Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Studies
2.2. In Vivo Studies
2.3. Plant Preparation and Isolation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Results on pH and Brix Measurements
3.2. Results on Mycelium Growth Assay
3.3. MIC Assay
3.4. Plant Growth Study (In Vivo)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- United Nations—Population Division. World Population Prospects 2017. Available online: https://population.un.org/wpp/ (accessed on 17 February 2019).
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Vagelas, I.; Leontopoulos, S. Cross-protection of cotton against Verticillium wilt by Verticillium nigrescens. Emir. J. Food Agric. 2015, 27, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Sci. Total Environ. 2018, 650, 2863–2879. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture-Alternative Pathways to 2050. Summary Version. 2018. Available online: http://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157074/ (accessed on 10 February 2022).
- Pradhan, P.; Fischer, G.; Van Velthuizen, H.; Reusser, D.E.; Kropp, J. Closing Yield Gaps: How Sustainable Can We Be? PLoS ONE 2015, 10, e0129487. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Valin, H.; Sands, R.; Van Der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.L.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Alavanja, M.C.R.; Ross, M.K.; Bonner, M.R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin. 2013, 63, 120–142. [Google Scholar] [CrossRef] [Green Version]
- Leontopoulos, S.; Skenderidis, P.; Vagelas, I.K. Potential Use of Polyphenolic Compounds Obtained from Olive Mill Waste Waters on Plant Pathogens and Plant Parasitic Nematodes. In Progress in Biological Control; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 137–177. [Google Scholar]
- Stirling, G.R. Biological control of Meloidogyne javanica with Bacillus penetrans. Phytopathology 1984, 74, 55–60. [Google Scholar] [CrossRef]
- Stirling, G.R. Biological Control of Plant-Parasitic Nematodes: An Ecological Perspective, a Review of Progress and Opportunities for Further Research, 1st ed.; Springer: Cham, Switzerland, 2011; pp. 1–38. [Google Scholar] [CrossRef]
- Al-Said, F.A.; Opara, L.U.; Al-Yahyai, R.A. Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 2009, 90, 129–134. [Google Scholar] [CrossRef]
- John, K.M.; Bhagwat, A.A.; Luthria, D.L. Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions. Food Chem. 2017, 235, 145–153. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Lampakis, D. Goji Berry: Health Promoting Properties. Nutraceuticals 2022, 2, 32–48. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Malik, A.; Afaq, F.; Sarfaraz, S.; Adhami, V.M.; Syed, D.N.; Mukhtar, H. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 14813–14818. [Google Scholar] [CrossRef] [Green Version]
- Cassano, A.; Conidi, C.; Drioli, E. Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes. J. Food Eng. 2011, 107, 366–373. [Google Scholar] [CrossRef]
- Turfan, Ö.; Türkyılmaz, M.; Yemiş, O.; Ozkan, M. Anthocyanin and colour changes during processing of pomegranate (Punica granatum L., cv. Hicaznar) juice from sacs and whole fruit. Food Chem. 2011, 129, 1644–1651. [Google Scholar] [CrossRef]
- Dey, D.; Debnath, S.; Hazra, S.; Ghosh, S.; Ray, R.; Hazra, B. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) producing gram-negative bacilli. Food Chem. Toxicol. 2012, 50, 4302–4309. [Google Scholar] [CrossRef]
- Lampakis, D.; Skenderidis, P.; Leontopoulos, S. Technologies and Extraction Methods of Polyphenolic Compounds Derived from Pomegranate (Punica granatum) Peels. A Mini Review. Processes 2021, 9, 236. [Google Scholar] [CrossRef]
- Wu, J.; Jahncke, M.L.; Eifert, J.D.; O’Keefe, S.F.; Welbaum, G. Pomegranate peel (Punica granatum L) extract and Chinese gall (Galla chinensis) extract inhibit Vibrio parahaemolyticus and Listeria monocytogenes on cooked shrimp and raw tuna. Food Control 2016, 59, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Leontopoulos, S.V.; Petrotos, K.B.; Kokkora, M.I.; Giavasis, I.; Papaioannou, C. In vivo evaluation of liquid polyphenols obtained from OMWW as natural bio-chemicals against several fungal pathogens on tomato plants. Desalination Water Treat. 2016, 1–15. [Google Scholar] [CrossRef]
- Skenderidis, P.; Mitsagga, C.; Giavasis, I.; Petrotos, K.; Lampakis, D.; Leontopoulos, S.; Hadjichristodoulou, C.; Tsakalof, A. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. J. Food Meas. Charact. 2019, 13, 2017–2031. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Skenderidis, P.; Petrotos, K.; Leontopoulos, S. Functional properties of goji berry fruit extracts. In Phytochemicals in Goji Berries (Lycium barbarum) Applications in Functional Foods; Xingqian, Y., Ed.; Taylor and Francis Group LLC: Oxfordshire, UK, 2020; pp. 181–224. Available online: https://www.routledge.com/Phytochemicals-in-Goji-Berries-Applications-in-Functional-Foods/Ye-Jiang/p/book/9780367076344 (accessed on 10 February 2022).
