Assessment of Physicochemical, Macro- and Microelements, Heavy Metals, and Related Human Health Risk from Organically, Conventionally, and Homemade Romanian Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reagents and Solutions
2.3. Physicochemical Characterization of the Organic, Conventional, and Homemade Wine Samples
2.4. Sample Preparation and Digestion for Determination of Elements Using ICP-MS
2.5. General ICP-MS Instrumental Parameters of Analysis
2.6. Estimated Dietary Intake and Target Hazard Quotient
2.7. Statistical Analysis
3. Results and Discussions
3.1. Physicochemical Analyses of Organic (org.), Conventional (conv.), and Homemade (home.) Wine Samples
3.2. Sulfur Dioxide (SO2) Concentrations in Organic (org.), Conventional (conv.), and Homemade (homew.) Wine Samples
3.3. Level of Elemental Concentrations in Organic, Conventional, and Homemade Wine Samples
3.4. Estimated Dietary Intake (EDI) and Estimated Target Hazard Quotient (THQ) of Organic, Conventional, and Homemade Wine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Döring, J.; Frisch, M.; Tittmann, S.; Stoll, M.; Kauer, R. Growth, yield and fruit quality of grapevines under organic and biodynamic management. PLoS ONE 2015, 10, e0138445. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [Green Version]
- Wachter, J.M.; Reganold, J.P. Organic agricultural production: Plants. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 265–286. [Google Scholar]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in viticulture: A sustainable approach against biotic and abiotic stresses. Plants 2022, 11, 162. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Reeve, J.; Carpenter-Boggs, L.; Reganold, J.; York, A.; McGourty, G.; McCloskey, L. Soil and winegrape quality in biodynamically and organically managed vineyards. Am. J. Enol. Vitic. 2005, 56, 367–376. [Google Scholar]
- FiBL; IFOAM-Organics International. The World of Organic Agriculture. Statistics and Emerging Trends. Available online: https://ciaorganico.net/documypublic/486_2020-organic-world-2019.pdf (accessed on 1 February 2022).
- The Food and Agriculture Organization. Corporate Statistical Database (FAOSTAT). Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 30 December 2020).
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Haagsma, W.K.; Peigné, J.; Palazzoli, M.C.; Schulz, F.; et al. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res. 2022, 216, 105262. [Google Scholar] [CrossRef]
- Angeletti, C.; Monaci, E.; Giannetta, B.; Polverigiani, S.; Vischetti, C. Soil organic matter content and chemical composition under two rotation management systems in a Mediterranean climate. Pedosphere 2021, 31, 903–911. [Google Scholar] [CrossRef]
- Reganold, J.P.; Elliott, L.F.; Unger, Y.L. Long-term effects of organic and conventional farming on soil erosion. Nature 1987, 330, 370–372. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Andrews, P.K. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 2000, 80, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Gajek, M.; Pawlaczyk, A.; Szynkowska-Jozwik, M.I. Multi-elemental analysis of wine samples in relation to their type, origin, and grape variety. Molecules 2021, 26, 214. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.M.; Bromberg, I.L. Health effects of moderate alcohol consumption: A paradigmatic risk factor. Clin. Chim. Acta 1996, 246, 1–3. [Google Scholar] [CrossRef]
- Fabjanowicz, M.; Płotka-Wasylka, J. Metals and metal-binding ligands in wine: Analytical challenges in identification. Trends Food Sci. Technol. 2021, 112, 382–390. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Frankowski, M.; Simeonov, V.; Polkowska, Ż.; Namieśnik, J. Determination of metals content in wine samples by inductively coupled plasma-mass spectrometry. Molecules 2018, 23, 2886. [Google Scholar] [CrossRef] [Green Version]
- Fabani, M.P.; Arrúa, R.C.; Vázquez, F.; Diaz, M.P.; Baroni, M.V.; Wunderlin, D.A. Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chem. 2010, 119, 372–379. [Google Scholar] [CrossRef]
- Pawlaczyk, A.; Gajek, M.; Jozwik, K.; Szynkowska, M.I. Multielemental analysis of various kinds of whisky. Molecules 2019, 24, 1193. [Google Scholar] [CrossRef] [Green Version]
- Skendi, A.; Papageorgiou, M.; Stefanou, S. Preliminary study of microelements, phenolics as well as antioxidant activity in local, homemade wines from North-East Greece. Foods 2020, 9, 1607. [Google Scholar] [CrossRef]
- Grainger, C.; Yeh, A.; Byer, S.; Hjelmeland, A.; Lima, M.M.M.; Runnebaum, R.C. Vineyard site impact on the elemental composition of Pinot noir wines. Food Chem. 2021, 334, 127386. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Mottese, F.A. Multi-element analysis and geographical origin classification of Italian (Calabrian) wines. Curr. Nutr. Food Sci. 2020, 16, 1259–1264. [Google Scholar] [CrossRef]
- Maciel, J.V.; Souza, M.M.; Silva, L.O.; Dias, D. Direct determination of Zn, Cd, Pb and Cu in wine by differential pulse anodic stripping voltammetry. Beverages 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Volpe, M.G.; La Cara, F.; Volpe, F.; De Mattia, A.; Serino, V.; Petitto, F.; Zavalloni, C.; Limone, F.; Pellecchia, R.; De Prisco, P.P.; et al. Heavy metal uptake in the enological food chain. Food Chem. 2009, 117, 553–560. [Google Scholar] [CrossRef]
