Cultivar Differences on Nutraceuticals of Grape Juices and Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Sampling and Location
2.2. Morphological Traits
2.3. Extraction
2.4. Total Phenol Folin-Ciocalteu Assay
2.5. Total Antioxidant Capacity Measurement
2.5.1. DPPH Method
2.5.2. FRAP Method
2.5.3. TEAC Method
2.6. Statistical Analysis
3. Results and Discussion
3.1. Morphological Traits
3.2. Total Phenol Content
3.3. Total Antioxidant Capacity
3.3.1. DPPH Assay
3.3.2. FRAP Assay
3.3.3. TEAC Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eyduran, S.P.; Akin, M.; Ercisli, S.; Eyduran, E.; Maghradze, D. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from lgdir province of Eastern Turkey. Biol. Res. 2015, 48, 2. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, A.E.; Didin, O.; Candir, E.; Kaplankiran, M.; Yildiz, E. Effects of rootstocks on storage performance of Nova mandarins. Turk. J. Agric. For. 2019, 43, 307–317. [Google Scholar] [CrossRef]
- Engin, S.P.; Mert, C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Kaskoniene, V.; Bimbiraite-Surviliene, K.; Kaskonas, P.; Tiso, N.; Cesoniene, L.; Daubaras, R.; Maruska, A.S. Changes in the biochemical compounds of Vaccinium myrtillus, Vaccinium vitis-idaea, and forest litter collected from various forest types. Turk. J. Agric. For. 2020, 44, 557–566. [Google Scholar] [CrossRef]
- Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic composition and antioxidant activity of peel, pulp and seed extracts of different clones of the Turkish grape cultivar ‘Karaerik’. Plants 2021, 10, 2154. [Google Scholar] [CrossRef] [PubMed]
- Esgici, R.; Özdemir, G.; Pekitkan, G.; Eliçin, K.; Öztürk, F.; Sessiz, A. Engineering properties of the Şire grape (Vitis vinifera L. Cv.). Sci. Pap. Ser. B Hortic. 2017, 61, 195–203. [Google Scholar]
- Kose, B. Effect of rootstock on grafted grapevine quality. Eur. J. Hortic. Sci. 2014, 79, 197–202. [Google Scholar]
- Soylemezoglu, G.; Atak, A.; Boz, Y.; Unal, A.; Saglam, M. Viticulture in Turkey. Chron. Hortic. 2016, 56, 27–31. [Google Scholar]
- Dilli, Y.; Kader, S. Table, Wine and Dried Grape Cultivars. 2020. Available online: https://arastirma.tarimorman.gov.tr/manisabagcilik/Belgeler/genelbagcilik/UZUM%20CESITLERI%20YILDIZ%20DILLI.pdf (accessed on 20 February 2022).
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.A.; Al-Rawi, M.M. Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations. Cytotechnology 2013, 65, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, X.H.; Kang, X.C.; Zeng, L.M.; Li, J.; Yang, Y.; Liu, D.B. The protective effects and genetic pathways of thorn grape seeds oil against high glucose-induced apoptosis in pancreatic beta-cells. BMC Complement. Altern. Med. 2014, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhedaide, A.; Alshehri, Z.S.; Sabry, A.; Abdel-Ghaffar, T.; Soliman, M.M.; Attia, H. Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol. Med. Rep. 2016, 13, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinent, M.; Castell-Auvi, A.; Genovese, M.I.; Serrano, J.; Casanova, A.; Blay, M.; Ardevola, A. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa. J. Sci. Food Agric. 2016, 96, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Amor, S.; Châlons, P.; Aires, V.; Delmas, D. Polyphenol extracts from red wine and grapevine: Potential effects on cancers. Diseases 2018, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousef, M.I.; Mahdy, M.A.; Abdou, H.M. The potential protective role of grape seed proanthocyanidin extract against the mixture of carboplatin and thalidomide induced hepatotoxicity and cardiotoxicity in male rats. Prev. Med. Commun. Health 2020, 2, 1–7. [Google Scholar] [CrossRef]
- Organisation Internationale de la Vigne et du Vin. OIV Descriptor List for Grape Varieties and Vitis Species, 2nd ed.; Organization Intergouvernementale crée par l’Accord International: Paris, France, 2001; Available online: https://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf (accessed on 20 February 2022).