- Baydar, N.G.; Sagdic, O.; Ozkan, G.; Cetin, S. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. Int. J. Food Sci. Technol. 2006, 41, 799–804. [Google Scholar] [CrossRef]
- Vagelas, I.; Sugar, I.R. Potential use of olive oil mill wastewater to control plant pathogens and post harvest diseases. Carpathian J. Food Sci. Technol. 2020, 12, 140–144. Available online: http://chimie-biologie.ubm.ro/carpathian_journal/index.html (accessed on 10 February 2022).
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology 2020, 9, 450. [Google Scholar] [CrossRef]
- Petrotos, K.B.; Kokkora, M.I.; Gkoutsidis, P.E.; Leontopoulos, S. A comprehensive study on the kinetics of olive mill wastewater (OMWW) polyphenols adsorption on macroporous resins. Part II. The case of Amberlite FPX66 commercial resin. Desalination Water Treat. 2016, 1–8. [Google Scholar] [CrossRef]
- Fravel, D. Commercialization and Implementation of Biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef]
- Bailey, K.; Boyetchko, S.; Längle, T. Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol. Control 2010, 55, 221–229. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Giavasis, I. Optimization of Vacuum Microwave-Assisted Extraction of Pomegranate Fruits Peels by the Evaluation of Extracts’ Phenolic Content and Antioxidant Activity. Foods 2020, 9, 1655. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Giavasis, I. Vacuum Microwave-Assisted Aqueous Extraction of Polyphenolic Compounds from Avocado (Persea Americana) Solid Waste. Sustainability 2021, 13, 2166. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Mitsagga, C.; Giavasis, I.; Papaioannou, C.; Vasilakoglou, I.; Petrotos, K. Potential Synergistic Action of Liquid Olive Fruit Polyphenol Extract with Aqueous Extracts of Solid Wastes of Pomegranate or/and Orange Juice Industry as Organic Phyto-protective Agents against Important Plant Pathogens—Part 1 (in vitro Studies). Univers. J. Agric. Res. 2020, 8, 202–222. [Google Scholar] [CrossRef]
- Skenderidis, P.; Leontopoulos, S.; Petrotos, K.; Mitsagga, C.; Giavasis, I. The In Vitro and In Vivo Synergistic Antimicrobial Activity Assessment of Vacuum Microwave Assisted Aqueous Extracts from Pomegranate and Avocado Fruit Peels and Avocado Seeds Based on a Mixtures Design Model. Plants 2021, 10, 1757. [Google Scholar] [CrossRef]
- Tayel, A.A.; El-Tras, W.F. Anticandidal activity of pomegranate peel extract aerosol as an applicable sanitizing method. Mycoses 2009, 53, 117–122. [Google Scholar] [CrossRef]
- Li Destri Nicosia, M.G.; Pangallo, S.; Raphael, G.; Romeo, F.V.; Strano, M.C.; Rapisarda, P.; Droby, S.; Schena, L. Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biol. Technol. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Elsherbiny, E.A.; Amin, B.H.; Baka, Z.A. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol. Technol. 2016, 111, 256–263. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Petrotos, K.; Papaioannou, C.; Vasilakoglou, I. Effectiveness of Olive Fruit Polyphenol Extract Combined with Aqueous Extracts of Solid Wastes of Pomegranate or/and Orange Juice Against Important Plant Pathogens—Part 2 (in vivo studies). Univers. J. Agric. Res. 2021, 9, 23–38. [Google Scholar] [CrossRef]
