Optimization of Cultivation Type and Temperature for the Production of Balloon Flower (Platycodongrandiflorum A. DC) Sprouts in a Plant Factory with Artificial Lighting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Growth Characteristics
2.3. Saponin Analysis (Extraction of Samples Three Types of Saponins (Pd-D3, Dpd-D, and PC-D) by High-Performance Liquid Chromatography (HPLC))
2.4. Statistical Analysis
3. Results
3.1. Growth Characteristics
3.2. Saponin Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, M.-Y.; Bo, A.; Yang, M.; Xu, J.-F.; Jiang, L.-L.; Zhou, B.-C.; Li, M.-H. The pharmacological effects and health benefits of Platycodon grandiflorus—A medicine food homology species. Foods 2020, 9, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.H.; Yoo, D.S.; Cha, M.-R.; Choi, C.W.; Kim, Y.S.; Choi, S.-U.; Lee, K.R.; Ryu, S.Y. Antiproliferative effects of saponins from the roots of Platycodon grandiflorum on cultured human tumor cells. J. Nat. Prod. 2010, 73, 1863–1867. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Yoon, J.-W.; Kim, C.-T.; Lim, S.-T. Antioxidant activity of phenylpropanoid esters isolated and identified from Platycodon grandiflorum A. DC. Phytochemistry 2004, 65, 3033–3039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon grandiflorus–An Ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol 2015, 164, 147–161. [Google Scholar] [CrossRef]
- Han, S.B.; Park, S.H.; Lee, K.H.; Lee, C.W.; Lee, S.H.; Kim, H.C.; Kim, Y.S.; Lee, H.S.; Kim, H.M. Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. Int. Immunopharmacol. 2001, 1, 1969–1978. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Choi, S.-U.; Kim, J.S.; Lee, H.S.; Roh, S.H.; Jeong, Y.C.; Kim, Y.-K.; Ryu, S.Y. Isolation of a new saponin and cytotoxic effect of saponins from the root of Platycodon grandiflorum on human tumor cell lines. Planta Med. 2005, 71, 566–568. [Google Scholar] [CrossRef]
- Yoon, Y.D.; Han, S.B.; Kang, J.S.; Lee, C.W.; Park, S.-K.; Lee, H.S.; Kang, J.S.; Kim, H.M. Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platycodon grandiflorum. Int. Immunopharmacol. 2003, 3, 1873–1882. [Google Scholar] [CrossRef]
- Goto, E. Plant production in a closed plant factory with artificial lighting. In Proceedings of the Seventh International Symposium on Light in Horticultural Systems, Wageningen, The Netherlands, 14–18 October 2012. [Google Scholar] [CrossRef]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Chapter 20–Hydroponic systems. In Plant Factory, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 273–283. [Google Scholar] [CrossRef]
- Abrami, G. Optimum mean temperature for a plant growth calculated by a new method of summation. Ecology 1972, 53, 893–900. [Google Scholar] [CrossRef]
- Guy, C.L.; Niemi, K.J.; Brambl, R. Altered gene expression during cold acclimation of spinach. Proc. Nat. Acad. Sci. USA 1985, 82, 3673–3677. [Google Scholar] [CrossRef] [Green Version]
- Holaday, A.S.; Martindale, W.; Alred, R.; Brooks, A.L.; Leegood, R.C. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant. Physiol. 1992, 98, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Maevskaya, S.; Egorova, E.; Bukhov, N. Effect of elevated temperature on nitrite and nitrate reduction in leaves and intact chloroplasts. Russ. J. Plant. Physiol. 2003, 50, 599–603. [Google Scholar] [CrossRef]
- Rokka, A.; Aro, E.-M.; Herrmann, R.G.; Andersson, B.; Vener, A.V. Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant. Physiol. 2000, 123, 1525–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, I.-S.; Kang, E.M.; Kim, N. High-performance liquid chromatographic analysis of saponin compounds in Bupleurum falcatum. J. Chromatogr. Sci. 2000, 38, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant. Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Went, F. The effect of temperature on plant growth. Annu. Rev. Plant. Physiol. 1953, 4, 347–362. [Google Scholar] [CrossRef]
- Chaitanya, K.; Sundar, D.; Masilamani, S.; Ramachandra Reddy, A. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant. Growth Regul. 2002, 36, 175–180. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Tüzel, Y.; Balliu, A. Advances in liquid-and solid-medium soilless culture systems. In Advances in Horticultural Soilless Culture, 1st ed.; Gruda, N.S., Ed.; Burleigh Dodds Science: Cambridge, UK, 2021; pp. 213–248. [Google Scholar] [CrossRef]