- Salvo, F.; La Pera, L.; Di Bella, G.; Nicotina, M.; Dugo, G. Influence of different mineral and Organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines. J. Agric. Food Chem. 2003, 51, 1090–1094. [Google Scholar] [CrossRef]
- Voica, C.; Dehelean, A.; Pamula, A. Method validation for determination of heavy metals in wine and slightly alcoholic beverages by ICP-MS. J. Phys. Conf. Ser. 2009, 182, 012036. [Google Scholar] [CrossRef]
- Bora, F.D.; Bunea, C.I.; Chira, R.; Bunea, A. Assessment of the quality of polluted areas in Northwest Romania based on the content of elements in different organs of grapevine (Vitis vinifera L.). Molecules 2020, 25, 750. [Google Scholar] [CrossRef] [Green Version]
- Bora, F.D.; Donici, A.; Rusu, T.; Bunea, A.; Popescu, D.; Bunea, C.I. Elemental profile and 207Pb/206Pb, 208Pb/206Pb, 204Pb/206Pb, 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of Romanian wines. Not. Bot. Hortic. Agrobot. Cluj-Napoca 2018, 46, 1. [Google Scholar] [CrossRef] [Green Version]
- Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar] [CrossRef]
- Avram, V.; Magdas, D.A.; Voica, C.; Cristea, G.; Cimpoiu, C.; Hosu, A.; Marutoiu, C. Isotopic oxygen ratios and trace metal determination in some Romanian commercial wines. Anal. Lett. 2014, 47, 641–653. [Google Scholar] [CrossRef]
- Geană, E.-I.; Sandru, C.; Stanciu, V.; Ionete, R.E. Elemental profile and 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of wines: An approach on Romanian wines. Food Anal. Methods 2017, 10, 63–73. [Google Scholar] [CrossRef]
- Grainger, K.; Tattersall, H. Wine Production: Vine to Bottle; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Suhaj, M.; Korenovská, M. Application of elemental analysis for identification of wine origin: A review. Acta Aliment. 2005, 34, 393–401. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Vasconcelos, M.T.S.D. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. J. Agric. Food Chem. 2003, 51, 4788–4798. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Lorenc, W.; Barałkiewicz, D. Study of the impact of bottles material and color on the presence of AsIII, AsV, SbIII, SbV and CrVI in matrix-rich mineral water—Multielemental speciation analysis by HPLC/ICP-DRC-MS. Microchem. J. 2017, 132, 1–7. [Google Scholar] [CrossRef]
- Nationmaster. Wine Consumption in Romania. Available online: https://www.nationmaster.com/nmx/timeseries/romania-wine-consumption (accessed on 21 September 2021).
- Nationmaster. Wine Consumption per Capita. Available online: https://www.nationmaster.com/nmx/timeseries/romania-wine-consumption-per-capita (accessed on 21 September 2021).
- Organization of Vine and Wine. Maximum Acceptable Limits. Available online: https://www.oiv.int/en/technical-standards-and-documents/oenological-practices/maximum-acceptable-limits (accessed on 1 February 2022).
- Woldemariam, D.M.; Chandravanshi, B.S. Concentration levels of essential and non-essential elements in selected Ethiopian wines. Bull. Chem. Soc. Ethiop. 2011, 25, 169–180. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. International Code of Oenological Practices. Available online: https://www.oiv.int/public/medias/7713/en-oiv-code-2021.pdf (accessed on 28 August 2021).
- Bora, F.D.; Donici, A.; Oslobanu, A.; Fițiu, A.; Babeș, A.C.; Bunea, C.I. Qualitative Assessment of the white wine varieties grown in Dealu Bujorului vineyard, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Bora, F.D.; Bunea, C.I.; Călugăr, A.; Donici, A. Phenolic, anthocyanin composition and color measurement at red wines from Dealu Bujorului vineyard. Agricultura 2019, 109, 14–28. [Google Scholar] [CrossRef]
- Bora, F.D.; Bunea, C.I.; Coldea, T.E.; Călugăr, A.; Iliescu, M.; Donici, A. The analyse of physicochemical composition, total phenolic content and color of some red wines from Dealu Bujorului vineyard. Agricultura 2018, 107, 98–104. [Google Scholar] [CrossRef]
- Bora, F.D.; Călugăr, A.; Bunea, C.I.; Petrescu Mag, V.; Cimpoiu, C.; Filimon, V.R. Trace metal concentration and human health risk assessment in distilled alcoholic beverages in Romania. Stud. UBB Chem. 2019, 64, 157–176. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Hazard Quotient. Available online: https://www.epa.gov/national-air-toxics-assessment/nata-glossary-terms#hq (accessed on 20 January 2022).
- U.S. Environmental Protection Agency. Environmental Protection Agency. Regional Screening Levels (RSLs)-Generic Tables. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 20 January 2022).
- Oficiul National al Viei si Produselor Viticole. Hotărâre nr. 512 din 20 Iulie 2016 Pentru Aprobarea Normelor Metodologice de Aplicare a Legii Viei şi Vinului în Sistemul Organizării Comune a Pieţei Vitivinicole nr. 164/2015. Available online: https://www.onvpv.ro/sites/default/files/hg_512_2016_norme_la_legea_viei_si_vinului_164_2015.pdf (accessed on 18 July 2021).
- International Organization of Vine and Wine. International Standard for Labelling Wines. Available online: https://www.oiv.int/en/technical-standards-and-documents/products-definition-and-labelling/international-standard-for-labelling-wines (accessed on 23 February 2022).