- Carman, R.M.; Handley, P.N. Antifungal diene in leaves of various avocado cultivars. Phytochemistry 1999, 50, 1329–1331. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Skenderidis, P.; Skoufogianni, G. Potential Use of Medicinal Plants as Biological Crop Protection Agents. Biomed. J. Sci. Tech. Res. 2020, 25, 19320–19324. [Google Scholar] [CrossRef]
- Rosas-Burgos, E.C.; Burgos-Hernández, A.; Noguera-Artiaga, L.; Kačániová, M.; Hernández-García, F.; Cárdenas-López, J.L.; Carbonell-Barrachina, Á.A. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef]
- Tehranifar, A.; Selahvarzi, Y.; Kharrazi, M.; Bakhsh, V.J. High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind. Crop. Prod. 2011, 34, 1523–1527. [Google Scholar] [CrossRef]
- Glazer, I.; Masaphy, S.; Marciano, P.; Bar-Ilan, I.; Holland, D.; Kerem, Z.; Amir, R. Partial Identification of Antifungal Compounds from Punica granatum Peel Extracts. J. Agric. Food Chem. 2012, 60, 4841–4848. [Google Scholar] [CrossRef]
- Kaderides, K.; Mourtzinos, I.; Goula, A.M. Stability of pomegranate peel polyphenols encapsulated in orange juice industry by-product and their incorporation in cookies. Food Chem. 2020, 310, 125849. [Google Scholar] [CrossRef]
- Balooch, M.; Sabahi, H.; Aminian, H.; Hosseini, M. Intercalation technique can turn pomegranate industrial waste into a valuable by-product. LWT 2018, 98, 99–105. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and antioxidant features of ‘Gabsi’ pomegranate peel extracts. Ind. Crop. Prod. 2018, 111, 345–352. [Google Scholar] [CrossRef]
- Santos, T.; Santana, L.D.A. Antimicrobial potential of exotic fruits residues. South Afr. J. Bot. 2019, 124, 338–344. [Google Scholar] [CrossRef]
- Quattrucci, A.; Ovidi, E.; Tiezzi, A.; Vinciguerra, V.; Balestra, G. Biological control of tomato bacterial speck using Punica granatum fruit peel extract. Crop Prot. 2013, 46, 18–22. [Google Scholar] [CrossRef]
- Platt, K.A.; Thomson, W.W. Idioblast Oil Cells of Avocado: Distribution, Isolation, Ultrastructure, Histochemistry, and Biochemistry. Bot. Gaz. 1992, 153, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Oelrichs, P.B.; Ng, J.C.; Seawright, A.A.; Ward, A.; Schäffeler, L.; Macleod, J.K. Isolation and identification of a compound from avocado (Persea americana) leaves which causes necrosis of the acinar epithelium of the lactating mammary gland and the myocardium. Nat. Toxins 1995, 3, 344–349. [Google Scholar] [CrossRef]
