on Applications & Advantages of Cryopreservation in Different Fields of Science. Beats Nat. Sci. 2015, 2, 1–6. [Google Scholar]
- Kumu, Y.; Harada, T.; Yakuwa, T. Development of a whole plant from a shoot tip odf Asparagus officinalis L., frozen down to −196 °C. J. Fac. Hokkaido Univ. 1983, 61, 285–294. [Google Scholar]
- Uragami, A.; Sakai, A.; Nagai, M.; Takahashi, Y. Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 1989, 8, 418–421. [Google Scholar] [CrossRef]
- Uragami, A.; Sakai, A.; Nagai, M. Cryopreservation of dried axillary bud plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep. 1990, 9, 328–331. [Google Scholar] [CrossRef]
- Kohmura, H.; Sakai, A.; Chokyu, S.; Yakuwa, T. Cryopreservation of in vitro-cultured multiple bud clusters of asparagus (Asparagus officinalis L. cv Hiroshimagreen (2n = 30) by the techniques of vitrification. Plant Cell Rep. 1992, 11, 433–437. [Google Scholar] [CrossRef]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of Asparagus (Asparagus officinalis L.) embryogenic cells and subsequent plant regeneration by a simple freezing method. CryoLetters 1992, 13, 379–388. [Google Scholar]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91, 67–73. [Google Scholar] [CrossRef]
- Suzuki, T.; Kaneko, M.; Harada, T. Increase in freezing resistance of excised shoots tips of Asparagus officinalis L. by preculture on sugar-rich media. Cryobiology 1997, 34, 264–275. [Google Scholar] [CrossRef]
- Suzuki, T.; Kaneko, M.; Harada, T.; Yakuwa, T. Enhanced formation of roots and subsequent promotion of growth of shoots on cryopreserved nodal segments of Asparagus officinalis L. Cryobiology 1998, 36, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Mix-Wagner, G.; Conner, A.J.; Cross, R.J. Survival and recovery of asparagus shoot tips after cryopreservation using the “droplet” method. N. Z. J. Crop Hortic. Sci. 2000, 28, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Jitsuyama, Y.; Suzuki, T.; Harada, T.; Fujokawa, S. Sucrose incubation increases freezing tolerance of asparagus (Asparagus officinalis L.) embryogenic cell suspensions. CryoLetters 2002, 23, 101–112. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encina, C.L.; Regalado, J.J. Aspects of In Vitro Plant Tissue Culture and Breeding of Asparagus: A Review. Horticulturae 2022, 8, 439. https://doi.org/10.3390/horticulturae8050439
Encina CL, Regalado JJ. Aspects of In Vitro Plant Tissue Culture and Breeding of Asparagus: A Review. Horticulturae. 2022; 8(5):439. https://doi.org/10.3390/horticulturae8050439
Chicago/Turabian StyleEncina, Carlos Lopez, and José Javier Regalado. 2022. "Aspects of In Vitro Plant Tissue Culture and Breeding of Asparagus: A Review" Horticulturae 8, no. 5: 439. https://doi.org/10.3390/horticulturae8050439
APA StyleEncina, C. L., & Regalado, J. J. (2022). Aspects of In Vitro Plant Tissue Culture and Breeding of Asparagus: A Review. Horticulturae, 8(5), 439. https://doi.org/10.3390/horticulturae8050439