Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Treatments and Setup
2.2. Plant Materials and Growing Environment
2.3. Experimental Measurements
2.3.1. Plant Measurements
2.3.2. Gas Exchange Measurements
2.4. Light Use Efficiency
2.5. Statistical Analysis
3. Results
3.1. Lettuce Shoot Growth
3.2. Lettuce Root Growth
3.3. Photosynthesis, Transpiration and Stomatal Conductance
3.4. Light Use Efficiency
4. Discussion
4.1. The Effects of CO2 Concentration, Illumination Intensity and Air Speed on Lettuce Growth
4.2. The Effects of CO2 Concentration, Illumination Intensity and Air Speed on Lettuce Gas Exchange
4.3. The Effects of CO2 Concentration, Illumination Intensity and Air Speed on Lettuce Light Use Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Li, P.; Wu, Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Kozai, T. Improving Light Energy Utilization Efficiency for a Sustainable Plant Factory with Artificial Light. In Proceedings of the Green Lighting Shanghai Forum, Shanghai, China, 11 May 2011. [Google Scholar]
- Tong, Y.; Yang, Q.; Shimamura, S. Analysis of Electric-Energy Utilization Efficiency in a Plant Factory with Artificial Light for Lettuce Production. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1037, pp. 277–284. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Tong, Y.-X.; Yang, Q.-C. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar]
- Goto, E. Effects of Light Quality on Growth of Crop Plants under Artificial Lighting. Environ. Control Biol. 2003, 41, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Kitaya, Y.; Shibuya, T.; Kozai, T.; Kubota, C. Effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition. Life Support Biosph. Sci. Int. J. Earth Space 1998, 5, 199–203. [Google Scholar]
- Lee, H.I.; Kim, Y.H. Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods. J. Biosyst. Eng. 2013, 38, 279–286. [Google Scholar] [CrossRef]
- Tian, L.; Meng, Q.; Wang, L.; Dong, J. A Study on Crop Growth Environment Control System. Int. J. Control Autom. 2014, 7, 357–374. [Google Scholar] [CrossRef]
- Bayat, L.; Arab, M.; Aliniaeifard, S.; Seif, M.; Lastochkina, O.; Li, T. Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants 2018, 10, ply052. [Google Scholar] [CrossRef]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef]
- Kim, H.-H.; Goins, G.D.; Wheeler, R.M.; Sager, J.C. Green-light Supplementation for Enhanced Lettuce Growth under Red- and Blue-light-emitting Diodes. HortScience 2004, 39, 1617–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.-H.; Huang, M.-Y.; Huang, W.-D.; Hsu, M.-H.; Yang, Z.-W.; Yang, C.-M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Piovene, C.; Orsini, F.; Bosi, S.; Sanoubar, R.; Bregola, V.; Dinelli, G.; Gianquinto, G.P. Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture. Sci. Hortic. 2015, 193, 202–208. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Kang, W.H.; Park, J.S.; Park, K.S.; Son, J.E. Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Hortic. Environ. Biotechnol. 2016, 57, 573–579. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, O.K. Blue Light added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.K.; Guo, S.S.; Ai, W.D.; Qin, L.F. Effects of Red and Blue Light Emitting Diodes (LEDs) on the Growth and Development of Lettuce (var. Youmaicai); SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Sago, Y. Effects of Light Intensity and Growth Rate on Tipburn Development and Leaf Calcium Concentration in Butterhead Lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Kang, J.H.; KrishnaKumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Kim, H.-H.; Goins, G.D.; Wheeler, R.M.; Sager, J.C. Stomatal Conductance of Lettuce Grown Under or Exposed to Different Light Qualities. Ann. Bot. 2004, 94, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Iwao, K.; Takano, T. Effect of Vertical Air Flowing on Lettuce Growing in a Plant Factory. Greenh. Environ. Control Autom. 1994, 399, 175–182. [Google Scholar] [CrossRef]
- Kitaya, Y.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air velocity on photosynthesis of plant canopies under elevated CO2 levels in a plant culture system. Adv. Space Res. 2004, 34, 1466–1469. [Google Scholar] [CrossRef]
- Yabuki, K. Photosynthetic Rate and Dynamic Environment; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 2003, 31, 177–182. [Google Scholar] [CrossRef]
- Shibuya, T.; Tsuruyama, J.; Kitaya, Y.; Kiyota, M. Enhancement of photosynthesis and growth of tomato seedlings by forced ventilation within the canopy. Sci. Hortic. 2006, 109, 218–222. [Google Scholar] [CrossRef]
- Lee, J.G.; Choi, C.S.; Jang, Y.A.; Jang, S.W.; Lee, S.G.; Um, Y.C. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 303–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Kacira, M.; An, L. A CFD study on improving air flow uniformity in indoor plant factory system. Biosyst. Eng. 2016, 147, 193–205. [Google Scholar] [CrossRef]
- Korthals, R.; Knight, S.; Christianson, L.; Spomer, L. Chambers for studying the effects of airflow velocity on plant growth. Biotronics 1994, 23, 113–119. [Google Scholar]
- Park, Y.G.; Park, J.E.; Hwang, S.J.; Jeong, B.R. Light source and CO2 concentration affect growth and anthocyanin content of lettuce under controlled environment. Hortic. Environ. Biotechnol. 2012, 53, 460–466. [Google Scholar] [CrossRef]
- Kim, Y.; Kozai, T.; Kubota, C.; Kitaya, Y. Effects of Air Current Speeds on The Microclimate of Plug Stand under Artificial Lighting. In International Symposium on Plant Production in Closed Ecosystems; Springer: Berlin/Heidelberg, Germany, 1996; Volume 440, pp. 354–359. [Google Scholar] [CrossRef]
- Thongbai, P.; Kozai, T.; Ohyama, K. CO2 and air circulation effects on photosynthesis and transpiration of tomato seedlings. Sci. Hortic. 2010, 126, 338–344. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Li, Y.; Shao, L.; Tong, Y.-X. Effect of light intensity and air velocity on the thermal exchange of indoor-cultured lettuce. Hortic. Environ. Biotechnol. 2022, 1–16. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Tong, Y.-X.; Yang, Q.-C. Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light. J. Therm. Biol. 2020, 88, 102496. [Google Scholar] [CrossRef]