- Krawitzky, M.; Arias, E.; Peiro, J.M.; Negueruela, A.I.; Val, J.; Oria, R. Determination of color, antioxidant activity, and phenolic profile of different fruit tissue of Spanish ‘Verde Doncella’ apple cultivar. Int. J. Food Prop. 2014, 17, 1532–2386. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sefc, K.M.; Steinkellner, H.; Lefort, F. Evaluation of the genetic contribution of local wild vines to European grapevine cultivars. Am. J. Enol. Vitic. 2003, 54, 15–21. [Google Scholar]
- Ekhvaia, J.; Akhalkatsi, M. Morphological variation and relationships of Georgian populations of Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi. Flora 2010, 205, 608–617. [Google Scholar]
- Leao, P.C.S.; Cruz, C.D.; Motoike, S.Y. Genetic diversity of table grape based on morphoagronomic traits. Sci. Agric. 2011, 68, 42–49. [Google Scholar] [CrossRef]
- Khadivi-Khub, A.; Salimpour, A.; Rasouli, M. Analysis of grape germplasm from Iran based on fruit characteristics. Braz. J. Bot. 2014, 37, 105–113. [Google Scholar] [CrossRef]
- Abiri, K.; Rezaei, M.; Tahanian, H.; Heidari, P.; Khadivi, A. Morphological and pomological variability of a grape (Vitis vinifera L.) germplasm collection. Sci. Hortic. 2020, 266, 109285. [Google Scholar] [CrossRef]
- Kök, D.; Bal, E.; Bahar, E. Physical and biochemical traits of selected grape varieties cultivated in Tekirdağ, Turkey. Int. J. Sustain. Agric. Manag. Inform. 2017, 3, 215–223. [Google Scholar] [CrossRef]
- Hizarci, Y. Description of Ampelographic Characteristics and Determine Genetic Relationships by Using SSR Markers among Grapevine Cultivars Grown in Yusufeli District. Ph.D. Thesis, Graduate School of Natural and Applied Sciences, Ataturk University, Yakutiye, Turkey, 2010. [Google Scholar]
- Pehlivan, E.C.; Uzun, H.I. Effects of cluster thinning on yield and quality characteristics in Shiraz grape cultivar. J. Agric. Sci. Yuzuncu Yil. Univ. 2015, 25, 119–126. [Google Scholar]
- Roberto, S.R.; Borges, W.F.S.; Colombo, R.C.; Koyama, R.; Hussain, I.; Souza, R.T. Berry-cluster thinning to prevent bunch compactness of ‘BRS Vitoria’, a new black seedless grape. Sci. Hortic. 2015, 197, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Maia, J.D.G.; Ritschel, P.S.; Camargo, U.A.; Souza, R.T.; Fajardo, T.V.M.; Naves, R.L.; Girardi, C.L. ‘BRS Vitoria’—A novel seedless table grape cultivar exhibiting special flavor and tolerance to downy mildew (Pasmopara viticola). Crop Breed. Appl. Biotechnol. 2014, 14, 204–206. [Google Scholar] [CrossRef] [Green Version]
- Yi, O.S.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of grape extracts in a lecithin liposome system. JAOCS 1997, 74, 1301–1307. [Google Scholar] [CrossRef]
- Ruiz-Torralba, A.; Guerra-Hernández, E.J.; García-Villanova, B. Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA-J. Food 2018, 16, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Met. 2005, 40, 255–260. [Google Scholar]
- Revilla, E.; Carrasco, D.; Benito, A.; Arroyo-Garcia, R. Anthocyanin composition of several wild grape accessions. Am. J. Enol. Vitic. 2010, 61, 536–543. [Google Scholar] [CrossRef]
- Gundesli, M.; Attar, S.H.; Degirmenci, I.; Nogay, G.; Kafkas, N.E. Total phenol and antioxidant activity of Kabarcık’ grape (Vitis vinifera L.) variety. J. Sci. Eng. Res. 2018, 5, 222–227. [Google Scholar]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Feng, X.-L.; Xu, X.-Y.; Cao, S.-Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.-B. Comparison of antioxidant activities of different grape varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Cheng, X.; Gu, H.; Zhou, G.; Xia, H.; Liang, D. Determination of antioxidant compounds and antioxidant activity of six table grapes with red skin. E3S Web Conf. 2020, 145, 01004. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Y.; Göksel, Z.; Erdogan, S.S.; Özturk, A.; Atak, A.; Ozer, C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration). J. Food Process. Preserv. 2015, 39, 1682–1691. [Google Scholar] [CrossRef]
