Russeting of Fruits: Etiology and Management
Abstract
:1. Introduction
2. Occurrence and Symptoms of Russet
3. Some Fruit Skin Disorders Not Related to Periderm Formation
4. Anatomy of Russeted Fruit Skin
5. Physiology of Russeted Fruit Skin
6. Factors in Russet Formation
7. The Mechanism of Russeting—A Central Role for Cuticular Microcracks
7.1. Temporal and Spatial Heterogeneity
7.2. Trigger and Signal Transmission
8. Management
8.1. Application of PGRs
8.2. Foliar Sprays of Fertilizers and Other Compounds
8.3. Bagging
8.4. Breeding
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Becker, M.; Kerstiens, G.; Schönherr, J. Water permeability of plant cuticles: Permeance, diffusion and partition coefficients. Trees 1986, 1, 54–60. [Google Scholar] [CrossRef]
- Yeats, T.H.; Rose, J.K. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, P.; Markstadter, C.; Riederer, M. Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ. 1997, 20, 1079–1085. [Google Scholar] [CrossRef]
- Serrano, M.; Coluccia, F.; Torres, M.; L’Haridon, F.; Metraux, J.P. The cuticle and plant defense to pathogens. Front. Plant Sci. 2014, 5, 274. [Google Scholar] [CrossRef] [Green Version]
- Reina-Pinto, J.J.; Yephremov, A. Surface lipids and plant defenses. Plant Physiol. Biochem. 2009, 47, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Bukovac, M.J.; Petracek, P.D. Characterizing pesticide and surfactant penetration with isolated plant cuticles. Pestic. Sci. 1993, 37, 179–194. [Google Scholar] [CrossRef]
- Knoche, M.; Lang, A. Ongoing growth challenges fruit skin integrity. Crit. Rev. Plant Sci. 2017, 36, 190–215. [Google Scholar] [CrossRef]
- Khanal, B.P.; Knoche, M. Mechanical properties of cuticles and their primary determinants. J. Exp. Bot. 2017, 68, 5351–5367. [Google Scholar] [CrossRef]
- Piringer, A.A.; Heinze, P.H. Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol. 1954, 29, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, J.E. Regulation of skin color in apples. Crit. Rev. Plant Sci. 1992, 10, 487–502. [Google Scholar] [CrossRef]
- Khanal, B.P.; Ikigu, G.M.; Knoche, M. Russeting partially restores apple skin permeability to water vapour. Planta 2019, 249, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Faust, M.; Shear, C.B. Russeting of apples, an interpretive review. HortScience 1972, 7, 233–235. [Google Scholar]
- Charoenchongsuk, N.; Matsumoto, D.; Itai, A.; Murayama, H. Ripening characteristics and pigment changes in russeted pear fruit in response to ethylene and 1-MCP. Horticulturae 2018, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Gerchikov, N.; Keren-Keiserman, A.; Perl-Treves, R.; Ginzberg, I. Wounding of melon fruits as a model system to study rind netting. Sci. Hortic. 2008, 117, 115–122. [Google Scholar] [CrossRef]
- Sorauer, P.; Lindau, G.; Reh, L. Manual of Plant Diseases, 3rd ed.; The Record Press: Wilkes-Barré, PA, USA, 1922. [Google Scholar]
- Bell, H.P. The origin of russeting in the Golden Russet apple. Can. J. Res. 1937, 15, 560–566. [Google Scholar] [CrossRef]
- Tukey, L.D. Observations on the russeting of apples growing in plastic bags. Proc. Am. Soc. Hortic. Sci. 1959, 74, 30–39. [Google Scholar]