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. In Proceedings of the Japan Academy, Series B; Japan Academy: Tokyo, Japan, 2013; Volume 89, pp. 447–461. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Ryu, D.; Kang, S.; Ngo, V.-D.; Chung, S.; Choi, J.; Park, S.; Kim, S.-J. Control of Temperature, Humidity, and Co2 Concentration in Small-Sized Experimental Plant Factory. Acta Hortic. 2014, 1037, 477–484. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, X.; Li, C.; Ye, Q. Effects of CO2 enrichment on photosynthesis and growth in Gerbera jamesonii. Sci. Hortic. 2014, 177, 77–84. [Google Scholar] [CrossRef]
- Lee, Y.; Park, M. Effects of CO2 Concentration, Light Intensity and Nutrient Level on Growth of Leaf Lettuce in a Plant Factory. In International Symposium on Growing Media and Hydroponics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 548, pp. 377–384. [Google Scholar] [CrossRef]
- Muneer, S.; Kim, E.J.; Park, J.S.; Lee, J.H. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.). Int. J. Mol. Sci. 2014, 15, 4657–4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in an Innovative Indoor Cultivation System. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Urrestarazu, M.; Nájera, C.; Gea, M.D.M. Effect of the Spectral Quality and Intensity of Light-emitting Diodes on Several Horticultural Crops. HortScience 2016, 51, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Kozai, T.; Ohyama, K.; Shimamura, S.; Gonda, K.; Sekiyama, S. Estimation of hourly CO2 assimilation rate of lettuce plants in a closed system with artificial lighting for commercial production. Eco-Eng. 2012, 24, 77–83. [Google Scholar] [CrossRef]
- Becker, C.; Kläring, H.-P. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem. 2016, 199, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Du, S.-T.; Li, L.L.; Huang, L.-D.; Fang, P.; Lin, X.-Y.; Zhang, Y.-S.; Wang, H.-L. Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Pedosphere 2009, 19, 570–576. [Google Scholar] [CrossRef]
- Choi, C.S.; Lee, J.G.; Jang, Y.A.; Lee, S.G.; Oh, S.S.; Lee, H.J.; Um, Y.C. Effect of Artificial Light Sources on Growth and Quality Characteristics of Leaf Lettuce in Closed Plant Factory System. J. Agric. Life Sci. 2013, 47, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Liu, T.; Ma, J. Plant factory: A new method for reducing carbon emissions. In Proceedings of the AIP Conference; AIP Publishing: Melville, NY, USA, 2017; Volume 1820, p. 040016. [Google Scholar]
- Chen, G.-Y.S. Effect of Airflow and Carbon Dioxide on Growth, Yield, and Gas Exchange of Lettuce. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1996. [Google Scholar]
- Chintakovid, W.; Kubota, C.; Bostick, W.M.; Kozai, T. Effect of Air Current Speed on Evapotranspiration Rate of Transplant Canopy under Artificial Light. Shokubutsu Kojo Gakkaishi 2002, 14, 25–31. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 2012, 75, 128–133. [Google Scholar] [CrossRef]
- Hattori, T.; Sonobe, K.; Inanaga, S.; An, P.; Tsuji, W.; Araki, H.; Eneji, A.E.; Morita, S. Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ. Exp. Bot. 2007, 60, 177–182. [Google Scholar] [CrossRef]
- Lee, S.-H.; Tewari, R.K.; Hahn, E.-J.; Paek, K.-Y. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell Tissue Organ Cult. (PCTOC) 2007, 90, 141–151. [Google Scholar] [CrossRef]
- Yasutake, D.; Miyauchi, K.; Mori, M.; Kitano, M.; Ino, A.; Takahashi, A. Multiple Effects of CO 2 Concentration and Humidity on Leaf Gas Exchanges of Sweet Pepper in the Morning and Afternoon. Environ. Control Biol. 2016, 54, 177–181. [Google Scholar] [CrossRef]