- Gokturk-Baydar, N. Organic acid, tocopherol and phenolic compositions of some Turkish grape cultivars. Chem. Nat. Compd. 2006, 42, 56–59. [Google Scholar] [CrossRef]
- Cetin, E.S.; Babalik, Z.; Gokturk Baydar, N. Determination of total carbohydrates, phenolic substance, anthocyanin, β-Caroten and Vitamine C content in berries of grape cultivars. In Proceedings of the IV National Small Fruit Symposium, Antalya, Turkey, 3–5 October 2012; pp. 151–159. [Google Scholar]
- Shiraishi, M.; Shinomiya, R.; Chijiwa, H. Varietal differences in polyphenol contents, antioxidant activities and their correlations in table grape cultivars bred in Japan. Sci. Hortic. 2018, 227, 272–277. [Google Scholar] [CrossRef]
- Gokturk-Baydar, N.; Babalik, Z.; Turk, F.H.; Cetin, E.S. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J. Agric. Sci. 2011, 17, 67–76. [Google Scholar]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Sridhari, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH• and ABTS• assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-Y.; Lee, Y.-M.; Lee, P.-J.; Kim, K.-T. Comparison of the antioxidative effects and content of anthocyanin and phenolic compounds in different varieties of Vitis vinifera ethanol extract. Prev. Nutr. Food Sci. 2011, 16, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Kim, S.H.; Ko, E.Y.; Park, S.W. Polyphenolic contents and antioxidant properties of different grape (V. vinifera, V. labrusca, and V. hybrid) cultivars. BioMed Res. Int. 2013, 2013, 718065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmi, A.I.; Nagaty, M.A.; El-Shehawi, A.M. Fruit quality of Taif grape (Vitis vinifera L.) cultivars. Am. J. Sci. 2012, 8, 590–599. [Google Scholar]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef]
- Mandić, A.I.; Đilas, S.M.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Vulić, J.J. Antioxidant activity of white grape seed extracts on DPPH radicals. Acta Period. Technol. 2009, 40, 53–61. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [Green Version]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of Antioxidant Components in Grape Seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. J. Int. Sci. Vigne Vin 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Sochorova, L.; Klejdus, B.; Baron, M.; Jurikowa, T.; Mlcek, J.; Sochor, J.; Ercisli, S.; Kupe, M. Assessment of antioxidants by HPLC-MS in grapevine seeds. Acta Sci. Pol. Hortorum Cultus 2019, 18, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Weidner, S.; Rybarczyk, A.; Karamac, M.; Krol, A.; Mostek, A.; Grebosz, J.; Amarowicz, E. Differences in the phenolic composition and antioxidant properties between Vitis coignetiae and Vitis vinifera seeds extracts. Molecules 2013, 18, 3410–3426. [Google Scholar] [CrossRef] [PubMed]
- Poudel, P.R.; Tamura, H.; Kataoka, I.; Mochioka, R. Phenolic compounds and antioxidant activities of skins and seeds of five wild grapes and two hybrids native to Japan. J. Food Comp. Anal. 2008, 21, 622–625. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Cao, L.; Lu, J. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chem. 2010, 119, 1557–1565. [Google Scholar] [CrossRef]
- Spranger, I.; Sun, B.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J.M. Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem. 2008, 108, 519–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Bozan, B.; Tosun, G.; Özcan, D. Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity. Food Chem. 2008, 109, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Coklar, H. Antioxidant capacity and phenolic profile of berry, seed, and skin of Ekşikara (Vitis vinifera L) grape: Influence of harvest year and altitude. Int. J. Food Prop. 2017, 20, 2071–2087. [Google Scholar] [CrossRef] [Green Version]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Qader, S.W.; Abdulla, M.A.; Chua, L.S.; Najim, N.; Zain, M.M.; Hamdan, S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules 2011, 16, 3433–3443. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-X.; Chen, J.-W. Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. J. Sci. Food Agric. 2011, 91, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Ting, K.N.; Wiart, C.; Fry, J. High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2013, 2, 1–10. [Google Scholar]
