Micropropagation from Inflorescence Nodal Segments of Phalaenopsis and Acclimatization of Plantlets Using Different Substrates
Abstract
:1. Introduction
2. Material and Methods
2.1. Establishment and Multiplication of Inflorescence Stalks of Two Cultivars of Phalaenopsis
2.2. Improvements in the Shoot Proliferation Phase of Phalaenopsis ‘PH501’
2.3. Rooting of Shoots and Acclimatization of Plantlets Derived from Inflorescence Segments
3. Results
3.1. Establishment Using Inflorescence Nodal Segment Explants
3.2. Multiplication or Shoot Proliferation Phase
3.3. Rooting of Shoots and Acclimatization of Plantlets Derived from Inflorescence Segments
4. Discussion
4.1. Inflorescence Nodal Segments Could Be Used for Initiate Micropropagation
4.2. Effects of Phytoregulators on In Vitro Development of Phalaenopsis
4.3. INS-Derived Shoots Increased Shoot Proliferation Rate
4.4. Rooting, Elongation, and Acclimatization of Phalaenopsis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its anual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- RHS (Royal Horticultural Society). Search the International Orchid Register. 2016. Available online: http://apps.rhs.org.uk/horticulturaldatabase/orchidregister/orchidregister.asp (accessed on 10 February 2022).
- Cardoso, J.C.; Zanello, C.A.; Chen, J.-T. An Overview of Orchid Protocorm-Like Bodies: Mass Propagation, Biotechnology, Molecular Aspects, and Breeding. Int. J. Mol. Sci. 2020, 21, 985. [Google Scholar] [CrossRef] [Green Version]
- Khoddamzadeh, A.A.; Sinniah, U.R.; Kadir, M.A.; Kadzimin, S.B.; Mahmood, M.; Sreeeramanan, S. In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson. Plant Growth Regul. 2011, 65, 381–387. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Martinelli, A.; Teixeira da Silva, J. A novel approach for the selection of Cattleya hybrids for precocious and season-independent flowering. Euphytica 2016, 210, 143–150. [Google Scholar] [CrossRef]
- Paek, K.Y.; Hahn, E.J.; Park, S.Y. Micropropagation of Phalaenopsis Orchids via Protocorms and Protocorm-Like Bodies. In Plant Embryo Culture. Methods in Molecular Biology (Methods and Protocols); Thorpe, T., Yeung, E., Eds.; Humana Press: Passaic, NJ, USA, 2011; Volume 710. [Google Scholar]
- Ishii, Y.; Takamura, T.; Goi, M.; Tanaka, M. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep. 1998, 17, 446–450. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Liang, F.; Jiang, S.H.; Wan, M.F.; Ma, J.; Zhang, X.Y.; Cui, B. Differential protein expression in Phalaenopsis under low temperature. Appl. Biochem. Biotechnol. 2015, 175, 909–924. [Google Scholar] [CrossRef]
- Tang, C.-Y.; Chen, W.-H. Breeding and Development of New Varieties in Phalaenopsis; Chen, W.-H., Chen, H.-H., Eds.; Orchid Biotech: Bhubaneswar, India; World Scientific: Singapore, 2007; pp. 1–22. [Google Scholar]
- Chen, C. Cost analysis of plant micropropagation of Phalaenopsis. Plant Cell Tissue Organ Cult. 2016, 126, 167–175. [Google Scholar] [CrossRef]