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mirás-Avalos, J.M.; Bouzas-Cid, Y.; Trigo-Córdoba, E.; Orriols, I.; Falqué, E. Amino acid profiles to differentiate white wines from three autochtonous galician varieties. Foods 2020, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Mihaljevic Zulj, M.; Puhelek, I.; Jagatic Korenika, A.M.; Maslov Bandic, L.; Pavlesic, T.; Jeromel, A. Organic acid composition in croatian predicate wines. Agric. Conspec. Sci. 2015, 80, 113–117. [Google Scholar]
- Țârdea, C. Chemistry and Analysis of Wine, 2nd ed.; Ion Ionescu de la Brad: Iasi, Romania, 2007. [Google Scholar]
- Parpinello, G.P.; Rombolà, A.D.; Simoni, M.; Versari, A. Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chem. 2015, 167, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, S.; Río Segade, S.; Cagnasso, E.; Caudana, A.; Rolle, L.; Gerbi, V. Chapter 21–SO2 in wines: Rational use and possible alternatives. In Red Wine Technology; Morata, A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 309–321. [Google Scholar]
- Țârdea, C.; Sârbu, G.; Țârdea, A. The Wine Treated, 1st ed.; Ion Ionescu de la Brad: Iasi, Romania, 2000; pp. 215–235. [Google Scholar]
- Cotea, V.D. The Oenochimie Treated; Ceres: Bucuresti, Romania, 1985; pp. 120–181. [Google Scholar]
- Lowinsohn, D.; Bertotti, M. Determination of sulphite in wine by coulometric titration. Food Addit. Contam. 2001, 18, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Guella, G.; Mattivi, F. The impact of SO2 on wine flavanols and indoles in relation to wine style and age. Sci. Rep. 2018, 8, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Council of the European Union. Council Regulation (EC). Available online: https://www.fsai.ie/uploadedfiles/Consol_Reg1493_1999.pdf (accessed on 28 August 2021).
- Vitali Čepo, D.; Pelajić, M.; Vinković Vrček, I.; Krivohlavek, A.; Žuntar, I.; Karoglan, M. Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chem. 2018, 246, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Butnariu, M.; Butu, A. 11-qualitative and quantitative chemical composition of wine. In Quality Control in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 385–417. [Google Scholar]
- Galani-Nikolakaki, S.M.; Kallithrakas-Kontos, N.G. Elemental content of wines. In Mineral Components in Foods, 1st ed.; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2007; Volume 1, pp. 323–339. [Google Scholar]
- Frías, S.; Conde, J.E.; Rodríguez-Bencomo, J.J.; García-Montelongo, F.; Pérez-Trujillo, J.P. Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents. Talanta 2003, 59, 335–344. [Google Scholar] [CrossRef]
- Pohl, P. What do metals tell us about wine? TrAC Trends Anal. Chem. 2007, 26, 941–949. [Google Scholar] [CrossRef]
- Geana, E.I.; Marinescu, A.; Iordache, A.M.; Sandru, C.; Ionete, R.E.; Bala, C. Differentiation of Romanian wines on geographical origin and wine variety by elemental composition and phenolic components. Food Anal. Methods 2014, 7, 2064–2074. [Google Scholar] [CrossRef]
- Levei, L.; Tanaselia, C.; Miclean, M.; Ozunu, A. Determination of metals content in homemade Transylvanian white wines. Agricultura 2016, 99, 30–33. [Google Scholar] [CrossRef]
- Đurđić, S.; Pantelić, M.; Trifković, J.; Vukojević, V.; Natić, M.; Tešić, Ž.; Mutić, J. Elemental composition as a tool for the assessment of type, seasonal variability, and geographical origin of wine and its contribution to daily elemental intake. RSC Adv. 2017, 7, 2151–2162. [Google Scholar] [CrossRef] [Green Version]
- Rocha, S.; Pinto, E.; Almeida, A.; Fernandes, E. Multi-elemental analysis as a tool for characterization and differentiation of Portuguese wines according to their Protected Geographical Indication. Food Control 2019, 103, 27–35. [Google Scholar] [CrossRef]