- Khanal, B.P.; Grimm, E.; Knoche, M. Russeting in apple and pear: A plastic periderm replaces a stiff cuticle. AoB Plants 2013, 5, pls048. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.M.; Bound, S.A.; Oakford, M.J.; Wilson, D. A strategy for reducing russet in Red Fuji apples while maintaining control of black spot (Venturia inaequalis). Aust. J. Exp. Agric. 1994, 34, 127–130. [Google Scholar] [CrossRef]
- Gossard, H.A. Commercial apple orcharding in Ohio. Ohio Agric. Exp. Stn. 1911, 12, 3–15. [Google Scholar]
- Hall, F.H.; Stewart, F.C.; Blodgett, F.H. Fruit diseases found along the Hudson. N. Y. Agric. Exp. Stn. Bull. 1899, 167, 1–6. [Google Scholar]
- Cole, S.W. The American Fruit Book; Containing Directions for Raising, Propagating, and Managing Fruit Trees, Shrubs, and Plants; with a Description of the Best Varieties of Fruit, Including New and Valuable Kinds; A.O. Moore Agricultural Book Publisher: New York, NY, USA, 1858. [Google Scholar]
- Macnee, N.C.; Rebstock, R.; Hallett, I.C.; Schaffer, R.J.; Bulley, S.M. A review of current knowledge about the formation of native peridermal exocarp in fruit. Funct. Plant. Biol. 2020, 47, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, M.; Cai, D.; Zhang, S.J.; Shi, Z. A review for the molecular research of russet/semi-russet of sand pear exocarp and their genetic characters. Sci. Hortic. 2016, 210, 138–142. [Google Scholar] [CrossRef]
- Duggan, J.B. The training of apple trees. Sci. Hortic. 1957, 13, 62–73. [Google Scholar]
- Biedenfeld, F. Handbuch Aller Bekannten Obstsorten, Band 2; Frommann: Jena, Germany, 1854. [Google Scholar]
- Thalheimer, M. About the russetting of apples in 2018. Laimburg J. 2019, 1, 1–4. [Google Scholar]
- Legay, S.; Guerriero, G.; Andre, C.; Guignard, C.; Cocco, E.; Charton, S.; Boutry, M.; Rowland, O.; Hausman, J.F. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytol. 2016, 212, 977–991. [Google Scholar] [CrossRef]
- Skene, D.S. The development of russet, rough russet and cracks on the fruit of the apple Coxs Orange Pippin during the course of the season. J. Hortic. Sci. 1982, 57, 165–174. [Google Scholar] [CrossRef]
- Curry, E. Increase in epidermal planar cell density accompanies decreased russeting of ‘Golden Delicious’ apples treated with Gibberellin A4+7. HortScience 2012, 47, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Khanal, B.P.; Shrestha, R.; Hückstädt, L.; Knoche, M. Russeting in apple seems unrelated to the mechanical properties of the cuticle at maturity. HortScience 2013, 48, 1135–1138. [Google Scholar] [CrossRef]
- Wertheim, S.J. Fruit russeting in apple as affected by various gibberellins. J. Hortic. Sci. 1982, 57, 283–288. [Google Scholar] [CrossRef]
- Taylor, B.K. Effects of gibberellin sprays on fruit russet and tree performance of Golden Delicious apple. J. Hortic. Sci. 1978, 53, 167–169. [Google Scholar] [CrossRef]
- Simons, R.K.; Chu, M.C. Periderm morphology of mature Golden Delicious apple with special reference to russeting. Sci. Hortic. 1978, 8, 333–340. [Google Scholar] [CrossRef]
- Knoche, M.; Grimm, E. Surface moisture induces microcracks in the cuticle of ‘Golden Delicious’ apple. HortScience 2008, 43, 1929–1931. [Google Scholar] [CrossRef] [Green Version]
- Winkler, A.; Grimm, E.; Knoche, M.; Lindstaedt, J.; Köpcke, D. Late-season surface water induces skin spot in apple. HortScience 2014, 49, 1324–1327. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Straube, J.; Khanal, B.P.; Knoche, M.; Debener, T. Russeting in apple is initiated after exposure to moisture ends-I. Histological evidence. Plants 2020, 9, 1293. [Google Scholar] [CrossRef]