Cultivars | Harvest Period | Number of Seed | Cluster Form | Cluster Weight (g) | Berry Weight (g) | Berry Color | Usage |
---|---|---|---|---|---|---|---|
Cavus | Mid-early | 1–2 | Winged cylindrical | 525 ± 17.1 | 5.86 ± 0.4 | Green | White table |
Helvani | Mid-late | 2–3 | Winged cylindrical | 1150 ± 43.1 | 3.82 ± 0.3 | Black | Colored Table |
Honusu | Late | 1–2 | Irregular winged conical | 587 ± 18.0 | 6.95 ± 0.7 | Black | Colored table |
Kabarcik | Mid-season | 1–3 | Winged conical | 433 ± 15.2 | 3.85 ± 0.3 | Green | White wine and Table |
Red Globe | Mid-season | 3–4 | Conical | 923 ± 31.1 | 3.96 ± 0.2 | Red | Colored table |
Yediveren | Mid-late | 1–2 | Winged conical | 437 ± 14.7 | 4.42 ± 0.3 | Black | Colored table |
Yildiz | Mid-season | 2–3 | Shouldered conical | 440 ± 13.9 | 4.03 ± 0.4 | Black | White table |
Cultivars | Total Phenolic (mg GAE per g fresh weight) | FRAP (μmol Fe (II)/g FW) | DPPH (%) | TEAC (μmol Trolox/g FW) | ||||
---|---|---|---|---|---|---|---|---|
Juice | Seed | Juice | Seed | Juice | Seed | Juice | Seed | |
Cavus | 1.81 ± 0.11de | 2.13 ± 0.12e | 40.54 ± 1.1c | 860 ± 17b | 73.10 ± 1.9d | 76.22 ± 1.1c | 2.35 ± 0.19bc | 15.23 ± 0.9bc |
Helvani | 2.24 ± 0.13b | 3.18 ± 0.17b | 44.24 ± 1.3b | 1002 ± 13a | 80.84 ± 2.1b | 85.44 ± 1.4a | 2.52 ± 0.11ab | 15.99 ± 0.8ab |
Honusu | 2.45 ± 0.13a | 3.46 ± 0.15a | 52.15 ± 1.4a | 1013 ± 18a | 82.19 ± 2.0a | 86.77 ± 1.2a | 2.73 ± 0.15a | 18.12 ± 1.1a |
Kabarcik | 2.03 ± 0.10c | 3.01 ± 0.09c | 32.02 ± 0.9d | 726 ± 12d | 76.12 ± 1.6c | 79.68 ± 1.0bc | 2.19 ± 0.14bc | 15.01 ± 0.6bc |
Red Globe | 1.85 ± 0.10d | 2.45 ± 0.12d | 32.34 ± 1.0d | 795 ± 20c | 74.30 ± 1.7cd | 81.10 ± 1.3b | 2.43 ± 0.19b | 15.56 ± 0.6b |
Yediveren | 1.69 ± 0.09e | 1.91 ± 0.11f | 28.66 ± 0.7e | 686 ± 15e | 70.25 ± 1.5e | 79.22 ± 1.2bc | 2.04 ± 0.11c | 12.89 ± 0.5c |
Yildiz | 1.76 ± 0.10de | 1.90 ± 0.08f | 28.02 ± 1.0de | 642 ± 10f | 71.95 ± 1.6de | 73.56 ± 1.4d | 2.17 ± 0.13bc | 15.30 ± 0.7bc |
TPC | FRAP | DPPH | TEAC | |||||
---|---|---|---|---|---|---|---|---|
Juice | Seed | Juice | Seed | Juice | Seed | Juice | Seed | |
TPC | 1.0 | 1.0 | ||||||
FRAP | 0.72 * | 0.76 * | 1.0 | 1.0 | ||||
DPPH | 0.89 ** | 0.80 ** | 0.83 ** | 0.78 * | 1.0 | 1.0 | ||
TEAC | 0.66 * | 0.62 * | 0.70 * | 0.52 * | 0.74 * | 0.64 * | 1.0 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settar Unal, M.; Gundesli, M.A.; Ercisli, S.; Kupe, M.; Assouguem, A.; Ullah, R.; Almeer, R.; Najda, A. Cultivar Differences on Nutraceuticals of Grape Juices and Seeds. Horticulturae 2022, 8, 267. https://doi.org/10.3390/horticulturae8030267
Settar Unal M, Gundesli MA, Ercisli S, Kupe M, Assouguem A, Ullah R, Almeer R, Najda A. Cultivar Differences on Nutraceuticals of Grape Juices and Seeds. Horticulturae. 2022; 8(3):267. https://doi.org/10.3390/horticulturae8030267
Chicago/Turabian StyleSettar Unal, Mehmet, Muhammet Ali Gundesli, Sezai Ercisli, Muhammed Kupe, Amine Assouguem, Riaz Ullah, Rafa Almeer, and Agnieszka Najda. 2022. "Cultivar Differences on Nutraceuticals of Grape Juices and Seeds" Horticulturae 8, no. 3: 267. https://doi.org/10.3390/horticulturae8030267
APA StyleSettar Unal, M., Gundesli, M. A., Ercisli, S., Kupe, M., Assouguem, A., Ullah, R., Almeer, R., & Najda, A. (2022). Cultivar Differences on Nutraceuticals of Grape Juices and Seeds. Horticulturae, 8(3), 267. https://doi.org/10.3390/horticulturae8030267