- Prusky, D. Possible Involvement of an Antifungal Diene in the Latency of Colletotrichum gloeosporioides on Unripe Avocado Fruits. Phytopathology 1982, 72, 1578–1582. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.; Trumble, J.T. Toxicity, Growth, and Behavioral Effects of an Oil Extracted from Idioblast Cells of the Avocado Fruit on the Generalist Herbivore Beet Armyworm (Lepidoptera: Noctuidae). J. Econ. Èntomol. 1996, 89, 1571–1576. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.; Millar, J.G.; Maynard, D.F.; Trumble, J.T. Novel Antifeedant and Insecticidal Compounds from Avocado Idioblast Cell Oil. J. Chem. Ecol. 1998, 24, 867–889. [Google Scholar] [CrossRef]
- Xoca-Orozco, L.A.; Aguilera-Aguirre, S.; Vega-Arreguin, J.; Acevedo-Hernandez, G.; Tovar-Pérez, E.; Stoll, A.; Herrera-Estrella, L.; Chacón-López, A. Activation of the phenylpropanoid biosynthesis pathway reveals a novel action mechanism of the elicitor effect of chitosan on avocado fruit epicarp. Food Res. Int. 2019, 121, 586–592. [Google Scholar] [CrossRef]
- Sivanathan, S.; Adikaram, N.K.B. Biological Activity of Four Antifungal Compounds in Immature Avocado. J. Phytopathol. 1989, 125, 97–109. [Google Scholar] [CrossRef]
- Domergue, F.; Helms, G.L.; Prusky, D.; Browse, J. Antifungal compounds from idioblast cells isolated from avocado fruits. Phytochemistry 2000, 54, 183–189. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Rinitha, G. Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano 2018, 3, 18–27. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Van Eeden, M.; Korsten, L. Factors determining use of biological disease control measures by the avocado industry in South Africa. Crop Prot. 2013, 51, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Anatolioti, V.; Leontopoulos, S.; Skoufogianni, G.; Skenderidis, P. A study on the potential use of energy crops as alternative cultivation in Greece. Issues of farmer’s attitudes. In Proceedings of the 4th International Conference of Food and Biosystems Engineering (FaBE), Crete Island, Greece, 30 May–2 June 2019; FaBE Proceedings: Larissa, Greece; Volume 1, pp. 410–445. [Google Scholar]
- Karasmanaki, E.; Tsantopoulos, G. Exploring future scientists’ awareness about and attitudes towards renewable energy sources. Energy Policy 2019, 131, 111–119. [Google Scholar] [CrossRef]
Number of Sample | Pomegranate Peel % (PP) | Avocado Peel % (AP) | Avocado Seed % (AS) |
---|---|---|---|
1 | 16.70 | 66.70 | 16.70 |
2 | 0 | 100 | 0 |
3 | 0 | 0 | 100 |
5 | 0 | 50 | 50 |
6 | 33.30 | 33.30 | 33.30 |
8 | 100 | 0 | 0 |
9 | 50 | 50 | 0 |
10 | 16.70 | 16.70 | 66.70 |
12 | 66.70 | 16.70 | 16.70 |
13 | 50 | 0 | 50 |
Number of Sample | Pomegranate Peel (PP) (%) | Avocado peed (AP) (%) | Avocado Seed (AS) (%) |
---|---|---|---|
2 | 0 | 100 | 0 |
6 | 33.33 | 33.33 | 33.33 |
8 | 100 | 0 | 0 |
9 | 50 | 50 | 0 |
13 | 50 | 0 | 50 |
Treatments | Days of Incubation at 28 °C | ||
---|---|---|---|
3 Days | 5 Days | 7 Days | |
(1) 16.7% PP, 66.7% AP, 16.7% AS | −10.49 ± 0.40% | −3.27 ± 0.20% | −3.30 ± 0.20% |
(2) 100% AP | −12.54 ± 0.40% | 0.61 ± 0.10% | 0.98 ± 0.10% |
(3) 100% AS | −27.40 ± 0.50% | −1.81 ± 0.20% | −1.66 ± 0.20% |
(5) 50% AP, 50% AS | −6.67 ± 0.30% | −1.76 ± 0.20% | −1.04 ± 0.20% |