- Zanello, C.A.; Cardoso, J.C. PLBs induction and clonal plantlet regeneration from leaf segment of commercial hybrids of Phalaenopsis. J. Hort. Sci. Biotechnol. 2019, 94, 627–631. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, Y.E.; Yoon, Y.J.; Jeong, C.-S.; Lian, M.L.; Paek, K.-Y.; Park, S.-Y. High endoreduplicated floral organs of somaclonal variants in clonally propagated Phalaenopsis ‘Spring Dancer’. Plant Cell Tissue Organ Cult. 2016, 126, 67–77. [Google Scholar] [CrossRef]
- Tokuhara, K.; Mii, M. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep. 1993, 13, 7–11. [Google Scholar] [CrossRef]
- Kosir, P.; Skof, S.; Luthar, Z. Direct shoot regeneration from nodes of Phalaenopsis orchids. Acta Agric. Slov. 2004, 83, 233–242. [Google Scholar]
- Balilashaki, K.; Naderi, R.; Kalantari, S.; Soorni, A. Micropropagation of Phalaenopsis amabilis cv. Cool ‘Breeze’ with using of flower stalk nodes and leaves os sterile obtained from node cultures. Int. J. Farm. Allied Sci. 2014, 3, 823–829. [Google Scholar]
- Khatun, K.; Nath, U.K.; Rahman, M.S. Tissue culture of Phalaenopsis: Present status and future prospects. J. Adv. Biotechnol. Exp. Therap. 2020, 3, 273–285. [Google Scholar] [CrossRef]
- Reuveni, M. Sex and Regeneration. Biology 2021, 10, 937. [Google Scholar] [CrossRef]
- Kutsher, Y.; Fisler, M.; Faigenboim, A.; Reuveni, M. Florigen governs shoot regeneration. Sci. Rep. 2021, 11, 13710. [Google Scholar] [CrossRef]
- de Almeida, N.V.; Rivas, E.B.; Cardoso, J.C. Somatic embryogenesis from flower tepals of Hippeastrum aiming regeneration of virus-free plants. Plant Sci. 2022, 317, 111191. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Curtolo, M.; Latado, R.R.; Martinelli, A.P. Somatic embryogenesis of a seedless sweet orange (Citrus sinensis (L.) Osbeck). Cell. Dev. Biol. Plant 2017, 53, 619–623. [Google Scholar] [CrossRef]
- Chugh, S.; Guha, S.; Rao, I.U. Micropropagation of orchids: A review on the potential of different explants. Sci. Hort. 2009, 122, 507–520. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Maldonado Junior, W. AgroEstat—Sistema Para Análises Estatísticas de Ensaios Agronômicos; FCAV/UNESP: Jaboticabal, Brazil, 2011. [Google Scholar]
- Souer, E.; Krol, A.; Kloos, D.; Spelt, C.; Bliek, M.; Mol, J.; Koes, R. Genetic control of branching pattern and floral identityduring Petunia inflorescence development. Development 1998, 125, 733–742. [Google Scholar] [CrossRef]
- Benlloch, R.; Berbel, A.; Ali, L.; Gohari, G.; Millán, T.; Madueño, F. Genetic control of inflorescence architecture in legumes. Front. Plant Sci. 2015, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Newton, L.A.; Runkle, E.S. Effects of benzyladenine on vegetative growth and flowering of potted Miltoniopsis orchids. Acta Hort. 2015, 1078, 121–127. [Google Scholar] [CrossRef]
- Subramanian, S.; Xavier, R.; Poobathy, R.; Sinniah, U.R. Establishement of in vitro Phalaenopsis violacea plant culture from flower-stalk cuttings. Adv. Nat. Appl. Sci. 2009, 3, 432–437. [Google Scholar]
- Tokuhara, K.; Mii, M. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). Cell. Dev. Biol. Plant 2001, 37, 457–461. [Google Scholar] [CrossRef]