- Avram, V.; Voica, C.; Hosu, A.; Cimpoiu, C.; Marutoiu, C. ICP-MS characterization of some Roumanian white wines by their mineral content. Rev. Roum. Chim. 2014, 59, 1009–1019. [Google Scholar]
- Leder, R.; Kubanovic, V.; Petric, I.V.; Vahcic, N.; Banovic, M. Chemometric prediction of the geographical origin of Croatian wines through their elemental profiles. J. Food Nutr. Res. 2015, 54, 229–238. [Google Scholar]
- Tanabe, C.K.; Nelson, J.; Boulton, R.B.; Ebeler, S.E.; Hopfer, H. The use of macro, micro, and trace elemental profiles to differentiate commercial single vineyard pinot noir wines at a sub-regional level. Molecules 2020, 25, 2552. [Google Scholar] [CrossRef] [PubMed]
- Dutra, S.V.; Adami, L.; Marcon, A.R.; Carnieli, G.J.; Roani, C.A.; Spinelli, F.R.; Leonardelli, S.; Ducatti, C.; Moreira, M.Z.; Vanderlinde, R. Determination of the geographical origin of Brazilian wines by isotope and mineral analysis. Anal. Bioanal. Chem. 2011, 401, 1571. [Google Scholar] [CrossRef]
- Birch, R.M.; Ciani, M.; Walker, G.M. Magnesium, calcium and fermentative metabolism in wine yeasts. J. Wine Res. 2003, 14, 3–15. [Google Scholar] [CrossRef]
- Themelis, D.G.; Tzanavaras, P.D.; Trellopoulos, A.V.; Sofoniou, M.C. Direct and selective flow-injection method for the simultaneous spectrophotometric determination of calcium and magnesium in red and white wines using online dilution based on “Zone Sampling”. J. Agric. Food Chem. 2001, 49, 5152–5155. [Google Scholar] [CrossRef]
- Baluja-Santos, C.; Gonzalez-Portal, A.; Bermejo-Martinez, F. Evolution of analytical methods for the determination of calcium and magnesium in wines. A review. Analyst 1984, 109, 797–808. [Google Scholar] [CrossRef]
- Coetzee, P.P.; Steffens, F.E.; Eiselen, R.J.; Augustyn, O.P.; Balcaen, L.; Vanhaecke, F. Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. J. Agric. Food Chem. 2005, 53, 5060–5066. [Google Scholar] [CrossRef]
- Dalipi, R.; Borgese, L.; Zacco, A.; Tsuji, K.; Sangiorgi, E.; Piro, R.; Bontempi, E.; Depero, L.E. Determination of trace elements in Italian wines by means of total reflection X-ray fluorescence spectroscopy. Int. J. Environ. Anal. Chem. 2015, 95, 1208–1218. [Google Scholar] [CrossRef]
- Karataş, D.; Karataş, F. Elemental composition of red wines in Southeast Turkey. Czech J. Food Sci. 2015, 3, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Karadjova, I.; Izgi, B.; Gucer, S. Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 581–590. [Google Scholar] [CrossRef]
- Semla, M.; Schwarcz, P.; Mezey, J.; Binkowski, Ł.J.; Błaszczyk, M.; Formicki, G.; Greń, A.; Stawarz, R.; Massanyi, P. Biogenic and risk elements in wines from the Slovak market with the estimation of consumer exposure. Biol. Trace Elem. Res. 2018, 184, 33–41. [Google Scholar] [CrossRef]
- Alkış, İ.M.; Öz, S.; Atakol, A.; Yılmaz, N.; Anlı, R.E.; Atakol, O. Investigation of heavy metal concentrations in some Turkish wines. J. Food Compos. Anal. 2014, 33, 105–110. [Google Scholar] [CrossRef]
- Bica, A.; Sánchez, R.; Todolí, J.-L. Evolution of the multielemental content along the red wine production process from Tempranillo and Grenache grape varieties. Molecules 2020, 25, 2961. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.R.; El Bilali, H.; Simeone, V.; Baser, N.; Mondelli, D.; Cesari, G. Copper contents in grapes and wines from a Mediterranean organic vineyard. Food Chem. 2010, 122, 1338–1343. [Google Scholar] [CrossRef]
- Durguti, V.Y.; Aliu, S.; Laha, F.; Feka, F. Determination of iron, copper and zinc in the wine by FAAS. Emerg. Sci. J. 2020, 4, 411–417. [Google Scholar] [CrossRef]
- Al Nasir, F.M.; Jiries, A.G.; Batarseh, M.I.; Beese, F. Pesticides and trace metals residue in grape and home made wine in Jordan. Environ. Monit. Assess. 2001, 66, 253–263. [Google Scholar] [CrossRef]