(6) 33.3% PP, 33.3% AP, 33.3% AS | −30.07 ± 0.50% | −8.26 ± 0.30% | −6.48 ± 0.30% |
(8) 100% PP | 1.24 ± 0.20% | 0.83 ± 0.10% | −3.45 ± 0.20% |
(9) 50% PP, 50% AP | −21.08 ± 0.50% | −7.15 ± 0.30% | −6.42 ± 0.30% |
(10) 16.7% PP, 16.7% AP, 66.7% AS | −15.12 ± 0.40% | −1.63 ± 0.20% | 0.44 ± 0.20% |
(12) 66.7% PP, 16.7% AP, 16.7% AS | −24.91 ± 0.50% | −8.17 ± 0.30% | −6.57 ± 0.30% |
(13) 50% PP, 50% AS | −7.11 ± 0.30% | −3.09 ± 0.20% | −2.82 ± 0.20% |
Treatments | Days of Incubation at 28 °C | ||
---|---|---|---|
3 Days | 5 Days | 7 Days | |
(1) 16.7% PP, 66.7% AP, 16.7% AS | 1.90 ± 0.20% | 2.18 ± 0.20% | 1.86 ± 0.20% |
(2) 100% AP | −10 ± 0.40% | −10.65 ± 0.40% | −10.21 ± 0.40% |
(3) 100% AS | −4.86 ± 0.20% | −3.37 ± 0.20% | −3.48 ± 0.20% |
(5) 50% AP, 50% AS | −1.57 ± 0.20% | −2.03 ± 0.20% | −5.34 ± 0.30% |
(6) 33.3% PP, 33.3% AP, 33.3% AS | 7.03 ± 0.20% | 3.02 ± 0.20% | 2.61 ± 0.20% |
(8) 100% PP | −3.65 ± 0.20% | −3.91 ± 0.20% | −3.92 ± 0.20% |
(9) 50% PP, 50% AP | 0.52 ± 0.10% | −1.68 ± 0.20% | −1.98 ± 0.20% |
(10) 16.7% PP, 16.7% AP, 66.7% AS | −5.53 ± 0.30% | −5.75 ± 0.30% | −7.28 ± 0.30% |
(12) 66.7% PP, 16.7% AP, 16.7% AS | −2.46 ± 0.20% | −0.89 ± 0.10% | −0.19 ± 0.10% |
(13) 50% PP, 50% AS | −1.04 ± 0.20% | −1.78 ± 0.20% | −1.86 ± 0.20% |
Treatments | Days of Incubation at 28 °C | ||
---|---|---|---|
3 Days | 5 Days | 7 Days | |
(1) 16.7% PP, 66.7% AP, 16.7% AS | −2.26 ± 0.20% | 1.22 ± 0.20% | 0.66 ± 0.10% |
(2) 100% AP | −7.00 ± 0.30% | −4.00 ± 0.20% | −0.66 ± 0.10% |
(3) 100% AS | −1.32 ± 0.20% | −2.61 ± 0.20% | 0.77 ± 0.10% |
(5) 50% AP, 50% AS | −5.29 ± 0.30% | −2.04 ± 0.20% | 1.59 ± 0.20% |
(6) 33.3% PP, 33.3% AP, 33.3% AS | −3.96 ± 0.20% | −3.43 ± 0.20% | −2.99 ± 0.20% |
(8) 100% PP | −5.29 ± 0.30% | −7.27 ± 0.30% | −11.26 ± 0.40% |
(9) 50% PP, 50% AP | −0.18 ± 0.10% | −1.39 ± 0.20% | −3.29 ± 0.20% |
(10) 16.7% PP, 16.7% AP, 66.7% AS | −7.75 ± 0.30% | −5.06 ± 0.03% | 0.03 ± 0.10% |
(12) 66.7% PP, 16.7% AP, 16.7% AS | 0.18 ± 0.10% | 0.81 ± 0.10% | −0.38 ± 0.10% |
(13) 50% PP, 50% AS | −8.50 ± 0.30% | −6.78 ± 0.30% | −9.42 ± 0.40% |
Treatments | Days of Incubation at 28 °C | ||
---|---|---|---|
5 Days | 8 Days | 14 Days | |
(1) 16.7% PP, 66.7% AP, 16.7% AS | −20.18 ± 0.50% | −16.23 ± 0.40% | −11.16 ± 0.40% |
(2) 100% AP | −7 ± 0.30% | −5 ± 0.30% | 0% |
(3) 100% AS | −11.33 ± 0.40% | −13.10 ± 0.40% | −7.09 ± 0.30% |
(5) 50% AP, 50% AS | −29.97 ± 0.50% | −21.74 ± 0.50% | −14.73 ± 0.40% |
(6) 33.3% PP, 33.3% AP, 33.3% AS | −18.15 ± 0.50% | −19.18 ± 0.50% | −14.73 ± 0.40% |
(8) 100% PP | −4.97 ± 0.20% | −0.76 ± 0.10% | −0.24 ± 0.10% |
(9) 50% PP, 50% AP | −16.68 ± 0.40% | −11.91 ± 0.40% | −4.27 ± 0.20% |
(10) 16.7% PP, 16.7% AP, 66.7% AS | −20.73 ± 0.50% | −20.27 ± 0.50% | −16.26 ± 0.40% |
(12) 66.7% PP, 16.7% AP, 16.7% AS | −22.94 ± 0.50% | −21.32 ± 0.50% | −17.88 ± 0.40% |
(13) 50% PP, 50% AS | −100.00 ± 0.50% | −55.12 ± 0.5% | −23.77 ± 0.50% |
Treatments | Days of Incubation at 28 °C | ||
---|---|---|---|