- Khanal, B.P.; Imoro, Y.; Chen, Y.H.; Straube, J.; Knoche, M. Surface moisture increases microcracking and water vapour permeance of apple fruit skin. Plant. Biol. 2021, 23, 74–82. [Google Scholar] [CrossRef]
- Sánchez, E.; Soto, J.M.; Uvalle, J.X.; Hernández, A.P.; Ruiz, J.M.; Romero, L. Chemical treatments in “Golden Delicious Spur” fruits in relation to russeting and nutritional status. J. Plant. Nutr. 2001, 24, 191–202. [Google Scholar] [CrossRef]
- Wójcik, P.; Filipczak, J.; Wójcik, M. Effects of prebloom sprays of tryptophan and zinc on calcium nutrition, yielding and fruit quality of ‘Elstar’ apple trees. Sci. Hortic. 2019, 246, 212–216. [Google Scholar] [CrossRef]
- Palmer, J.W.; Davies, S.B.; Shaw, P.W.; Wünsche, J.N. Growth and fruit quality of ‘Braeburn’ apple (Malus domestica) trees as influenced by fungicide programmes suitable for organic production. N. Z. J. Crop Hortic. Sci. 2003, 31, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.S.; Kitchener, A.E.; Barnes, S. Calcium hydroxide sprays for the control of black spot on apples—Treatment effects on fruit quality. Acta Hortic. 1998, 513, 47–52. [Google Scholar] [CrossRef]
- Teviotdale, B.L.; Viveros, M. Fruit russetting and tree toxicity symptoms associated with copper treatments of Granny Smith apple trees (Malus sylvestris Mill.). Acta Hortic. 1999, 489, 565–571. [Google Scholar] [CrossRef]
- Momol, M.T.; Norelli, J.L.; Aldwinckle, H.S. Evaluation of biological control agents, systemic acquired resistance inducers and bactericides for the control of fire blight on apple blossom. Acta Hortic. 1999, 489, 553–557. [Google Scholar] [CrossRef]
- Marchioretto, L.D.; De Rossi, A.; do Amaral, L.O.; Ribeiro, A.M.A.D. Efficacy and mode of action of blossom thinners on ‘Fuji More’ apple trees. Sci. Hortic. 2019, 246, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Peck, G.M.; DeLong, C.N.; Combs, L.D.; Yoder, K.S. Managing apple crop load and diseases with bloom thinning applications in an organically managed ‘Honeycrisp’/’MM.111’ orchard. HortScience 2017, 52, 377–381. [Google Scholar] [CrossRef]
- Bound, S.A. Alternate thinning chemicals for apples. Acta Hortic. 2010, 884, 229–236. [Google Scholar] [CrossRef]
- Creasy, L.L.; Swartz, H.J. Agents influencing russet on Golden Delicious apple fruits. J. Am. Soc. Hortic. Sci. 1981, 106, 203–206. [Google Scholar]
- Stopar, M. Vegetable oil emulsions, NaCl, CH3COOH and CaSx as organically acceptable apple blossom thinning compounds. Eur. J. Hortic. Sci. 2008, 73, 55–61. [Google Scholar]
- Noga, G.J.; Bukovac, M.J. Impact of surfactants on fruit quality of ‘Schattenmorelle’ sour cherries and ‘Golden Delicious’ apples. Acta Hortic. 1986, 179, 771–778. [Google Scholar] [CrossRef]
- Richardson, P.J.; Webster, A.D.; Quinlan, J.D. The effect of paclobutrazol sprays with or without the addition of surfactants on the shoot growth, yield and fruit quality of the apple cultivars Cox and Suntan. J. Hortic. Sci. 1986, 61, 439–446. [Google Scholar] [CrossRef]
- Stopar, M.; Hladnik, J. Polysorbates 20, 60 and 80 are apple thinning agents. Acta Hortic. 2020, 1295, 57–62. [Google Scholar] [CrossRef]