- Balilashaki, K.; Vahedi, M.; Karimi, R. In vitro Direct Regeneration from Node and Leaf Explants of Phalaenopsis cv. ‘Surabaya’. Plant Tissue Cult. Biotechnol. 2016, 25, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Zahara, M.; Boonkorkew, P.; Mishra, A. Effect of plant growth regulators on the growth and direct shoot formation from leaf explants of the hybrid Phalaenopsis ‘Pink’. Acta Agric. Slov. 2018, 111, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Kumura, M.; Goi, M. Surface-sterilization for in vitro culture of Phalaenopsis flower-stalk cuttings using antimicrobials. Acta Hortic. 1983, 131, 321–328. [Google Scholar] [CrossRef]
- Thomas, P.; Prakash, G.S. Sanitizing long-term micropropagated grapes from covert and endophytic bacteria and preliminar field testing of plants after 8 years in vitro. Cell. Dev. Biol. Plant 2004, 40, 603–607. [Google Scholar] [CrossRef]
- Thomas, P.; Prabhakara, B.S.; Pitchaimuthu, M. Cleansing the long-term micropropagated triploid watermelon cultures from covert bacteria and field testing the plants for clonal fidelity and fertility during the 7–10 years period in vitro. Plant Cell Tissue Organ Cult. 2006, 85, 317–329. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Razdan, M.K. Plant Tissue Culture: Theory and Practice; a revised edition; Elsevier: Amsterdan, The Netherlands, 1996; 767p. [Google Scholar]
- Jana, S.; Sivanesan, I.; Jeong, B.R. Effect of cytokinins on in vitro multiplication of Sophoraton kinensis. Asian Pac. J. Trop. Biomed. 2013, 3, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Erig, A.C.; Schuch, M.W. Ação da 6-benzilaminopurina e da qualidade da luz na multiplicação in vitro de macieira (Malus domestica BORKH.) cvs. Galaxy e Mastergala. Rev. Brasil. Agrociência 2006, 12, 151–155. [Google Scholar]
- Reis, I.N.R.S.; Lameira, O.A.; Cordeiro, I.M.C.C.; Carneiro, A.G.; Ferreira, S.F. In vitro shoot induction in paricá (Schizolobium parahyba var. amazonicum). Plant Cell Cult. Microprop. 2008, 4, 15–20. [Google Scholar]
- Nikolić, R.; Mitić, N.; Ninković, S.; Vinterhalter, B.; Korać, S.; Nesković, M. Gibberellic acid promotes in vitro regeneration and shoot multiplication in Lotus corniculatus L. Plant Growth Regul. 2010, 62, 181–188. [Google Scholar] [CrossRef]
- Baghel, S.; Bansal, Y.K. Synergistic effect of BAP and GA3 on in vitro flowering of Guizotia abyssinica Cass. a multipurpose oil crop. Physiol. Mol. Biol. Plants 2014, 20, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Tan, R.; Xu, C.; Lai, Y.Y.; Chen, D.Y.; Li, L. Gibberellic acid inhibits Browning, enzyme activity and gene expression of Phenylalanine ammonia-liase in Phalaenopsis leaf explants. Genes Genomes Genom. 2009, 3, 68–71. [Google Scholar]
- Xu, C.J.; Li, L. Changes of total phenol content and the activities of PPO, POD and PAL during the browning in Phalaenopsis explant in vitro. Acta Hortic. Sin. 2006, 33, 671–674. [Google Scholar]