3 Days | 5 Days | 7 Days | |
(1) 16.7% PP, 66.7% AP, 16.7% AS | 5.61 ± 0.30% | 6.49 ± 0.30% | 0 |
(2) 100% AP | 1.90 ± 0.20% | 13.13 ± 0.40% | 0 |
(3) 100% AS | −1.71 ± 0.20% | 9.96 ± 0.40% | 0 |
(5) 50% AP, 50% AS | −27.78 ± 0.50% | 4.54 ± 0.20% | 0 |
(6) 33.3% PP, 33.3% AP, 33.3% AS | 4.07 ± 0.20% | 8.74 ± 0.30% | 0 |
(8) 100% PP | −12.66 ± 0.40% | 12.35 ± 0.40% | 0 |
(9) 50% PP, 50% AP | 1.71 ± 0.20% | 10.54 ± 0.40% | 0 |
(10) 16.7% PP, 16.7% AP, 66.7% AS | 8.14 ± 0.03% | 9.27 ± 0.40% | 0 |
(12) 66.7% PP, 16.7% AP, 16.7% AS | 5.24 ± 0.30% | 10.83 ± 0.40% | 0 |
(13) 50% PP, 50% AS | −19.09 ± 0.50% | 9.42 ± 0.40% | 0 |
F. oxysporum f.sp., lycopersici | A. niger | P. expansum | R. solani | B. cinerea | ||
---|---|---|---|---|---|---|
16.7% PP, 66.7% AP, 16.7% AS (Treatment 1) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | + | + | + | |
10% | + | + | + | + | + | |
100% AP (Treatment 2) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | + | + | + | |
10% | + | + | + | + | + | |
100% AS (Treatment 3) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | + | + | + | |
10% | + | + | + | + | + | |
50% AP, 50% AS (Treatment 5) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | + | + | + | |
10% | + | + | + | + | - | |
33.3% PP, 33.3% AP, 33.3% AS (Treatment 6) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | - | + | + | + | + | |
10% | - | + | + | + | + | |
100% PP (Treatment 8) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | - | + | + | |
10% | + | + | - | + | + | |
50% PP, 50% AP (Treatment 9) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | - | + | + | + | + | |
10% | - | + | + | + | + | |
16.7% PP, 16.7% AP, 66.7% AS (Treatment 10) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | + | + | + | |
10% | + | + | + | + | + | |
66.7% PP, 16.7% AP, 16.7% AS (Treatment 12) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | + | + | + | + | + | |
10% | - | + | + | + | + | |
50% PP, 50% AS (Treatment 13) | 0% | + | + | + | + | + |
2.5% | + | + | + | + | + | |
5% | + | + | + | + | + | |
7.5% | - | + | - | - | - | |
10% | - | + | - | - | - |
Treatments | Plant Height (cm) | Fresh Plant Weight (g) | Dry Plant Weight (g) | Fresh Root Weight (g) | Dry Root Weight (g) | Num. of Blossoms | Num. of Tomato Fruits |
---|---|---|---|---|---|---|---|
F. oxysporum f.sp., lycopersici + 100% AP (sample 2) | 25.30 ± 2.62bc | 70.60 ± 2.80c | 10.13 ± 0.58d | 16.78 ± 0.15c | 1.23 ± 0.56c | 3.30 ± 2.89d | - |
F. oxysporum f.sp., lycopersici + 33.3% PP, 33.3% AP, 33.3% AS (sample 6) | 25.30 ± 1.52bc | 85.60 ± 7.96bc | 11.59 ± 1.09cd | 19.88 ± 0.88bc | 1.45 ± 0.16c | 5.30 ± 0.57bcd | - |
F. oxysporum f.sp., lycopersici + 100% PP (sample 8) | 27.30 ± 0.57bc | 90 ± 4.36b | 12.37 ± 0.50bcd | 20.75 ± 1.59bc | 1.68 ± 0.27c | 6.60 ± 1.15b | - |
F. oxysporum f.sp., lycopersici + 50% PP, 50% AP (sample 9) | 26.60 ± 1.15bc | 77 ± 4.58bc | 10.45 ± 0.31cd | 18.54 ± 1.60bc | 1.38 ± 0.13c | 6.30 ± 1.15b | - |