- Benítez, P.; Castro, R.; Barroso, C.G. Removal of iron, copper and manganese from white wines through ion exchange techniques: Effects on their organoleptic characteristics and susceptibility to browning. Anal. Chim. Acta 2002, 458, 197–202. [Google Scholar] [CrossRef]
- Hsia, C.L.; Planck, R.W.; Nagel, C.W. Influence of must processing on iron and copper contents of experimental wines. Am. J. Enol. Vitic. 1975, 26, 57. [Google Scholar]
- Cacho, J.; Castells, J.E.; Esteban, A.; Laguna, B.; Sagristá, N. Iron, copper, and manganese influence on wine oxidation. Am. J. Enol. Vitic. 1995, 46, 380. [Google Scholar]
- Zerbinati, O.; Balduzzi, F.; Dell’Oro, V. Determination of lithium in wines by ion chromatography. J. Chromatogr. A 2000, 881, 645–650. [Google Scholar] [CrossRef]
- Roberts, B.R.; Doecke, J.D.; Rembach, A.; Yévenes, L.F.; Fowler, C.J.; McLean, C.A.; Lind, M.; Volitakis, I.; Masters, C.L.; Bush, A.I.; et al. Rubidium and potassium levels are altered in Alzheimer’s disease brain and blood but not in cerebrospinal fluid. Acta Neuropathol. Commun. 2016, 4, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epova, E.N.; Bérail, S.; Séby, F.; Vacchina, V.; Bareille, G.; Médina, B.; Sarthou, L.; Donard, O.F.X. Strontium elemental and isotopic signatures of Bordeaux wines for authenticity and geographical origin assessment. Food Chem. 2019, 294, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S.; Katsota, M.N.; Psarra, E.P.; Soufleros, E.H.; Kallithraka, S. Application of quality control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics). Trends Food Sci. Technol. 1999, 10, 321–336. [Google Scholar] [CrossRef]
- Edwards-Jones, V. The benefits of silver in hygiene, personal care and healthcare. Lett. Appl. Microbiol. 2009, 49, 147–152. [Google Scholar] [CrossRef]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Eschnauer, H. Trace elements in must and wine: Primary and secondary contents. Am. J. Enol. Vitic. 1982, 33, 226. [Google Scholar]
- Carvalho, M.L.; Barreiros, M.A.; Costa, M.M.; Ramos, M.T.; Marques, M.I. Study of heavy metals in Madeira wine by total reflection X-ray fluorescence analysis. X-ray Spectr. 1996, 25, 29–32. [Google Scholar] [CrossRef]
- Mangas, S.; Visvanathan, R.; van Alphen, M. Lead poisoning from homemade wine: A case study. Environ. Health Perspect. 2001, 109, 433–435. [Google Scholar] [CrossRef]
- Iwegbue, C.M. Metal concentrations in selected brands of canned fish in Nigeria: Estimation of dietary intakes and target hazard quotients. Environ. Monit. Assess. 2015, 187, 85. [Google Scholar] [CrossRef]
- Filippini, T.; Tancredi, S.; Malagoli, C.; Malavolti, M.; Bargellini, A.; Vescovi, L.; Nicolini, F.; Vinceti, M. dietary estimated intake of trace elements: Risk assessment in an italian population. Expos. Health 2020, 12, 641–655. [Google Scholar] [CrossRef] [Green Version]
- Banović, M.; IrIn, J.; KoVače, K. Influence of vintage on Cu, Fe, Zn and Pb content in some Croatian red wines. Czech J. Food Sci. 2009, 27, S401–S403. [Google Scholar] [CrossRef] [Green Version]
- Hague, T.; Petroczi, A.; Andrews, P.L.R.; Barker, J.; Naughton, D.P. Determination of metal ion content of beverages and estimation of target hazard quotients: A comparative study. Chem. Cent. J. 2008, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, A.J.; Rubio, C.; Moreno, I.M.; González, A.G.; Gonzalez-Weller, D.; Bencharki, N.; Hardisson, A.; Revert, C. Estimation of dietary intake and target hazard quotients for metals by consumption of wines from the Canary Islands. Food Chem. Toxicol. 2017, 108, 10–18. [Google Scholar] [CrossRef]
Wine Samples/ Parameters | White Wine Samples | Red Wine Samples | Rosé Wine Samples | ANOVA | Management | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | F-Value | Sig. | Org | Conv | Home | |
ALC | 12.73 d | 13.01 c | 11.35 e | 13.51 b | 13.62 b | 12.46 d | 14.48 a | 13.03 c | 10.33 f | 9.257 | ** | ** | ** | *** |