- Alegre, S.; Alins, G. The flower thinning effect of different compounds on organic ‘Golden Smoothee (R)’ apple trees. Acta Hortic. 2007, 737, 67–69. [Google Scholar] [CrossRef]
- Bound, S.A. The influence of endothal and 6-benzyladenine on crop load and fruit quality of red ‘Delicious’ apple. J. Hortic. Sci. Biotechnol. 2001, 76, 691–699. [Google Scholar] [CrossRef]
- Bound, S.A.; Jones, K.M. Ammonium thiosulphate as a blossom thinner of ‘Delicious’ apple, ‘Winter Cole’ pear and ‘Hunter’ apricot. Aust. J. Exp. Agric. 2004, 44, 931–937. [Google Scholar] [CrossRef]
- Taylor, B.K. Reduction of apple skin russeting by gibberellin A4+7. J. Hortic. Sci. 1975, 50, 169–172. [Google Scholar] [CrossRef]
- Maas, F. Thinning ‘Elstar’ apple with benzyladenine. Acta Hortic. 2006, 727, 415–421. [Google Scholar] [CrossRef]
- McLaughlin, J.M.; Greene, D.W. Effects of BA, GA4+7, and daminozide on fruit set, fruit quality, vegetative growth, flower initiation, and flower quality of ‘Golden Delicious’ apple. J. Am. Soc. Hortic. Sci. 1984, 109, 34–39. [Google Scholar]
- Jones, K.M.; Koen, T.B.; Bound, S.A.; Oakford, M.J. Some reservations in thinning ‘Fuji’ apples with naphthalene acetic acid (NAA) and ethephon. N. Z. J. Crop Hortic. Sci. 1991, 19, 225–228. [Google Scholar] [CrossRef]
- Bangerth, F.; Schröder, M. Strong synergistic effects of gibberellins with the synthetic cytokinin N-(2-Chloro-4-Pyridyl)-N-Phenylurea on parthenoscarpic fruit set and some other fruit characteristics of apple. Plant. Growth Regul. 1994, 15, 293–302. [Google Scholar] [CrossRef]
- El-Khoreiby, A.M.; Unrath, C.R.; Lehman, L.J. Paclobutrazol spray timing influences apple tree growth. HortScience 1990, 25, 310–312. [Google Scholar] [CrossRef]
- Daines, R.; Weber, D.J.; Bunderson, E.D.; Roper, T. Effect of early sprays on control of powdery mildew fruit russet on apples. Plant. Dis. 1984, 68, 326–328. [Google Scholar] [CrossRef]
- Heidenreich, M.C.M.; Corral-Garcia, M.R.; Momol, E.A.; Burr, T.J. Russet of apple fruit caused by Aureobasidium pullulans and Rhodotorula glutinis. Plant Dis. 1997, 81, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Gildemacher, P.; Heijne, B.; Silvestri, M.; Houbraken, J.; Hoekstra, E.; Theelen, B.; Boekhout, T. Interactions between yeasts, fungicides and apple fruit russeting. FEMS Yeast Res. 2006, 6, 1149–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goffinet, M.C.; Burr, T.J.; Heidenreich, M.C.; Welsel, M.J. Developmental anatomy of russet of ‘McIntosh’ apple fruit induced by the fungus Aureobasidium pullulans. HortScience 2006, 41, 983. [Google Scholar] [CrossRef] [Green Version]
- Gildemacher, R.; Heijne, B.; Houbraken, J.; Vromans, T.; Hoekstra, S.; Boekhout, T. Can phyllosphere yeasts explain the effect of scab fungicides on russeting of Elstar apples? Eur. J. Plant. Pathol. 2004, 110, 929–937. [Google Scholar] [CrossRef]
- Li, C.J.; Yaegashi, H.; Kishigami, R.; Kawakubo, A.; Yamagishi, N.; Ito, T.; Yoshikawa, N. Apple russet ring and apple green crinkle diseases: Fulfillment of Koch’s postulates by virome analysis, amplification of full-length cDNA of viral genomes, in vitro transcription of infectious viral RNAs, and reproduction of symptoms on fruits of apple trees inoculated with viral RNAs. Front. Microbiol. 2020, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.A. Russet ring and some associated virus disorders of apple (Malus sylvestris (L.) Mill) in New England. N. Z. J. Argric. Res. 1972, 15, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Welsh, M.F.; May, J. Virus etiology of foliar vein-flecking or ring pattern and fruit russeting or blotch on apple. Can. J. Plant. Sci. 1967, 47, 703–708. [Google Scholar] [CrossRef]
