Evaluation of the Effects of Culture Media and Light Sources on In Vitro Growth of Brassavola nodosa (L.) Lindl. Hybrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Culture Establishment
2.2. Light Sources
- a
- LED-1: Light-emitting diode (LED) light with 1575 ± 50 μmol m−2 s−1 PPFD consisting of 17% blue light (B) at 400–500 nm, 38% green light (G) at 500–600 nm, and 45% red light (R) at 600–700 nm (VOLT® VL-1, VOLT® Lighting, Lutz, FL, USA).
- b
- LED-2: LED light with 1018 ± 50 μmol m−2 s−1 PPFD consisting of 17% B, 38% G, and 45% R (VOLT® VL-1, VOLT® Lighting, Lutz, FL, USA).
- c
- LED-3: Red LED light with 77 ± 5 μmol m−2 s−1 PPFD consisting of 13% B, 26% G, and 61% R (Valoya Model L35 AP67, Helsinki, Finland).
- d
- WF: White fluorescent light with 45 ± 5 μmol m−2 s−1 PPFD consisting of 17% B, 45% G, and 38% R (GE Lighting F96T8/XL/SPP35, East Cleveland, OH, USA).
2.3. Culture Media
- a
- MS: MS basal medium supplemented with 30 g L−1 sucrose and 7 g L−1 agar.
- b
- ½ MS: half-strength MS basal medium supplemented with 15 g L−1 sucrose and 7 g L−1 agar.
- c
- VW: VW [17] basal medium supplemented with 10% coconut water, 20 g L−1 sucrose and 7 g L−1 agar.
2.4. Growth and Development Parameters
2.5. Acclimatization
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Light Sources and Culture Media
3.2. Acclimatization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, D.L.; Dixon, K.W. Orchids. Curr. Biol. 2008, 18, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Arditti, J. Fundamentals of Orchid Biology; John Wiley & Sons: New York, NY, USA, 1992; pp. 1–50. [Google Scholar]
- Jones, H.G. Nomenclatural revision of the genus Brassavola R. Br. of the Orchidaceae. Ann. Nat. Mus. Wien. 1975, 79, 9–22. [Google Scholar]
- Mata-Rosas, M.; Lastre-Puertos, E. Long-term conservation of protocorms of Brassavola nodosa (L) Lind. (Orchidaceae): Effect of ABA and a range of cryoconservation techniques. Cryoletters 2015, 36, 289–298. [Google Scholar] [PubMed]
- Mengarda, L.H.G.; Cola, G.P.A.; Oliveira, S.C.; Freitas, A.R. Multiplication, rooting in vitro, and acclimatization of Brassavola tuberculata Hook. (Orchidaceae), an orchid endemic to the Brazilian Atlantic rainforest. Biosci. J. 2017, 33, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Chugh, S.; Guha, S.; Rao, I.U. Micropropagation of orchids: A review on the potential of different explants. Sci. Hortic. 2009, 122, 507–520. [Google Scholar] [CrossRef]
- Kumar, N.; Reddy, M. In vitro plant propagation: A review. J. For. Environ. Sci. 2011, 27, 61–72. [Google Scholar]
- Bhoite, H.A.; Palshikar, G.S. Plant tissue culture: A review. World J. Pharm. Sci. 2014, 2, 565–572. [Google Scholar]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. In Vitro Cell. Dev. Biol. Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Devi, J.; Borthakur, B.; Deka, P. Clonal propagation of Dendrobium moschatum and Cymbidium aloifolium through shoot tip culture. J. Orchid. Soc. India 1997, 11, 19–21. [Google Scholar]
- Sharon, M.; Vasundhara, G. Micropropagation of Dendrobium Joannie Osterholt. J. Orchid. Soc. India 1990, 4, 145–148. [Google Scholar]
- Tokuhara, K.; Mii, M. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep. 1993, 13, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, K.; Senthilkumar, R.; Murugalatha, N. Regeneration and mass multiplication of Vanilla planifolia Andr.—A tropical orchid. Curr. Sci. 2006, 91, 1401–1403. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Faria, R.T.; Santiago, D.C.; Saridakis, D.P.; Albino, U.B.; Araújo, R. Preservation of the Brazilian orchid Cattleya walkeriana Gardner using in vitro propagation. Crop Breed. App. Biotechnol. 2002, 2, 489–492. [Google Scholar] [CrossRef]
- Moraes, L.; Faria, R.T.; Cuquel, F.L. Activated charcoal for in vitro propagation of Brazilian orchids. Acta Hortic. 2003, 683, 383–390. [Google Scholar] [CrossRef]
- Vacin, E.F.; Went, F. Some pH changes in nutrient solutions. Bot. Gaz. 1949, 110, 605–613. [Google Scholar] [CrossRef]
- Young, P.; Murthy, H.N.; Kee, Y.P. Mass multiplication of protocorm-like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell Tissue Org. Cult. 2000, 63, 67–72. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Chan, C.; Stahl, C.; Yeung, E.C. Recent advances in orchid seed germination and micropropagation. In Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols; Lee, Y.-I., Yeung, E.C.-T., Eds.; Springer: New York, NY, USA, 2018; pp. 497–520. [Google Scholar]
- Sivakumar, G.; Heo, J.W.; Kozai, T.; Paek, K.Y. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hortic. Sci. Biotechnol. 2006, 81, 546–548. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kozai, T. Physical microenvironment and its effects. In Automation and Environmental Control in Plant Tissue Culture; Aitken-Christie, J., Kozai, T., Smith, M.A.L., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 319–369. [Google Scholar]
