Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Samples
2.2. Spectral Data Acquisition
2.3. Data Measurement
2.4. Spectra Preprocessing
2.5. Model Establishment and Evaluation
3. Results and Discussion
3.1. The Sensor Stability Test
3.2. Apple Quality at Different Maturity Levels
3.3. Spectral Analysis
3.4. Modeling Based on Traditional Methods
3.5. Modeling Based on Spectral Shape Features
3.5.1. Spectral Index
3.5.2. Preprocessing Based on Spectral Shape Features
3.6. Validation of the Device
3.7. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tian, S.; Zhang, M.; Li, B.; Zhang, Z.; Zhao, J.; Zhang, Z.; Zhang, H.; Hu, J. Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core. Infrared Phys. Technol. 2020, 111, 103510. [Google Scholar] [CrossRef]
- Pathange, L.P.; Mallikarjunan, P.; Marini, R.P.; O’Keefe, S.; Vaughan, D. Non-destructive evaluation of apple maturity using an electronic nose system. J. Food Eng. 2006, 77, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Van Beers, R.; Aernouts, B.; León Gutiérrez, L.; Erkinbaev, C.; Rutten, K.; Schenk, A.; Nicolaï, B.; Saeys, W. Optimal Illumination-Detection Distance and Detector Size for Predicting Braeburn Apple Maturity from Vis/NIR Laser Reflectance Measurements. Food Bioprocess Technol. 2015, 8, 2123–2136. [Google Scholar] [CrossRef] [Green Version]
- Skic, A.; Szymańska-Chargot, M.; Kruk, B.; Chylińska, M.; Pieczywek, P.M.; Kurenda, A.; Zdunek, A.; Rutkowski, K.P. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method. Sensors 2016, 16, 661. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Gu, J.; Liu, D.; Shang, L. Peach variety identification using near-infrared diffuse reflectance spectroscopy. Comput. Electron. Agric. 2016, 123, 297–303. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, M.; Li, H.; Zhang, B.; Zhang, Z.; Quan, P.; Ren, X.; Xing, L.; Zhao, J. Modification of the effect of maturity variation on nondestructive detection of apple quality based on the compensation model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120598. [Google Scholar] [CrossRef]
- Sohaib Ali Shah, S.; Zeb, A.; Qureshi, W.S.; Arslan, M.; Ullah Malik, A.; Alasmary, W.; Alanazi, E. Towards fruit maturity estimation using NIR spectroscopy. Infrared Phys. Technol. 2020, 111, 103479. [Google Scholar] [CrossRef]
- Peirs, A.; Lammertyn, J.; Ooms, K.; Nicolaï, B.M. Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy. Postharvest Biol. Technol. 2001, 21, 189–199. [Google Scholar] [CrossRef]
- Peirs, A.; Tirry, J.; Verlinden, B.; Darius, P.; Nicolaï, B.M. Effect of biological variability on the robustness of NIR models for soluble solids content of apples. Postharvest Biol. Technol. 2003, 28, 269–280. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Li, H.; Shen, M.; Tian, S.; Zhang, H.; Ren, X.; Xing, L.; Zhao, J. Determination of bagged ‘Fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm. Infrared Phys. Technol. 2020, 111, 103529. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Karimzadeh, R.; Ilbeygi, E.; Arribas, J.I. Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosyst. Eng. 2020, 195, 136–151. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Paliwal, J.; Benmouna, B.; García-Mateos, G.; Molina-Martínez, J.M. Estimation of different ripening stages of Fuji apples using image processing and spectroscopy based on the majority voting method. Comput. Electron. Agric. 2020, 176, 105643. [Google Scholar] [CrossRef]
- Choi, J.-H.; Chen, P.-A.; Lee, B.; Yim, S.-H.; Kim, M.-S.; Bae, Y.-S.; Lim, D.-C.; Seo, H.-J. Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears. Sci. Hortic. 2017, 220, 147–153. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Q.; Tian, X.; Yang, G.; Xia, Y.; Li, J.; Huang, W. Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device. Biosyst. Eng. 2020, 193, 138–148. [Google Scholar] [CrossRef]
- Guo, W.; Li, W.; Yang, B.; Zhu, Z.; Liu, D.; Zhu, X. A novel noninvasive and cost-effective handheld detector on soluble solids content of fruits. J. Food Eng. 2019, 257, 1–9. [Google Scholar] [CrossRef]