- Kitaya, Y. Importance of air movement for promoting gas and heat exchanges between plants and atmosphere under controlled environments. In Plant Responses to Air Pollution and Global Change; Springer: Berlin/Heidelberg, Germany, 2005; pp. 185–193. [Google Scholar]
- Son, K.-H.; Jeon, Y.-M.; Oh, M.-M. Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting. Hortic. Environ. Biotechnol. 2016, 57, 560–572. [Google Scholar] [CrossRef]
Dependent Variable | CO2 Concentration | Illumination Intensity | Air Speed | |||
---|---|---|---|---|---|---|
Correlation (%) | Effect Size (%) | Correlation (%) | Effect Size (%) | Correlation (%) | Effect Size (%) | |
Shoot fresh weight | 55 ** | 88 * | 76 ** | 94 * | 5 | 12 * |
Shoot dry weight | 24 * | 46 * | 87 ** | 90 * | 2 | 1 |
Leaf area | 60 ** | 88 * | 56 ** | 85 * | 7 | 13 * |
Number of leaves | 70 ** | 74 * | 44 ** | 52 * | 15 | 11 * |
Plant height | 76 ** | 86 * | −11 | 22 * | 2 | 1 |
Roots fresh weight | 37 ** | 66 * | 85 ** | 91 * | 1 | 1 |
Roots length | −1 | 19 * | −10 | 8 * | 30 ** | 20 * |
Roots dry weight | 24 * | 20 * | 87 ** | 91 * | 2 | 8 * |
Photosynthesis | 23 ** | 79 * | 90 ** | 98 * | 10 ** | 51 * |
Transpiration | −30 ** | 38 * | 64 ** | 71 * | −21 ** | 21 * |
Stomatal conductance | −11 ** | 67 * | 56 ** | 63 * | −17 ** | 14 * |
Light use efficiency | 46 ** | 57 * | −44 ** | 47 * | 5 | 3 |
CO2 Concentration (μmol mol−1) | Illumination Intensity (μmol m−2 s−1) | Air Speed (m s−1) | Total Leaf Area (cm2) | Number of Leaves per Plant (−) | Plant Height (cm) |
---|---|---|---|---|---|
500 | 100 | 0.25 | 578.0 ± 67.1 d | 16.3 ± 1.5 c | 14.5 ± 1.7 bc |
0.50 | 662.0 ± 93.8 d | 18.5 ± 0.6 ab | 15.5 ± 1.6 ab | ||
0.75 | 673.9 ± 74.8 d | 17.6 ± 1.1 bc | 16.4 ± 0.5 a | ||
200 | 0.25 | 870.1 ± 68.0 c | 18.5 ± 1.0 ab | 15.9 ± 1.0 ab | |
0.50 | 980.7 ± 87.2 ab | 19.5 ± 1.3 a | 16.5 ± 1.5 a | ||
0.75 | 895.1 ± 61.9 bc | 19.0 ± 0.8 ab | 16.4 ± 1.3 a | ||
300 | 0.25 | 919.0 ± 88.4 abc | 19.5 ± 0.6 a | 15.4 ± 0.9 abc | |
0.50 | 1014.4 ± 35.9 a | 19.8 ± 1.0 a | 15.9 ± 1.0 ab | ||
0.75 | 819.9 ± 81.8 c | 18.8 ± 1.7 ab | 13.8 ± 0.6 c | ||
1000 | 100 | 0.25 | 572.0 ± 58.6 d | 18.5 ± 1.0 d | 15.1 ± 0.6 ab |
0.50 | 580.0 ± 62.9 d | 20.3 ± 1.0 cd | 14.6 ± 1.3 ab | ||
0.75 | 622.3 ± 51.0 d | 20.3 ± 1.5 cd | 15.0 ± 0.8 ab | ||
200 | 0.25 | 849.3 ± 70.3 c | 20.8 ± 0.5 bc | 16.9 ± 0.6 a | |
0.50 | 917.8 ± 27.7 bc | 20.8 ± 0.5 bc | 16.3 ± 0.5 ab | ||
0.75 | 1066.3 ± 70.2 a | 24.8±0.5 a | 16.8 ± 0.6 a | ||
300 | 0.25 | 1012.3 ± 88.9 ab | 23.3 ± 2.1 a | 16.4 ± 0.5 b | |
0.50 | 905.0 ± 80.6 c | 22.8 ± 3.2 ab | 15.4 ± 0.5 ab | ||
0.75 | 897.3 ± 72.3 c | 22.8 ± 1.3 ab | 15.9 ± 0.5 ab | ||
1500 | 100 | 0.25 | 911.9 ± 34.6 d | 21.8 ± 0.5 c | 22.4 ± 0.3 a |
0.50 | 962.5 ± 57.5 d | 21.3 ± 1.0 c | 21.9 ± 0.9 ab | ||
0.75 | 992.2 ± 90.4 d | 22.5 ± 1.3 bc | 22.5 ± 0.4 a | ||
200 | 0.25 | 1131.4 ± 97.8 c | 21.5 ± 1.7 c | 21.4 ± 0.9 ab | |
0.50 | 1302.3 ± 100.2 b | 23.5 ± 1.7 bc | 21.1 ± 1.3 b | ||
0.75 | 1346.4 ± 83.5 ab | 25.0 ± 0.8 ab | 22.1 ± 0.6 ab | ||
300 | 0.25 | 1394.5 ± 111.5 ab | 27.0 ± 3.2 a | 21.6 ± 1.1 ab | |
0.50 | 1430.3 ± 46.3 a | 27.0 ± 2.2 a | 19.1 ± 0.3 c | ||
0.75 | 1358.9 ± 37.4 ab | 26.5 ± 2.5 a | 19.5 ± 0.6 c |