- Easterbrook, M.A.; Fuller, M.M. Russeting of apples caused by apple rust mite Aculus schlechtendali (Acarina, Eriophyidae). Ann. Appl. Biol. 1986, 109, 1–9. [Google Scholar] [CrossRef]
- Duso, C.; Castagnoli, M.; Simoni, S.; Angeli, G. The impact of eriophyoids on crops: Recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp. Appl. Acarol. 2010, 51, 151–168. [Google Scholar] [CrossRef]
- McArtney, S.; Obermiller, J.D.; Green, A. Prohexadione-Ca reduces russet and does not negate the efficacy of GA4+7 sprays for russet control on ‘Golden Delicious’ apples. HortScience 2007, 42, 550–554. [Google Scholar] [CrossRef]
- Knoche, M.; Khanal, B.P.; Stopar, M. Russeting and microcracking of ‘Golden Delicious’ apple fruit concomitantly decline due to gibberellin A4+7 application. J. Am. Soc. Hortic. Sci. 2011, 136, 159–164. [Google Scholar] [CrossRef]
- Fogelman, E.; Redel, G.; Doron, I.; Naor, A.; Ben-Yashar, E.; Ginzberg, I. Control of apple russeting in a warm and dry climate. J. Hortic. Sci. Biotechnol. 2009, 84, 279–284. [Google Scholar] [CrossRef]
- Eccher, T. Russeting of Golden Deliciois apples as related to endogenous and exogenous gibberellins. Acta Hortic. 1978, 80, 381–386. [Google Scholar] [CrossRef]
- Eccher, T.; Boffelli, G. Effects of dose and time of application of GA4+7 on russeting, fruit set and shape of ‘Golden Delicious’ apples. Sci. Hortic. 1981, 14, 307–314. [Google Scholar] [CrossRef]
- Wertheim, S.J. Chemical thinning of Golden Delicious apple with NAAm and/or carbaryl in combination with a spreader and the anti-russeting agent GA4+7. Acta Hortic. 1986, 179, 659–666. [Google Scholar] [CrossRef]
- Steenkamp, J.; Vanzyl, H.J.; Westraad, I. A preliminary evaluation of various chemical substances for the control of calyx-end russeting in Golden Delicious apples. J. Hortic. Sci. 1984, 59, 501–505. [Google Scholar] [CrossRef]
- Bubán, T.; Rátz, M.; Oláh, L. Improved fruit shape and less russeting of apples by using gibberellins. Acta Hortic. 1993, 329, 137–139. [Google Scholar] [CrossRef]
- Eccher, T. Control of russeting of Golden Delicious apples by growth regulator treatments. Acta Hortic. 1983, 137, 375–382. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, N.; Sharma, D.P.; Chauhan, N. Effects of GA4+7 + BA and CPPU on russeting and fruit quality in apple (Malus × domestica). Indian J. Agric. Sci. 2020, 90, 74–77. [Google Scholar]
- Moon, Y.J.; Nam, K.W.; Kang, I.K.; Moon, B.W. Effects of tree-spray of calcium agent, coating agent, GA4+7 + BA and paper bagging on russet prevention and quality of ‘Gamhong’ apple fruits. Korean J. Hortic. Sci. Technol. 2016, 34, 528–536. [Google Scholar] [CrossRef]
- Basak, A.; Bielicki, P. Effect of novel organic/mineral biostimulators on fruit quality parameters in apple. Acta Hortic. 2010, 873, 295–302. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Gao, J.; Feng, X.; Shi, Z.; Gao, F.; Xu, X.; Yang, L. Inhibitory effect of chlorogenic acid on fruit russeting in ‘Golden Delicious’ apple. Sci. Hortic. 2014, 178, 14–22. [Google Scholar] [CrossRef]