TA | 5.03 i | 5.12 h | 5.64 f | 6.07 b | 5.83 e | 5.89 d | 5.51 g | 6.06 c | 6.19 a | 9.662 | ** | ns | ns | ns |
VA | 0.47 e | 0.47 e | 0.51 c | 0.48 d | 0.55 b | 0.58 a | 0.34 f | 0.55 b | 0.58 a | 6.177 | * | ns | ns | * |
RS | 4.34 f | 5.17 d | 17.36 a | 4.74 e | 2.80 g | 14.77 b | <2.00 h | <2.00 h | 13.58 c | 61.734 | *** | ** | ** | ** |
DM | 20.15 h | 20.46 g | 19.64 f | 20.94 d | 21.24 b | 19.83 e | 22.00 a | 21.00 c | 18.33 i | 4.839 | ** | ns | ns | ns |
pH | 3.40 f | 3.36 g | 3.45 d | 3.49 b | 3.48 c | 3.45 d | 3.29 h | 3.44 e | 3.52 a | 3.490 | ns | ns | ns | ns |
TPH | 322.64 g | 310.44 h | 308.09 i | 1302.87 c | 1394.28 a | 1359.50 b | 533.97 d | 432.55 e | 411.59 f | 397.603 | *** | * | * | ** |
ANT | 0 | 0 | 0 | 93.31 c | 98.90 a | 91.22 b | 36.97 d | 33.23 f | 34.22 e | 260.877 | *** | ns | ns | ns |
ACA | 0.28 g | 0.26 h | 0.32 e | 0.35 d | 0.38 b | 0.38 a | 0.23 i | 0.36 c | 0.29 f | 11.530 | ** | ns | ns | * |
AMA | 0.46 g | 0.41 h | 0.47 f | 1.01 a | 1.01 a | 0.86 b | 0.84 c | 0.55 e | 0.58 d | 17.039 | ** | ns | ns | ns |
TAA | 2.32 g | 2.12 i | 2.21 h | 3.88 d | 3.03 e | 2.80 f | 4.23 b | 4.26 a | 4.22 c | 4.026 | ns | * | * | ns |
LLA | 0.27 i | 0.29 h | 0.30 g | 1.17 a | 1.14 b | 1.16 c | 0.48 f | 0.51 e | 0.56 d | 91.900 | *** | ** | ** | *** |
DLA | 0.17 c | 0.14 e | 0.15 d | 0.22 b | 0.22 b | 0.23 a | 0.14 e | 0.14 e | 0.15 d | 2.440 | ns | ns | ns | ns |
LMA | 0 | 0 | 1.09 c | 0 | 0 | 1.85 b | 0 | 0 | 2.62 a | 55.905 | *** | * | * | *** |
DGA | 0.24 b | 0.22 c | 0.21 d | 0.24 b | 0.25 a | 0.19 e | 0.21 d | 0.12 g | 0.16 f | 15.142 | ** | ns | ns | * |
PA | 64.75 i | 67.41 g | 66.89 h | 87.96 b | 96.65 a | 81.08 e | 87.82 c | 83.56 d | 79.10 e | 18.371 | ** | ns | ns | ns |
G | 6.05 e | 5.99 g | 5.70 h | 6.06 d | 5.60 i | 6.00 f | 6.40 a | 6.22 b | 6.14 c | 7.751 | ns | ns | ns | ns |
ACDE | 42.21 g | 41.74 h | 51.46 f | 62.80 d | 60.61 e | 73.58 a | 40.79 i | 64.10 c | 72.09 b | 82.906 | *** | ** | ** | *** |
OD (420 nm) | 0 | 0 | 0 | 3.33 a | 3.09 b | 2.63 c | 1.36 f | 1.54 d | 1.48 e | 168.582 | *** | * | * | * |
OD (520 nm) | 0 | 0 | 0 | 4.90 a | 4.77 b | 3.86 c | 2.14 f | 2.18 e | 2.19 d | 422.218 | *** | ns | ns | * |
OD (620 nm) | 0 | 0 | 0 | 0.62 d | 0.68 c | 0.60 e | 0.98 a | 0.73 b | 0.55 e | 175.266 | *** | ns | ns | * |
CI | 0 | 0 | 0 | 8.85 a | 8.54 b | 7.09 c | 4.49 d | 4.15 f | 4.22 f | 550.976 | *** | ns | ns | ** |
Hue | 0 | 0 | 0 | 0.68 b | 0.66 d | 0.68 b | 0.64 e | 0.70 a | 0.67 c | 88.282 | *** | ns | ns | ns |
Wine Samples/ Parameters | White Wine Samples | Red Wine Samples | Rosé Wine Samples | ANOVA | Management | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | F-Value | Sig. | Org | Conv | Home | |
SO2 free (mg/L) | 7.40 | 9.68 | 6.38 | 19.44 | 22.23 | 12.85 | 21.15 | 28.63 | 14.43 | 36.685 | *** | *** | *** | *** |
SO2 total (mg/L) | 75.96 | 132.48 | 75.70 | 87.81 | 126.02 | 88.51 | 100.93 | 129.66 | 130.84 | 60.026 | *** | *** | *** | *** |
Wine samples/ Parameters | Dealu Bujorului Vineyard | Târnave Vineyard | Murfatlar Vineyard | ANOVA | Management | |||||||||
Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | F-value | Sig. | Org | Conv | Home | |
SO2 free (mg/L) | 18.26 | 20.01 | 13.37 | 8.39 | 10.86 | 11.78 | 7.24 | 9.96 | 12.08 | 25.164 | *** | *** | *** | *** |
SO2 total (mg/L) | 94.19 | 136.49 | 106.92 | 99.88 | 133.63 | 82.96 | 93.58 | 123.78 | 104.73 | 47.478 | *** | *** | *** | *** |
Wine samples/ Parameters | Cotnari Vineyard | Sarica Niculițel Vineyard | Panciuee-way Vineyard | ANOVA | Management | |||||||||
Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | F-value | Sig. | Org | Conv | Home | |
SO2 free (mg/L) | 10.16 | 6.86 | 4.05 | 16.54 | 16.98 | 12.61 | 13.50 | 23.19 | 20.19 | 16.027 | *** | *** | *** | *** |
SO2 total (mg/L) | 123.96 | 125.22 | 95.34 | 70.04 | 134.80 | 79.24 | 88.96 | 120.36 | 91.88 | 21.744 | *** | *** | *** | *** |