- Xu, C.; Ru, Z.; Li, L.; Zeng, B.; Huang, J.; Huang, W.; Hu, O. The Effects of Polyphenol Oxidase and Cycloheximide on the Early Stage of Browning in Phalaenopsis Explants. Hort. Plant J. 2015, 1, 172–180. [Google Scholar] [CrossRef]
- Minamiguchi, J.; Machado Neto, N.B. Embriogênese somática direta em folhas de Phalaenopsis: Orchidaceae. Colloq. Agrar. 2007, 3, 7–13. [Google Scholar] [CrossRef]
- Chen, Y.; Piluek, C. Effects of thidiazuron and N6-benzylaminopurine on shoot regeneration of Phalaenopsis. Plant Growth Regul. 1995, 16, 99–101. [Google Scholar] [CrossRef]
- Farrokhzad, Y.; Babaei, A.; Yadollahi, A.; Kashkooli, A.B.; Mokhtassi-Bidgoli, A.; Hessami, S. Development of lighting intensity approach for shoot proliferation in Phalaenopsis amabilis through combination with silver nanoparticles. Sci. Hortic. 2022, 292, 110582. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Kumaria, S.; Tandon, P. High frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. S. Afr. J. Bot. 2016, 104, 232–243. [Google Scholar] [CrossRef]
- Raynalta, E.; Elina, J.; Sudarsono, S.; Sukma, D. Clonal Fidelity of Micro-propagated Phalaenopsis Plantlets Based on Assessment Using Eighteen Ph-Pto SNAP Marker Loci. AGRIVITA J. Agric. Sci. 2018, 40, 390–402. [Google Scholar] [CrossRef] [Green Version]
- Dewir, Y.H.; Nurmansyah, N.Y.; Teixeira da Silva, J.A. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef]
- Podwyszynska, M. Rooting of Micropropagated Shoots. In Encyclopedia of Rose Science; Andrew, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 66–76. [Google Scholar]
- Iiyama, C.M.; Cardoso, J.C. Micropropagation of Melaleuca alternifolia by shoot proliferation from apical segments. Trees 2021, 35, 1497–1509. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Hossain, M.M.; Sharma, M.; Dobránszki, J.; Cardoso, J.C.; Zeng, S. Acclimatization of in Vitro-derived Dendrobium. Hortic. Plant J. 2017, 3, 110–124. [Google Scholar] [CrossRef]
- Venturieri, G.A.; Arbieto, E.A.M. Ex-vitro establishment of Phalaenopsis amabilis seedlings in different substrates. Acta Sci. 2011, 33, 495–501. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Resende, C.F.; Pacheco, V.S.; Dornellas, F.F.; Oliveira, A.M.S.; Freitas, J.C.E.; Peixoto, P.H.P. Responses of antioxidant enzymes, photosynthetic pigments and carbohydrates in micropropagated Pitcairnia encholirioides L.B. Sm. (Bromeliaceae) under ex vitro water deficit and after rehydration. Braz. J. Biol. 2018, 79, 52–62. [Google Scholar] [CrossRef]
- Feng, J.H.; Chen, J.T. A novel in vitro protocol for inducing direct somatic embryogenesis in Phalaenopsis aphrodite without taking explants. Sci. World J. 2014, 2014, 1–7. [Google Scholar]
Cultivars | Percentage of Live INS Stalks | INS with Shoots | Yield (Shoots/INS) | |
---|---|---|---|---|
Generative | Vegetative | |||
Ph 501 | 76.8 a | 75.1 a | 24.9 b | 1.8 a |
Ph 908 | 44.6 b | 14.5 b | 85.5 a | 1.2 b |
Culture medium | ||||
PGR-free | 44.6 b | 39.9 a | 51.3 a | 0.98 b |
BA 1.0; GA3 1.5; NAA 0.1 | 67.8 ab | 49.8 a | 41.6 a | 2.12 a |
BA 0.1; GA3 1.5; NAA 0.1 | 51.8 ab | 35.7 a | 55.2 a | 1.01 b |
BA 1.0; GA3 0.15; NAA 0.1 | 78.6 a | 42.8 a | 48.5 a | 1.92 a |