Dependent Variable | C × I (%) | C × A (%) | I × A (%) | C × I × A (%) |
---|---|---|---|---|
Shoot fresh weight | 34 * | 20 * | 14 * | 18 * |
Shoot dry weight | 32 * | 8 | 3 | 31 * |
Leaf area | 19 * | 15 * | 27 * | 10 |
Number of leaves | 19 * | 7 | 16 * | 10 |
Plant height | 15 * | 8 | 4 | 17 * |
Roots fresh weight | 24 * | 7 | 16 * | 19 * |
Roots length | 21 * | 22 * | 14 * | 32 * |
Roots dry weight | 5 | 9 | 11 | 9 |
Photosynthesis | 52 * | 28 * | 67 * | 51 * |
Transpiration | 47 * | 6 * | 14 * | 26 * |
Stomatal conductance | 20 * | 5 * | 7 * | 13 * |
Light use efficiency | 41 * | 14 * | 4 | 29 * |
CO2 Concentration (μmol mol−1) | Illumination Intensity (μmol m−2 s−1) | Air Speed (m s−1) | Root Fresh Weight (g) | Root Dry Weight (g) | Root Length (cm) |
---|---|---|---|---|---|
500 | 100 | 0.25 | 1.8 ± 0.4 c | 0.13 ± 0.03 c | 18.5 ± 0.6 b |
0.50 | 1.8 ± 0.4 c | 0.11 ± 0.02 c | 17.4 ± 0.5 bcd | ||
0.75 | 2.3 ± 0.2 c | 0.14 ± 0.01 c | 17.6 ± 0.4 bcd | ||
200 | 0.25 | 3.9 ± 0.7 b | 0.25 ± 0.06 b | 17.1 ± 0.9 cd | |
0.50 | 4.1 ± 0.3 b | 0.25 ± 0.01 b | 18.4 ± 0.8 bc | ||
0.75 | 3.5 ± 0.2 b | 0.24 ± 0.03 b | 20.1 ± 1.7 a | ||
300 | 0.25 | 5.8 ± 0.5 a | 0.38 ± 0.04 a | 17.0 ± 1.4 d | |
0.50 | 5.2 ± 0.3 a | 0.33 ± 0.01 a | 18.0 ± 0.8 bcd | ||
0.75 | 5.1 ± 1.1 a | 0.33 ± 0.07 a | 18.6 ± 0.5 b | ||
1000 | 100 | 0.25 | 2.5 ± 0.3 c | 0.13 ± 0.02 c | 17.8 ± 0.5 ab |
0.50 | 2.7 ± 0.3 c | 0.14 ± 0.03 c | 17.3 ± 1.0 ab | ||
0.75 | 2.5 ± 0.2 c | 0.13 ± 0.01 c | 18.3 ± 0.5 a | ||
200 | 0.25 | 4.5 ± 0.6 b | 0.24 ± 0.03 b | 17.8 ± 0.5 ab | |
0.50 | 4.6 ± 0.4 b | 0.25 ± 0.03 b | 18.0 ± 0.8 ab | ||
0.75 | 5.2 ± 0.5 b | 0.27 ± 0.03 b | 17.0 ± 0.8 b | ||
300 | 0.25 | 7.2 ± 0.8 a | 0.35 ± 0.03 a | 15.5 ± 0.6 c | |
0.50 | 5.4 ± 1.2 b | 0.33 ± 0.03 a | 17.8 ± 1.0 ab | ||
0.75 | 6.4 ± 0.4 a | 0.36 ± 0.04 a | 15.8 ± 1.5 c | ||
1500 | 100 | 0.25 | 2.6 ± 0.2 d | 0.13 ± 0.01 d | 17.5 ± 0.6 cd |
0.50 | 3.2 ± 0.4 d | 0.17 ± 0.03 d | 17.4 ± 1.1 cd | ||
0.75 | 2.7 ± 0.6 d | 0.17 ± 0.02 d | 18.1 ± 0.6 bc | ||
200 | 0.25 | 5.7 ± 0.6 c | 0.24 ± 0.03 c | 16.9 ± 0.6 d | |
0.50 | 5.9 ± 0.4 c | 0.25 ± 0.03 c | 17.5 ± 0.6 cd | ||
0.75 | 5.2 ± 0.7 c | 0.31 ± 0.03 b | 18.6 ± 0.5 ab | ||
300 | 0.25 | 7.6 ± 0.8 ab | 0.41 ± 0.03 a | 17.8 ± 1.0 bcd | |
0.50 | 7.4 ± 0.9 b | 0.35 ± 0.05 b | 16.9 ± 0.6 d | ||
0.75 | 8.5 ± 1.0 a | 0.41 ± 0.06 a | 19.6 ± 0.8 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.A.; Tong, Y.; Li, L.; Sahari, S.Q.; Almogahed, A.M.; Cheng, R. Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting. Horticulturae 2022, 8, 270. https://doi.org/10.3390/horticulturae8030270
Ahmed HA, Tong Y, Li L, Sahari SQ, Almogahed AM, Cheng R. Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting. Horticulturae. 2022; 8(3):270. https://doi.org/10.3390/horticulturae8030270
Chicago/Turabian StyleAhmed, Hesham A., Yuxin Tong, Lie Li, Suliaman Q. Sahari, Abdulkarem M. Almogahed, and Ruifeng Cheng. 2022. "Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting" Horticulturae 8, no. 3: 270. https://doi.org/10.3390/horticulturae8030270
APA StyleAhmed, H. A., Tong, Y., Li, L., Sahari, S. Q., Almogahed, A. M., & Cheng, R. (2022). Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting. Horticulturae, 8(3), 270. https://doi.org/10.3390/horticulturae8030270