- Zhao, J.; Quan, P.; Zhang, M.; Tian, S.; Zhang, H.; Ren, X. Design of Apple Quality Integrated Non- destructive Testing Device Based on Multi- band LED Light Source. Trans. Chin. Soc. Agric. Mach. 2019, 50, 326–332. [Google Scholar] [CrossRef]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D. Development of an Optical Smart Portable Instrument for Fruit Quality Detection. IEEE Trans. Instrum. Meas. 2021, 70, 7000109. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Li, Y.; Yang, C.; Chao, K. Rapid and low-cost detection of moldy apple core based on an optical sensor system. Postharvest Biol. Technol. 2020, 168, 111276. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Gao, M.; Yan, X.; Zhu, X.; Guo, W. A portable detector on main compositions of raw and homogenized milk. Comput. Electron. Agric. 2020, 177, 105668. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Pu, H. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. Food Chem. 2016, 197, 848–854. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Yang, C.; Li, Y. Optical sensing system for detection of the internal and external quality attributes of apples. Postharvest Biol. Technol. 2020, 162, 111101. [Google Scholar] [CrossRef]
- Han, D.; Tu, R.; Lu, C.; Liu, X.; Wen, Z. Nondestructive detection of brown core in the Chinese pear ‘Yali’ by transmission visible–NIR spectroscopy. Food Control 2006, 17, 604–608. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Aernouts, B.; Saeys, W.; Monarca, D.; Cecchini, M.; Massantini, R. Feasibility of Vis/NIR spectroscopy for detection of flaws in hazelnut kernels. J. Food Eng. 2013, 118, 1–7. [Google Scholar] [CrossRef]
- Lleó, L.; Roger, J.M.; Herrero-Langreo, A.; Diezma-Iglesias, B.; Barreiro, P. Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening. J. Food Eng. 2011, 104, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, M.; Shen, M.; Zhang, Z.; Zhang, B.; Zhang, H.; Hu, J.; Ren, X.; Xing, L.; Zhao, J. Effect of ambient temperature on the model stability of handheld devices for predicting the apple soluble solids content. Eur. J. Agron. 2022, 133, 126430. [Google Scholar] [CrossRef]
- Walsh, K.B.; Guthrie, J.A.; Burney, J.W. Application of commercially available, low-cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit. Funct. Plant Biol. 2000, 27, 1175–1186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xu, H.; Gu, M. Use of signal to noise ratio and area change rate of spectra to evaluate the Visible/NIR spectral system for fruit internal quality detection. J. Food Eng. 2014, 139, 19–23. [Google Scholar] [CrossRef]
- Blanpied, G.; Silsby, K.J. Predicting Harvest Date Windows for Apples; Cornell Cooperative Extension: Ithaca, NY, USA, 1992. [Google Scholar]
- Gálvez-López, D.; Laurens, F.; Devaux, M.F.; Lahaye, M. Texture analysis in an apple progeny through instrumental, sensory and histological phenotyping. Euphytica 2012, 185, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Quan, P.; Liu, H.; Li, L.; Qi, S.; Zhang, M.; Zhang, B.; Li, H.; Zhao, Y.; Ma, B.; et al. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. J. Agric. Food Chem. 2020, 68, 4699–4716. [Google Scholar] [CrossRef]
- Jie, D.; Zhou, W.; Wei, X. Nondestructive detection of maturity of watermelon by spectral characteristic using NIR diffuse transmittance technique. Sci. Hortic. 2019, 257, 108718. [Google Scholar] [CrossRef]
- Li, B.; Lecourt, J.; Bishop, G. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction-A Review. Plants 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, A.; Riczu, P.; Tamas, J. Spectral evaluation of apple fruit ripening and pigment content alteration. Sci. Hortic. 2016, 201, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Chauchard, F.; Cogdill, R.; Roussel, S.; Roger, J.M.; Bellon-Maurel, V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom. Intell. Lab. Syst. 2004, 71, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wei, Y.; Xu, J.; Feng, X.; Wu, F.; Zhou, R.; Jin, J.; Xu, K.; Yu, X.; He, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Ye, J. Least squares linear discriminant analysis. In Proceedings of the 24th international Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 1087–1093. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Huang, W.; Fan, S.; Li, J.; Chen, L. Effect of spectral measurement orientation on online prediction of soluble solids content of apple using Vis/NIR diffuse reflectance. Infrared Phys. Technol. 2019, 97, 467–477. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [Google Scholar] [CrossRef]