- Dayioglu, A.; Hepaksoy, S. Effects of shading nets on sunburn and quality of ‘Granny Smith’ apple fruits. Acta Hortic. 2016, 1139, 523–528. [Google Scholar] [CrossRef]
- Yuan, G.; Bian, S.; Han, X.; He, S.; Liu, K.; Zhang, C.; Cong, P. An integrated transcriptome and proteome analysis reveals new insights into russeting of bagging and non-bagging “Golden Delicious” apple. Int. J. Mol. Sci. 2019, 20, 4462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharwies, J.D.; Grimm, E.; Knoche, M. Russeting and relative growth rate are positively related in ‘Conference’ and ‘Condo’ pear. HortScience 2014, 49, 746–749. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.H.; Qi, B.X.; Wang, X.Q.; Shen, L.Y.; Luo, J.; Zhang, Y.X. Proteomic analysis of the key mechanism of exocarp russet pigmentation of semi-russet pear under rainwater condition. Sci. Hortic. 2019, 254, 178–186. [Google Scholar] [CrossRef]
- Asin, L.; Torres, E.; Vilardell, P. Orchard cooling with overtree microsprinkler irrigation to increase fruit russet on ‘Conference’ pear. Acta Hortic. 2011, 909, 557–564. [Google Scholar] [CrossRef]
- Sugar, D.; Villardel, P.; Asin, L. Relationship of weather factors to russet incidence in ‘Comice’ and ‘Bosc’ pear fruit. Acta Hortic. 2015, 1094, 533–538. [Google Scholar] [CrossRef]
- Sugar, D.; Basile, S.R. Russet induction in ‘Beurre Bosc’ and ‘Taylor’s Gold’ pears. Acta Hortic. 2008, 800, 257–261. [Google Scholar] [CrossRef]
- Maas, F.M.; Kanne, H.J.; van der Steeg, P.A.H. Chemical thinning of ‘Conference’ pears. Acta Hortic. 2010, 884, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Greene, D.W. Influence of abscisic acid and benzyladenine on fruit set and fruit quality of ‘Bartlett’ pears. HortScience 2012, 47, 1607–1611. [Google Scholar] [CrossRef] [Green Version]
- Civolani, S. The past and present of pear protection against the pear psylla, Cacopsylla pyri L. In Insecticides—Pest Engineering; Perveen, F., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Sanchez, J.A.; Carrasco-Ortiz, A.; López-Gallego, E.; Ramírez-Soria, M.J.; La Spina, M. Ants reduce fruit damage caused by psyllids in Mediterranean pear orchards. Pest. Manag. Sci. 2020, 77, 1886–1892. [Google Scholar] [CrossRef]
- Westigard, P.H. Pest status of insects and mites on pear in Southern Oregon. J. Econ. Entomol. 1973, 66, 227–232. [Google Scholar] [CrossRef]
- Lindow, S.E.; Desurmont, C.; Elkins, R.; McGourty, G.; Clark, E.; Brandl, M.T. Occurrence of indole-3-acetic acid-producing bacteria on pear trees and their association with fruit russet. Phytopathology 1998, 88, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Serdani, M.; Spotts, R.A.; Calabro, J.M.; Postman, J.D. Powdery mildew resistance in Pyrus germplasm. Acta Hortic. 2005, 671, 609–613. [Google Scholar] [CrossRef]
- Spotts, R.A.; Cervantes, L.A. Involvement of Aureobasidium pullulans and Rhodotorula glutinis in russet of d’Anjou pear fruit. Plant. Dis. 2002, 86, 625–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarante, C.; Banks, N.H.; Max, S. Preharvest bagging improves packout and fruit quality of pears (Pyrus communis). N. Z. J. Crop Hortic. Sci. 2002, 30, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Wang, Z.H.; Li, X.G.; Chang, Y.H. Effects of bagging twice and room temperature storage on quality of ‘Cuiguan’ pear fruit. Acta Hortic. 2012, 934, 837–840. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.F.; Zhang, P.F.; Bian, Y.H.; Liu, Z.Y.; Zhang, C.; Liu, X.; Wang, C.L. An integrated metabolic and transcriptomic analysis reveals the mechanism through which fruit bagging alleviates exocarp semi-russeting in pear fruit. Tree Physiol. 2021, 41, 1306–1318. [Google Scholar] [CrossRef]