Wine samples/ Parameters | Huși Vineyard | Drăgășani Vineyard | Halmeu Vineyard | ANOVA | Management | |||||||||
Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | F-value | Sig. | Org | Conv | Home | |
SO2 free (mg/L) | 14.44 | 14.19 | 17.52 | 11.09 | 17.18 | 8.97 | 5.48 | 8.99 | 4.26 | 11.001 | *** | *** | *** | *** |
SO2 total (mg/L) | 60.74 | 127.33 | 51.21 | 70.51 | 131.87 | 69.01 | 87.32 | 133.53 | 51.96 | 62.945 | *** | *** | *** | *** |
Wine Type | White Wine Samples | Red Wine Samples | Rosé Wine Samples | ||||||
---|---|---|---|---|---|---|---|---|---|
Element | Org | Conv | Home | Org | Conv | Home | Org | Conv | Home |
23Na (mg/L) | 42.81 ± 7.25 | 44.22 ± 7.38 | 44.78 ± 11.69 | 37.33 ± 5.42 | 38.42 ± 7.87 | 36.14 ± 12.14 | 25.29 ± 5.96 | 25.69 ± 6.59 | 48.87 ± 5.80 |
24Mg (mg/L) | 90.38 ± 18.10 | 114.78 ± 20.36 | 107.34 ± 18.93 | 100.71 ± 38.71 | 101.61 ± 35.02 | 105.07 ± 37.62 | 100.64 ± 1.29 | 98.63 ± 1.03 | 132.21 ± 9.98 |
43Ca (mg/L) | 65.20 ± 9.53 | 65.78 ± 13.98 | 60.95 ± 14.15 | 42.51 ± 18.52 | 46.17 ± 18.99 | 47.71 ± 13.88 | 24.32 ± 1.38 | 32.47 ± 0.59 | 22.19 ± 1.09 |
19K (mg/L) | 284.02 ± 55.25 | 274.10 ± 65.05 | 303.07 ± 57.64 | 818.82 ± 195.12 | 801.22 ± 124.02 | 747.22 ± 168.52 | 696.12 ± 50.54 | 748.19 ± 46.12 | 644.94 ± 0.39 |
7Li (µg/L) | 8.71 ± 1.86 | 9.48 ± 2.76 | 10.30 ± 2.74 | 19.88 ± 13.93 | 17.51 ± 11.11 | 13.48 ± 4.44 | 16.79 ± 6.40 | 17.17 ± 1.49 | 20.22 ± 3.41 |
64Cu (mg/L) | 0.55 ± 0.16 | 0.60 ± 0.14 | 0.43 ± 0.12 | 0.29 ± 0.11 | 0.44 ± 0.24 | 0.48 ± 0.31 | 0.17 ± 0.06 | 0.14 ± 0.02 | 0.19 ± 0.03 |
55Mn (mg/L) | 0.38 ± 0.14 | 0.54 ± 0.23 | 0.48 ± 0.20 | 0.51 ± 0.25 | 0.53 ± 0.22 | 0.72 ± 0.40 | 0.74 ± 0.17 | 0.96 ± 0.03 | 0.65 ± 0.19 |
56Fe (mg/L) | 1.03 ± 0.50 | 1.55 ± 0.37 | 0.92 ± 0.40 | 1.03 ± 0.53 | 1.79 ± 1.02 | 0.76 ± 0.43 | 0.66 ± 0.27 | 1.40 ± 0.47 | 1.15 ± 0.04 |
27Al (µg/L) | 220.95 ± 75.94 | 354.08 ± 136.92 | 282.78 ± 139.99 | 417.89 ± 203.47 | 452.31 ± 275.53 | 283.44 ± 167.22 | 309.16 ± 22.50 | 234.88 ± 85.77 | 191.37 ± 66.56 |
52Cr (µg/L) | 454.93 ± 200.28 | 430.03 ± 206.84 | 512.20 ± 219.58 | 400.19 ± 184.95 | 310.23 ± 47.01 | 318.12 ± 55.95 | 160.60 ± 42.16 | 203.63 ± 53.58 | 205.36 ± 2.76 |
59Co (µg/L) | 5.42 ± 1.36 | 5.88 ± 2.09 | 7.21 ± 2.11 | 5.63 ± 4.73 | 5.57 ± 6.21 | 5.46 ± 6.50 | 7.60 ± 0.25 | 10.75 ± 2.48 | 9.62 ± 0.62 |
60Ni (µg/L) | 72.65 ± 23.55 | 71.52 ± 17.84 | 60.87 ± 13.72 | 52.14 ± 31.42 | 50.14 ± 38.42 | 32.75 ± 24.98 | 33.93 ± 0.69 | 34.29 ± 1.80 | 31.86 ± 0.61 |
65Zn (µg/L) | 2534.74 ± 898.93 | 3128.98 ± 798.44 | 2490.90 ± 868.07 | 1829.72 ± 372.31 | 2137.620.01 | 2373.02 ± 682.20 | 3289.42 ± 46.82 | 3231.60 ± 351.19 | 2641.73 ± 800.39 |
51V (µg/L) | 282.68 ± 141.17 | 310.48 ± 194.40 | 306.62 ± 194.20 | 186.93 ± 126.38 | 161.69 ± 90.06 | 181.21 ± 88.58 | 162.99 ± 9.73 | 147.56 ± 0.97 | 156.56 ± 1.96 |
108Ag (µg/L) | 3.91 ± 1.54 | 5.52 ± 2.33 | 4.87 ± 0.56 | 2.95 ± 0.87 | 2.52 ± 0.37 | 2.18 ± 0.02 | LOQ | LOQ | LOQ |
9Be (µg/L) | 0.94 ± 0.22 | 0.88 ± 0.11 | 0.64 ± 0.04 | 2.99 ± 1.18 | 3.36 ± 2.70 | 3.10 ± 2.25 | LOQ | LOQ | LOQ |
209Bi (µg/L) | 3.00 ± 1.82 | 3.60 ± 0.79 | 4.11 ± 097 | 0.69 ± 0.02 | 0.45 ± 0.06 | 0.13 ± 0.02 | 16.12 ± 2.45 | 20.90 ± 1.56 | 0.66 ± 0.22 |
133Cs (µg/L) | 7.24 ± 1.92 | 7.71 ± 2.84 | 8.28 ± 2.21 | 5.07 ± 2.68 | 6.40 ± 1.34 | 3.17 ± 0.46 | LOQ | LOQ | LOQ |
137Ba (µg/L) | 181.17 ± 55.61 | 169.48 ± 45.29 | 181.00 ± 42.65 | 371.63 ± 65.88 | 377.22 ± 37.16 | 342.28 ± 29.75 | 160.16 ± 14.62 | 250.93 ± 14.12 | 311.90 ± 57.74 |
70Ga (µg/L) | 2.82 ± 0.48 | 2.86 ± 0.20 | 2.98 ± 1.07 | 1.26 ± 0.56 | 1.24 ± 0.32 | 0.93 ± 0.39 | 1.11 ± 0.13 | 1.40 ± 0.50 | 1.52 ± 0.24 |
88Sr (µg/L) | 538.69 ± 267.08 | 518.81 ± 218.71 | 535.40 ± 253.97 | 486.11 ± 231.95 | 515.20 ± 209.86 | 512.10 ± 187.55 | 598.87 ± 12.11 | 742.78 ± 11.02 | 686.66 ± 26.95 |