- Wang, H.; Arakawa, O.; Motomura, Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in ‘Jonathan’ apples. Postharvest Biol. Technol. 2000, 19, 123–128. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Zhu, S.; Li, Y.; He, Y.; Liu, F. Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges. Postharvest Biol. Technol. 2020, 161, 111080. [Google Scholar] [CrossRef]
- Tian, S.; Wang, S.; Xu, H. Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN. Comput. Electron. Agric. 2022, 193, 106638. [Google Scholar] [CrossRef]
- Saeys, W.; Do Trong, N.N.; Van Beers, R.; Nicolai, B.M. Multivariate calibration of spectroscopic sensors for postharvest quality evaluation: A review. Postharvest Biol. Technol. 2019, 158, 110981. [Google Scholar] [CrossRef]
- Tian, S.; Xu, H. Nondestructive Methods for the Quality Assessment of Fruits and Vegetables Considering Their Physical and Biological Variability. Food Eng. Rev. 2022, 1–28. [Google Scholar] [CrossRef]
Model | Pretreatment | Calibration Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|
Sample | Correct | Accuracy/% | Sample | Correct | Accuracy/% | ||
LSSVM | RAW | 555 | 485 | 87.39 | 183 | 155 | 84.70 |
SGS | 555 | 470 | 84.68 | 183 | 142 | 77.60 | |
MSC | 555 | 494 | 89.01 | 183 | 150 | 81.97 | |
SNV | 555 | 492 | 88.65 | 183 | 147 | 80.33 | |
LDA | RAW | 555 | 483 | 87.03 | 183 | 151 | 82.51 |
SGS | 555 | 446 | 80.36 | 183 | 131 | 71.58 | |
MSC | 555 | 466 | 83.96 | 183 | 144 | 78.69 | |
SNV | 555 | 474 | 85.41 | 183 | 146 | 79.78 |
Model | Maturity Category | 1 | 2 | 3 | No. | Recall/% | Precision/% | F-Score/% | Accuracy/% |
---|---|---|---|---|---|---|---|---|---|
Raw-LSSVM | 1 | 51 | 7 | 3 | 61 | 83.61 | 87.93 | 85.71 | 84.70% |
2 | 5 | 54 | 2 | 61 | 88.52 | 77.14 | 82.44 | ||
3 | 2 | 9 | 50 | 61 | 81.90 | 90.91 | 86.21 |
Threshold | Spectral Index | |||
---|---|---|---|---|
Index1 | Index2 | Index3 | Index4 | |
Threshold-1 | 22.975 | 2.3987 | 0.1110 | 0.0969 |
Threshold-2 | 13.945 | 2.2326 | 0.0687 | 0.0567 |
Model | Pretreatment | Calibration Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|
Sample | Correct | Accuracy/% | Sample | Correct | Accuracy/% | ||
LSSVM | SR | 555 | 498 | 89.73 | 183 | 160 | 87.43 |
SD | 555 | 474 | 85.41 | 183 | 154 | 84.15 | |
NSID | 555 | 492 | 88.65 | 183 | 157 | 85.79 | |
SR + SD + NSID | 555 | 497 | 89.55 | 183 | 162 | 88.52 | |
LDA | SR | 555 | 494 | 89.01 | 183 | 154 | 84.15 |
SD | 555 | 487 | 87.75 | 183 | 153 | 83.61 | |
NSID | 555 | 487 | 87.75 | 183 | 152 | 83.06 | |
SR + SD + NSID | 555 | 506 | 91.17 | 183 | 161 | 87.98 |
Model | Maturity Category | 1 | 2 | 3 | No. | Recall/% | Precision/% | F-Score/% | Accuracy/% |
---|---|---|---|---|---|---|---|---|---|
SR + SD + NSID-LSSVM | 1 | 55 | 5 | 1 | 61 | 90.16 | 88.71 | 89.43 | 88.52% |
2 | 4 | 54 | 3 | 61 | 88.52 | 84.38 | 86.89 | ||
3 | 3 | 5 | 53 | 61 | 86.89 | 92.98 | 89.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Shen, M.; Pu, Y.; Li, H.; Zhang, B.; Zhang, Z.; Ren, X.; Zhao, J. Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features. Horticulturae 2022, 8, 361. https://doi.org/10.3390/horticulturae8050361
Zhang M, Shen M, Pu Y, Li H, Zhang B, Zhang Z, Ren X, Zhao J. Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features. Horticulturae. 2022; 8(5):361. https://doi.org/10.3390/horticulturae8050361
Chicago/Turabian StyleZhang, Mengsheng, Maosheng Shen, Yuge Pu, Hao Li, Bo Zhang, Zhongxiong Zhang, Xiaolin Ren, and Juan Zhao. 2022. "Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features" Horticulturae 8, no. 5: 361. https://doi.org/10.3390/horticulturae8050361
APA StyleZhang, M., Shen, M., Pu, Y., Li, H., Zhang, B., Zhang, Z., Ren, X., & Zhao, J. (2022). Rapid Identification of Apple Maturity Based on Multispectral Sensor Combined with Spectral Shape Features. Horticulturae, 8(5), 361. https://doi.org/10.3390/horticulturae8050361