- Lin, J.; Chang, Y.H.; Yan, Z.M.; Li, X.G. Effects of bagging on the quality of pear fruit and pesticide residues. Acta Hortic. 2008, 772, 315–318. [Google Scholar] [CrossRef]
- Seo, H.H.; Lee, J.Y.; Jung, H.W. Fruit appearance improvement by using filter-attached paper bags in ‘Niitaka’ Pears. Hortic. Environ. Biotechnol. 2010, 51, 73–77. [Google Scholar]
- Yuri, J.A.; Castelli, R. Pear russet control with gibberellins and other products, in cv. Packham’s Triumph. Acta Hortic. 1998, 475, 303–310. [Google Scholar] [CrossRef]
- Sugar, D.; Powers, K.A.; Basile, S.R. Mancozeb and kaolin applications can reduce russet of ‘Comice’ pear. HortTechnology 2005, 15, 272–275. [Google Scholar] [CrossRef] [Green Version]
- McCoy, C.W. Damage and control of eriophyoid mites in crops: Stylar feeding injury and control of eriophyoid mites in citrus. In Eriophyoid Mites: Their Biology, Natural Enemies and Control; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 481–490. [Google Scholar]
- Fisher, F.E. Control of citrus fruit russet in Florida with zineb. Phytopathology 1957, 47, 433–437. [Google Scholar]
- Johnson, R.B.; King, J.R.; McBride, J.J. Zineb controls citrus rust mite. Proc. Fla. State Hortic. Soc. 1957, 70, 38–48. [Google Scholar]
- Smoot, J.J.; Houck, L.G.; Johnson, H.B. Market. Diseases of Citrus and Other Subtropical Fruits; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1971.
- Winston, J.R. Tear-Stain of Citrus Fruits; U.S. Department of Agriculture: Washington, DC, USA, 1921; Volume 924.
- Johnson, R.B. The effect of copper compounds on control of citrus rust mite with zineb. J. Econ. Entomol. 1960, 53, 395–397. [Google Scholar] [CrossRef]
- Michailides, T.J. Russeting and russet scab of prune, an environmentally induced fruit disorder: Symptomatology, induction, and control. Plant Dis. 1991, 75, 1114–1123. [Google Scholar] [CrossRef]
- Michailides, T.J.; Ogawa, J.M. Control and induction of russet scab and wind bruise damage (“wind scab”) of French prunes. In Prune Research Reports; Calinfornia Prune Board: San Francisco, CA, USA, 1988. [Google Scholar]
- Corbin, J.B.; Lider, J.V.; Roberts, K.O. Controlling prune russet scab. Calif. Agric. 1968, 22, 6–7. [Google Scholar]
- Avidan, B.; Klein, I. Physiological disorders in loquat (Eriobotrya japonica Lindl.). I. Russeting. Adv. Hortic. Sci. 1998, 12, 190–195. [Google Scholar]
- Wang, L.; Wang, H.C.; Hu, Y.L.; Huang, X.M. Loquat fruit physiological disorders: Creasing and russeting. Acta Hortic. 2007, 750, 269–273. [Google Scholar] [CrossRef]
- Barone, F.; Farina, V.; Lo Bianco, R. Growth, yield and fruit quality of ‘Peluche’ loquat under windbreak nets. Acta Hortic. 2011, 887, 155–159. [Google Scholar] [CrossRef]
- Huang, J.S.; Snapp, S.S. The effect of boron, calcium, and surface moisture on shoulder check, a quality defect in fresh-market tomato. J. Am. Soc. Hortic. Sci. 2004, 129, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Bakker, J.C. Russeting (cuticle cracking) in glasshouse tomatoes in relation to fruit growth. J. Hortic. Sci. 1988, 63, 459–463. [Google Scholar]