- Rajapakse, N.C.; Shahak, Y. Light-quality manipulation by horticulture industry. Ann. Plant Rev. Light Plant Dev. 2008, 30, 290. [Google Scholar]
- Faria, D.V.; Correia, L.N.F.; Souza, M.V.C.; Ríos-Ríos, A.M.; Vital, C.E. Irradiance and light quality affect two annatto (Bixa orellana L.) cultivars with contrasting bixin production. J. Photochem. Photobiol. 2019, 197, 111549. [Google Scholar] [CrossRef]
- Seabrook, J.E.A. Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A review. Am. J. Potato Res. 2005, 82, 353–367. [Google Scholar] [CrossRef]
- Dooley, J. Influence of lighting spectra on plant tissue culture. Ann. Am. Soc. Agric. Eng. 1991, 8, 917530. [Google Scholar]
- Miyashita, Y.; Kitaya, Y.; Kozai, T.; Kimura, T. Effects of red and far-red light on the growth and morphology of potato plantlets in vitro: Using light emitting diode as a light source for micropropagation. Environ. Effect Control Plant Tissue Cult. 1994, 393, 189–194. [Google Scholar] [CrossRef]
- Kodym, A.; Zapata-Arias, F.J. Natural light as an alternative light source for the in vitro culture of banana (Musa acuminata cv. ‘Grande Naine’). Plant Cell Tissue Org. Cult. 1998, 55, 141–145. [Google Scholar] [CrossRef]
- Mitchell, C. Plant lighting in controlled environments for space and earth applications. Acta Hortic. 2012, 956, 23–36. [Google Scholar] [CrossRef]
- Gupta, S.D.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Bello-Bello, J.J.; Martínez-Estrada, E.; Caamal-Velázquez, J.H.; Morales-Ramos, V. Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). Afr. J. Biotechnol. 2016, 15, 272–277. [Google Scholar]
- Ferreira, L.T.; Silva, M.M.A.; Ulisses, C.; Camara, T.R.; Willadino, L. Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell Tissue Org. Cult. 2017, 128, 211–221. [Google Scholar] [CrossRef]
- Cybularz-Urban, T.; Hanus-Fajerska, E.; Swiderski, A. Effect of light wavelength on in vitro organogenesis of a Cattleya hybrid. Acta Biol. Cracov. 2007, 49, 113–118. [Google Scholar]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Luna-Sánchez, I.J. Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. S. Afr. J. Bot. 2017, 109, 288–293. [Google Scholar] [CrossRef]
- Tanaka, M.; Takamura, T.; Watanabe, H.; Endo, M.; Yanagi, T.; Okamoto, K. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J. Hortic. Sci. Biotechnol. 1998, 73, 39–44. [Google Scholar] [CrossRef]
- Streit, N.M.; Canterle, L.P.; Canto, M.W.D.; Hecktheuer, L.H.H. The Chlorophylls. Ciênc. Rural 2005, 35, 748–755. [Google Scholar] [CrossRef]
- Dewir, Y.H.; El-Mahrouk, M.E.; Murthy, H.N.; Paek, K.Y. Micropropagation of Cattleya: Improved in vitro rooting and acclimatization. Hortic. Environ. Biotechnol. 2015, 56, 89–93. [Google Scholar] [CrossRef]
- Soontornchainaksaeng, P.; Chaicharoen, S.; Sirijuntarut, M.; Kruatrachue, M. In vitro studies on the effect of light intensity on plant growth of Phaius tankervilliae (Banks ex L’Herit.) Bl. and Vanda coerulea Griff. Sci. Asia 2001, 27, 233–237. [Google Scholar] [CrossRef]
- Leyva-Ovalle, O.R.; Bello-Bello, J.J.; Murguía-González, J.; Núñez-Pastrana, R.; Ramírez-Mosqueda, M.A. Micropropagation of Guarianthe skinneri (Bateman) Dressler et W. E. Higging in temporary immersion systems. 3 Biotech 2020, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Tan Nhut, D.; Takamura, T.; Watanabe, H.; Tanaka, M. Artificial light source using light-emitting diodes (LEDs) in the efficient micropropagation of Spathiphyllum plantlets. In II International Symposium on Biotechnology of Tropical and Subtropical Species 692; Interenational Society for Horticultural Science: Taipei, Taiwan, 2001; pp. 137–142. [Google Scholar]
- Preece, J.E.; Sutter, E.G. Acclimatization of micropropagated plants to the greenhouse and field. In Micropropagation: Technology and Application; Debergh, P.C., Zimmerman, R.H., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 71–93. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vendrame, W.A.; Xu, J.; Beleski, D. Evaluation of the Effects of Culture Media and Light Sources on In Vitro Growth of Brassavola nodosa (L.) Lindl. Hybrid. Horticulturae 2022, 8, 450. https://doi.org/10.3390/horticulturae8050450
Vendrame WA, Xu J, Beleski D. Evaluation of the Effects of Culture Media and Light Sources on In Vitro Growth of Brassavola nodosa (L.) Lindl. Hybrid. Horticulturae. 2022; 8(5):450. https://doi.org/10.3390/horticulturae8050450
Chicago/Turabian StyleVendrame, Wagner A., JianJian Xu, and David Beleski. 2022. "Evaluation of the Effects of Culture Media and Light Sources on In Vitro Growth of Brassavola nodosa (L.) Lindl. Hybrid" Horticulturae 8, no. 5: 450. https://doi.org/10.3390/horticulturae8050450
APA StyleVendrame, W. A., Xu, J., & Beleski, D. (2022). Evaluation of the Effects of Culture Media and Light Sources on In Vitro Growth of Brassavola nodosa (L.) Lindl. Hybrid. Horticulturae, 8(5), 450. https://doi.org/10.3390/horticulturae8050450