F. oxysporum f.sp., lycopersici + 50% PP, 50% AS (sample 13) | 26.60 ± 0.57bc | 84.30 ± 3.51b | 11.56 ± 0.51cd | 19.83 ± 0.63bc | 1.43 ± 0.17c | 6.60 ± 1.52b | - |
100% AP (sample 2) control extract | 24.60 ± 2.93bc | 93 ± 6.08b | 12.42 ± 0.45bc | 19.24 ± 0.49bc | 1.37 ± 0.36c | 5.60 ± 0.57bc | - |
33.3% PP, 33.3% AP, 33.3% AS (sample 6) control extract | 25.30 ± 2.31bc | 98.30 ± 6.2ab | 12.51 ± 0.37bc | 19.45 ± 0.16bc | 1.38 ± 0.05c | 5.03 ± 0.57bcd | - |
100% PP (sample 8) control extract | 28 ± 1abc | 105.06 ± 6.66ab | 14.31 ± 0.84ab | 22.74 ± 1.17b | 1.74 ± 0.16bc | 6.60 ± 1.52b | 0.30 ± 0.30b |
50% PP, 50% AP (sample 9) control extract | 27.60 ± 0.57bc | 111.30 ± 2.37a | 15.08 ± 0.37a | 28.36 ± 0.59a | 2.45 ± 0.12a | 6.30 ± 1.15b | 0.30 ± 0.30b |
50% PP, 50% AS (sample 13) control extract | 29 ± 1ab | 109 ± 4.85ab | 15.06 ± 0.31a | 28.32 ± 0.59a | 2.39 ± 0.12ab | 6.30 ± 1.15b | 0.30 ± 0.30b |
F. oxysporum f.sp., lycopersici (Control fungus) | 25.30 ± 0.57bc | 72.30 ± 6.03c | 11.40 ± 1.82cd | 18.16 ± 2.63c | 1.35 ± 0.11c | 4 ± 1cd | - |
Tomato plant (Control plant) | 30 ± 1a | 110 ± 1.3a | 15.40 ± 0.58a | 28.38 ± 3.47a | 2.84 ± 0.03a | 10.30 ± 0.57a | 1 ± 0.30a |
Treatments | Plant Height (cm) | Fresh Plant Weight (g) | Dry Plant Weight (g) | Fresh Root Weight (g) | Dry Root Weight (g) | Num. of Blossoms | Num. of Tomato Fruits |
---|---|---|---|---|---|---|---|
R. solani + 100% AP (sample 2) | 24.30 ± 1.15bc | 92.30 ± 2.52bc | 12.02 ± 0.38bcd | 19.79 ± 2.69bc | 1.43 ± 0.11b | 5 ± 0bc | - |
R. solani + 33.3% PP, 33.3% AP, 33.3% AS (sample 6) | 26 ± 1bc | 89 ± 8.81bc | 10.99 ± 0.67de | 16.37 ± 2.57cd | 1.28 ± 0.02bc | 4.30 ± 0.57cd | - |
R. solani + 100% PP (sample 8) | 27.60 ± 0.57bc | 86 ± 2.65bc | 10.92 ± 1.15de | 15.42 ± 3.44cd | 1.26 ± 0.15bc | 4.30 ± 0.57cd | - |
R. solani + 50% PP, 50% AP (sample 9) | 27.30 ± 0.57bc | 90.60 ± 1.15bc | 11.28 ± 0.20cde | 17.53 ± 1.16cd | 1.30 ± 0.06bc | 5.30 ± 0.57cd | - |
R. solani + 50% PP, 50% AS (sample 13) | 27 ± 1bc | 81.30 ± 2.31c | 10.45 ± 0.36e | 14.84 ± 2.99d | 1.19 ± 0.14bc | 5.30 ± 0.57cd | - |
100% AP (sample 2) control extract | 24.60 ± 2.93bc | 93 ± 6.08bc | 12.42 ± 0.45bc | 19.24 ± 0.49bc | 1.37 ± 0.36b | 5.60 ± 0.57bc | - |
33.3% PP, 33.3% AP, 33.3% AS (sample 6) control extract | 25.30 ± 2.31bc | 98.3 ± 6.20ab | 12.51 ± 0.37bc | 19.45 ± 0.16bc | 1.38 ± 0.05b | 5.30 ± 0.57bcd | - |
100% PP (sample 8) control extract | 28 ± 1abc | 105.60 ± 6.66ab | 14.31 ± 0.84ab | 22.74 ± 1.17b | 1.74 ± 0.17b | 6.60 ± 1.52b | 0.30 ± 0.30b |
50% PP, 50% AP (sample 9) control extract | 27.60 ± 0.57bc | 111.30 ± 2.37ab | 15.08 ± 0.37a | 28.36 ± 0.59a | 2.45 ± 0.12a | 6.30 ± 1.15b | 0.30 ± 0.30b |
50% PP, 50% AS (sample 13) control extract | 29 ± 1ab | 109 ± 4.85ab | 15.06 ± 0.31a | 28.32 ± 0.59a | 2.39 ± 0.13a | 6.30 ± 1.15b | 0.30 ± 0.30b |
R. solani (Control fungus) | 11.60 ± 2.58d | 45.30 ± 3.78d | 6.61 ± 1.49f | 8.69 ± 6.78e | 0.70 ± 0.48c | 2.60 ± 2.52d | - |
Tomato plant (Control plant) | 30 ± 1a | 110 ± 1.3ab | 15.4 ± 0.58a | 28.38 ± 3.47a | 2.84 ± 0.03a | 10.30 ± 0.57a | 1 ± 0.30a |