85Rb (µg/L) | 509.26 ± 224.12 | 530.28 ± 227.23 | 524.20 ± 229.48 | 739.07 ± 162.77 | 798.73 ± 141.73 | 802.13 ± 127.28 | 1377.27 ± 56.80 | 1314.40 ± 79.28 | 1356.57 ± 58.71 |
79Se (µg/L) | 7.34 ± 5.16 | 11.30 ± 9.15 | 10.94 ± 9.44 | 4.68 ± 2.39 | 6.16 ± 2.19 | 3.22 ± 2.37 | 1.17 ± 0.17 | 1.39 ± 0.04 | 1.33 ± 0.10 |
204Tl (µg/L) | 0.68 ± 0.14 | 1.02 ± 0.35 | 0.59 ± 0.08 | 0.94 ± 0.47 | 0.75 ± 0.12 | 0.72 ± 0.12 | LOQ | LOQ | LOQ |
111Cd (µg/L) | 0.16 ± 0.10 | 0.32 ± 0.17 | 0.22 ± 0.16 | 0.36 ± 0.59 | 0.90 ± 0.43 | 0.71 ± 0.05 | 0.23 ± 0.09 | 0.38 ± 0.06 | 0.29 ± 0.05 |
208Pb (µg/L) | 23.50 ± 10.19 | 34.05 ± 15.68 | 28.27 ± 19.46 | 47.10 ± 25.69 | 53.70 ± 29.17 | 45.61 ± 27.12 | 16.01 ± 2.51 | 19.75 ± 4.90 | 19.16 ± 4.30 |
Element | White Wine Samples | Red Wine Samples | Rosé Wine Samples | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | Org | Conv | Home | |
Estimated dietary intake | ||||||||||||
23Na | 0.15 | 0.16 | 0.16 | 0.13 | 0.14 | 0.13 | 0.09 | 0.09 | 0.17 | 0.13 | 0.13 | 0.15 |
24Mg | 0.32 | 0.41 | 0.38 | 0.36 | 0.36 | 0.38 | 0.36 | 0.35 | 0.47 | 0.35 | 0.38 | 0.41 |
43Ca | 0.23 | 0.23 | 0.22 | 0.15 | 0.16 | 0.17 | 0.09 | 0.12 | 0.08 | 0.16 | 0.17 | 0.16 |
19K | 1.01 | 0.98 | 1.08 | 2.92 | 2.86 | 2.67 | 2.49 | 2.67 | 2.30 | 2.14 | 2.17 | 2.02 |
7Li | 0.03 | 0.03 | 0.04 | 0.07 | 0.06 | 0.05 | 0.06 | 0.06 | 0.07 | 0.05 | 0.05 | 0.05 |
56Fe | N/A | N/A | N/A | N/A | 0.01 | N/A | N/A | 0.01 | N/A | N/A | 0.01 | N/A |
65Zn | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Target hazard quotient | ||||||||||||
7Li | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 |
64Cu | 0.05 | 0.05 | 0.04 | 0.03 | 0.04 | 0.04 | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 |
55Mn | 0.05 | 0.08 | 0.07 | 0.07 | 0.08 | 0.10 | 0.11 | 0.14 | 0.09 | 0.08 | 0.10 | 0.09 |
56Fe | 0.01 | 0.01 | 0.005 | 0.01 | 0.01 | 0.004 | 0.003 | 0.01 | 0.01 | 0.004 | 0.01 | 0.004 |
27Al | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
59Co | 0.06 | 0.07 | 0.08 | 0.06 | 0.06 | 0.06 | 0.09 | 0.12 | 0.11 | 0.07 | 0.08 | 0.08 |
60Ni | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
65Zn | 0.03 | 0.04 | 0.03 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
51V | 0.19 | 0.21 | 0.21 | 0.13 | 0.11 | 0.12 | 0.11 | 0.10 | 0.11 | 0.15 | 0.14 | 0.15 |
108Ag | 0.003 | 0.004 | 0.003 | 0.002 | 0.002 | 0.002 | N/A | N/A | N/A | 0.002 | 0.002 | 0.002 |
137Ba | 0.003 | 0.003 | 0.003 | 0.006 | 0.007 | 0.006 | 0.003 | 0.004 | 0.005 | 0.004 | 0.005 | 0.005 |
88Sr | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 |
111Cd | 0.001 | 0.001 | 0.001 | 0.001 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bora, F.D.; Călugăr, A.; Bunea, C.-I.; Rozsa, S.; Bunea, A. Assessment of Physicochemical, Macro- and Microelements, Heavy Metals, and Related Human Health Risk from Organically, Conventionally, and Homemade Romanian Wines. Horticulturae 2022, 8, 382. https://doi.org/10.3390/horticulturae8050382
Bora FD, Călugăr A, Bunea C-I, Rozsa S, Bunea A. Assessment of Physicochemical, Macro- and Microelements, Heavy Metals, and Related Human Health Risk from Organically, Conventionally, and Homemade Romanian Wines. Horticulturae. 2022; 8(5):382. https://doi.org/10.3390/horticulturae8050382
Chicago/Turabian StyleBora, Florin Dumitru, Anamaria Călugăr, Claudiu-Ioan Bunea, Sandor Rozsa, and Andrea Bunea. 2022. "Assessment of Physicochemical, Macro- and Microelements, Heavy Metals, and Related Human Health Risk from Organically, Conventionally, and Homemade Romanian Wines" Horticulturae 8, no. 5: 382. https://doi.org/10.3390/horticulturae8050382
APA StyleBora, F. D., Călugăr, A., Bunea, C. -I., Rozsa, S., & Bunea, A. (2022). Assessment of Physicochemical, Macro- and Microelements, Heavy Metals, and Related Human Health Risk from Organically, Conventionally, and Homemade Romanian Wines. Horticulturae, 8(5), 382. https://doi.org/10.3390/horticulturae8050382