F1 cultivars | 20.18 ** | 73.96 ** | 74.7 ** | 10.75 ** |
F culture medium | 4.36 ** | 1.23 ns | 1.23 ns | 10.76 ** |
F Interaction | 1.04 ns | 0.35 ns | 0.36 ns | 1.53 ns |
F Treatments | 5.20 ** | 11.24 ** | 11.35 ** | 6.80 ** |
CV (%) | 37.06 | 47.5 | 39.35 | 45.1 |
1st subculture | 2nd subculture | 3rd subculture | Mean (3 subculture) | |||||
---|---|---|---|---|---|---|---|---|
Cultivars | LIS | SM | LIS | SM | LIS | SM | LIS | SM |
PH501 | 52.7 b | 1.27 a | 66.7 a | 0.94 a | 66.4 a | 1.32 a | 60.3 a | 1.18 a |
PH908 | 59.4 a | 1,18 a | 64.9 a | 0.99 a | 64.8 a | 1.01 b | 61.2 a | 1.06 a |
Culture medium | ||||||||
PGR-free | 48.6 b | 0.80 c | 53.5 c | 0.50 d | 53.8 b | 0.55 c | 51.0 c | 0.61 c |
BA 1.0; GA3 1.5; NAA 0.1 | 64.7 a | 1.69 a | 76.6 a | 1.43 a | 78.6 a | 1.93 a | 71.5 a | 1.68 a |
BA 0.1; GA3 1.5; NAA 0.1 | 49.1 b | 1.03 c | 63.4 bc | 0.77 c | 59.9 b | 0.79 c | 55.8 bc | 0.86 c |
BA 1.0; GA3 0.15; NAA 0.1 | 61.8 a | 1.37 b | 69.8 ab | 1.17 b | 70.0 a | 1.39 b | 64.7 ab | 1.31 b |
F Genotype | 4.56 * | 1.19 ns | 0.35 ns | 0.79 ns | 0.45 ns | 23.54 ** | 0.13 ns | 1.72 ns |
F culture medium | 7.26 ** | 21.12 ** | 10.36 ** | 51.75 ** | 21.99 ** | 89.02 ** | 12.39 ** | 27.60 ** |
F Interaction | 2.25 ns | 0.92 ns | 0.27 ns | 1.98 ns | 1.21 ns | 2.66 ns | 1.07 ns | 0.16 ns |
F Treatments | 4.73 ** | 9.62 ** | 4.61 ** | 23.14 ** | 10.01 ** | 42.65 ** | 5.79 ** | 12.14 ** |
CV (%) | 26.14 | 32.41 | 21.75 | 27.84 | 16.72 | 26.28 | 10.47 | 19.71 |
Number | Plantlets Fresh | Chlorophyll Content Index | ||
---|---|---|---|---|
Substrates | Leaves | Roots | Weight (g) | Final–Initial (a/b/a + b) |
Vermiculite | 0.50 a | 1.90 a | 1.75 a | −9.0/−9.4/−18.4 |
Sphagnum moss | 0.3 ab | 0.90 b | 1.33 ab | −12.8/−15.9/−28.7 |
Coconut powder | 0.2 b | 0.70 b | 0.97 b | −15.0/−15.3/−30.3 |
CV (%) | 75.27 | 61.5 | 42.83 | |
F | 3.71 * | 8.03 * | 4.52 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanello, C.A.; Duarte, W.N.; Gomes, D.M.; Cardoso, J.C. Micropropagation from Inflorescence Nodal Segments of Phalaenopsis and Acclimatization of Plantlets Using Different Substrates. Horticulturae 2022, 8, 340. https://doi.org/10.3390/horticulturae8040340
Zanello CA, Duarte WN, Gomes DM, Cardoso JC. Micropropagation from Inflorescence Nodal Segments of Phalaenopsis and Acclimatization of Plantlets Using Different Substrates. Horticulturae. 2022; 8(4):340. https://doi.org/10.3390/horticulturae8040340
Chicago/Turabian StyleZanello, Cesar Augusto, Willian Naves Duarte, Daniela Mangueira Gomes, and Jean Carlos Cardoso. 2022. "Micropropagation from Inflorescence Nodal Segments of Phalaenopsis and Acclimatization of Plantlets Using Different Substrates" Horticulturae 8, no. 4: 340. https://doi.org/10.3390/horticulturae8040340
APA StyleZanello, C. A., Duarte, W. N., Gomes, D. M., & Cardoso, J. C. (2022). Micropropagation from Inflorescence Nodal Segments of Phalaenopsis and Acclimatization of Plantlets Using Different Substrates. Horticulturae, 8(4), 340. https://doi.org/10.3390/horticulturae8040340