Treatments | Plant Height (cm) | Fresh Plant Weight (g) | Dry Plant Weight (g) | Fresh Root Weight (g) | Dry Root Weight (g) | Num. of Blossoms | Num. of Tomato Fruits |
---|---|---|---|---|---|---|---|
P. expansum + 100% AP (sample 2) | 25 ± 2cd | 88 ± 10.15cd | 11.27 ± 1.55bc | 20.32 ± 0.59bcd | 1.59 ± 0.02cde | 5.6 ± 1.15b | 0.3 ± 0.3b |
P. expansum + 33.3% PP, 33.3% AP, 33.3% AS (sample 6) | 26.60 ± 1.15bcd | 77 ± 1d | 9.26 ± 1.27d | 16.71 ± 1.75ef | 1.28 ± 0.04e | 7 ± 1.73b | - |
P. expansum + 100% PP (sample 8) | 28.60 ± 0.57ab | 92.60 ± 17.5bcd | 11.96 ± 0.56b | 21.71 ± 0.89bc | 1.70 ± 0.04cd | 6.3 ± 1.15b | 0.3 ± 0.3b |
P. expansum + 50% PP, 50% AP (sample 9) | 27.60 ± 0.57abc | 76.60 ± 2.31d | 9.78 ± 0.80d | 16.15 ± 1.23f | 1.28 ± 0.06e | 7 ± 1b | - |
P. expansum + 50% PP, 50% AS (sample 13) | 28.60 ± 1.15ab | 77.30 ± 7.23d | 10.2 ± 0.82cd | 17.20 ± 1.93def | 1.31 ± 0.03de | 7 ± 1b | - |
100% AP (sample 2) control extract | 24.60 ± 2.93d | 93 ± 6.08bc | 12.42 ± 0.45b | 19.24 ± 0.49cde | 1.37 ± 0.36de | 5.60 ± 0.57b | - |
33.3% PP, 33.3% AP, 33.3% AS (sample 6) control extract | 25.30 ± 2.31cd | 98.30 ± 6.2ab | 12.51 ± 0.37b | 19.45 ± 0.16cd | 1.38 ± 0.05cde | 5.30 ± 0.57b | - |
100% PP (sample 8) control extract | 28 ± 1ab | 105.60 ± 6.66ab | 14.31 ± 0.84a | 22.74 ± 1.17b | 1.74 ± 0.16c | 6.60 ± 1.52b | 0.3 ± 0.3b |
50% PP, 50% AP (sample 9) control extract | 27.60 ± 0.57bcd | 111.30 ± 2.37a | 15.08 ± 0.37a | 28.36 ± 0.59a | 2.45 ± 0.12ab | 6.30 ± 1.15b | 0.3 ± 0.3b |
50% PP, 50% AS (sample 13) control extract | 29 ± 1ab | 109 ± 4.85ab | 15.06 ± 0.31a | 28.32 ± 0.59a | 2.39 ± 0.12b | 6.30 ± 1.15b | 0.3 ± 0.3b |
P. expansum (Control fungus) | 26 ± 1bcd | 77.60 ± 3.79d | 10.03 ± 0.30cd | 16.30 ± 4.50ef | 1.27 ± 0.12e | 6.60 ± 0.57b | - |
Tomato plant (Control plant) | 30 ± 1a | 110 ± 1.30a | 15.40 ± 0.58a | 28.38 ± 3.47a | 2.84 ± 0.03a | 10.30 ± 0.57a | 1 ± 0.3a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leontopoulos, S.; Skenderidis, P.; Petrotos, K.; Mitsagga, C.; Giavasis, I. Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts. Horticulturae 2022, 8, 283. https://doi.org/10.3390/horticulturae8040283
Leontopoulos S, Skenderidis P, Petrotos K, Mitsagga C, Giavasis I. Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts. Horticulturae. 2022; 8(4):283. https://doi.org/10.3390/horticulturae8040283
Chicago/Turabian StyleLeontopoulos, Stefanos, Prodromos Skenderidis, Konstantinos Petrotos, Chrysanthi Mitsagga, and Ioannis Giavasis. 2022. "Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts" Horticulturae 8, no. 4: 283. https://doi.org/10.3390/horticulturae8040283
APA StyleLeontopoulos, S., Skenderidis, P., Petrotos, K., Mitsagga, C., & Giavasis, I. (2022). Preliminary Studies on Suppression of Important Plant Pathogens by Using Pomegranate and Avocado Residual Peel and Seed Extracts. Horticulturae, 8(4), 283. https://doi.org/10.3390/horticulturae8040283