- Sankhalkar, S.; Komarpant, R.; Dessai, T.R.; Simoes, J.; Sharma, S. Effects of soil and soil-less culture on morphology, physiology and biochemical studies of vegetable plants. Curr. Agric. Res. J. 2019, 7, 181. [Google Scholar] [CrossRef]
- Sardare, M.D.; Admane, S.V. A review on plant without soil-hydroponics. Int. J. Eng Res. Technol. 2013, 2, 299–304. [Google Scholar] [CrossRef]
- Bláha, L. Importance of root-shoot ratio for crops production. J. Agron. Crop. Sci. 2019, 2, 12. [Google Scholar] [CrossRef]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Naghiloo, S.; Movafeghi, A.; Delazar, A.; Nazemiyeh, H.; Asnaashari, S.; Dadpour, M.R. Ontogenetic variation of total phenolics and antioxidant activity in roots, leaves and flowers of Astragalus compactus Lam. (Fabaceae). BioImpacts BI 2012, 2, 105. [Google Scholar] [CrossRef]
- Jochum, G.M.; Mudge, K.W.; Thomas, R.B. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am. J. Bot. 2007, 94, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Wang, Y.; Zhou, Y.; Zhu, L.; Zheng, G.; Ma, X.; Ji, P.; Xu, F. Effect of different temperature on saponin content in different parts of three-year-old Panax notoginseng. Southwest China J. Agric. Sci. 2019, 32, 2802–2806. [Google Scholar]
- Lin, K.-H.; Jhou, Y.-J.; Wu, C.-W.; Chang, Y.-S. Growth, physiological, and antioxidant characteristics in green and red Perilla frutescens varieties as affected by temperature-and water-stressed conditions. Sci. Hortic. 2020, 274, 109682. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Edrada-Ebel, R.; Da Costa, F.B. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef] [Green Version]
Culture | °C | Saponin (mg g−1 Dry Weight) | |||||||
---|---|---|---|---|---|---|---|---|---|
Pd-D3 z | Dpd-D | Pc-D | Total | ||||||
Soil | 20 | 0.65 ± 0.05 | d y | 0.04 ± 0.01 | c | 2.04 ± 0.01 | c | 2.72 ± 0.05 | c |
25 | 0.18 ± 0.02 | e | 0.65 ± 0.02 | b | 1.17 ± 0.04 | e | 1.99 ± 0.06 | d | |
30 | 0.13 ± 0.02 | e | 0.21 ± 0.01 | c | 0.72 ± 0.01 | f | 1.04 ± 0.02 | e | |
Soilless | 20 | 6.00 ± 0.17 | a | 0.90 ± 0.01 | ab | 3.03 ± 0.09 | a | 9.92 ± 0.11 | a |
25 | 2.81 ± 0.02 | b | 1.21 ± 0.28 | a | 2.63 ± 0.11 | b | 6.64 ± 0.38 | b | |
30 | 1.28 ± 0.07 | c | 0.08 ± 0.01 | c | 1.54 ± 0.01 | d | 2.89 ± 0.07 | c | |
Significance x | |||||||||
Culture (C) | *** | *** | *** | *** | |||||
Temperature (T) | *** | *** | *** | *** | |||||
C × T | *** | ** | *** | *** |
Culture | °C | Saponin (mg g−1 Dry Weight) | |||||||
---|---|---|---|---|---|---|---|---|---|
Pd-D3 z | Dpd-D | Pc-D | Total | ||||||
Soil | 20 | 0.75 ± 0.09 | cd y | 0.62 ± 0.05 | c | 5.03 ± 0.10 | a | 6.38 ± 0.07 | c |
25 | 0.54 ± 0.27 | de | 0.46 ± 0.26 | c | 4.48 ± 0.05 | b | 5.47 ± 0.49 | c | |
30 | 0.21 ± 0.01 | e | 0.50 ± 0.02 | c | 3.15 ± 0.01 | d | 3.85 ± 0.03 | d | |
Soilless | 20 | 1.22 ± 0.03 | ab | 1.98 ± 0.06 | b | 4.44 ± 0.10 | b | 7.63 ± 0.17 | b |
25 | 1.55 ± 0.07 | a | 2.72 ± 0.51 | b | 3.96 ± 0.02 | c | 8.22 ± 0.43 | b | |
30 | 0.97 ± 0.06 | bc | 6.59 ± 0.29 | a | 4.47 ± 0.02 | b | 12.02 ± 0.25 | a | |
Significance x | |||||||||
Culture (C) | *** | *** | NS | *** | |||||
Temperature (T) | ** | *** | *** | ** | |||||
C × T | NS | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.K.L.; Lee, J.-H.; Lee, G.O.; Cho, K.M.; Cho, D.Y.; Son, K.-H. Optimization of Cultivation Type and Temperature for the Production of Balloon Flower (Platycodongrandiflorum A. DC) Sprouts in a Plant Factory with Artificial Lighting. Horticulturae 2022, 8, 315. https://doi.org/10.3390/horticulturae8040315
Nguyen TKL, Lee J-H, Lee GO, Cho KM, Cho DY, Son K-H. Optimization of Cultivation Type and Temperature for the Production of Balloon Flower (Platycodongrandiflorum A. DC) Sprouts in a Plant Factory with Artificial Lighting. Horticulturae. 2022; 8(4):315. https://doi.org/10.3390/horticulturae8040315
Chicago/Turabian StyleNguyen, Thi Kim Loan, Jin-Hui Lee, Ga Oun Lee, Kye Man Cho, Du Yong Cho, and Ki-Ho Son. 2022. "Optimization of Cultivation Type and Temperature for the Production of Balloon Flower (Platycodongrandiflorum A. DC) Sprouts in a Plant Factory with Artificial Lighting" Horticulturae 8, no. 4: 315. https://doi.org/10.3390/horticulturae8040315
APA StyleNguyen, T. K. L., Lee, J. -H., Lee, G. O., Cho, K. M., Cho, D. Y., & Son, K. -H. (2022). Optimization of Cultivation Type and Temperature for the Production of Balloon Flower (Platycodongrandiflorum A. DC) Sprouts in a Plant Factory with Artificial Lighting. Horticulturae, 8(4), 315. https://doi.org/10.3390/horticulturae8040315