- Kamau, A.W.; Mueke, J.M.; Khaemba, B.M. Resistance of tomato varieties to the tomato russet mite, Aculops lycopersici (Massee) (Acarina, Eriophyidae). Insect Sci. Appl. 1992, 13, 351–356. [Google Scholar] [CrossRef]
- Ehret, D.L.; Hill, B.D.; Raworth, D.A.; Estergaard, B. Artificial neural network modelling to predict cuticle cracking in greenhouse peppers and tomatoes. Comput. Electron. Agric. 2008, 61, 108–116. [Google Scholar] [CrossRef]
- Demers, D.A.; Dorais, M.; Papadopoulos, A.P. Yield and russeting of greenhouse tomato as influenced by leaf-to-fruit ratio and relative humidity. HortScience 2007, 42, 503–507. [Google Scholar] [CrossRef]
- Jobin-Lawler, F.; Simard, K.; Gosselin, A.; Papadopoulos, A.P.; Dorais, M. The influence of solar radiation and boron-calcium fruit application on cuticle cracking of a winter tomato crop grown under supplemental lighting. Acta Hortic. 2002, 580, 235–239. [Google Scholar] [CrossRef]
- Meissner, F. Die Korkbildung der Früchte von Aesculus- und Cucumis-Arten. Osterr. Bot. Z. 1952, 99, 606–624. [Google Scholar] [CrossRef]
- Keren-Keiserman, A.; Tanami, Z.; Shoseyov, O.; Ginzberg, I. Differing rind characteristics of developing fruits of smooth and netted melons (Cucumis melo). J. Hortic. Sci. Biotechnol. 2015, 79, 107–113. [Google Scholar] [CrossRef]
- Rose, D.H.; Bratley, C.O.; Pentzer, W.T. Market. Diseases of Fruits and Vegetables: Grapes and Other Small Fruits; U.S. Department of Agriculture: Washington, DC, USA, 1939.
- Sholberg, P.L.; Boule, J. Palmolive (R) detergent controls apple, cherry, and grape powdery mildew. Can. J. Plant. Sci. 2009, 89, 1139–1147. [Google Scholar] [CrossRef]
- Goffinet, M.C.; Pearson, R.C. Anatomy of russeting induced in concord grape berries by the fungicide chlorothalonil. Am. J. Enol. Vitic. 1991, 42, 281–289. [Google Scholar]
- Araya, J.E.; Merino, C.; Santibanez, F.; Sazo, L. Ring spots by feeding of Frankliniella occidentalis (Thysanoptera: Thripidae) on white table grapes. Rev. Colom. Entomol. 2014, 40, 1–6. [Google Scholar]
- De Villiers, F.J. Physiological studies of the grape. Union S. Afr. Dep. Agric. Sci. 1926, 45, 38–48. [Google Scholar]
- Xu, Y.S.; Hou, X.D.; Feng, J.; Khalil-Ur-Rehman, M.; Tao, J.M. Transcriptome sequencing analyses reveals mechanisms of eliminated russet by applying GA3 and CPPU on ‘Shine Muscat’ grape. Sci. Hortic. 2019, 250, 94–103. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, P.; Wang, X.; Wang, J.; Liu, F. Effects of calcium on the formation of berry russet and phenolic compounds in ‘Shine Muscat’ grape. IOP Conf. Ser. Earth Environ. Sci. 2021, 792, 012038. [Google Scholar] [CrossRef]
- Athoo, T.O.; Winkler, A.; Knoche, M. Russeting in ‘Apple’ mango: Triggers and mechanisms. Plants 2020, 9, 898. [Google Scholar] [CrossRef]
- Mathooko, F.M.; Kahangi, E.M.; Runkuab, J.M.; Onyangob, C.A.; Owinob, W.O. Preharvest mango (Mangifera indica L. ‘Apple’) fruit bagging controls lenticel discolouration and improves postharvest quality. Acta Hortic. 2011, 906, 55–62. [Google Scholar] [CrossRef]
- Drogoudi, P.; Pantelidis, G.E.; Vekiari, S.A. Physiological disorders and fruit quality attributes in pomegranate: Effects of meteorological parameters, canopy position and acetylsalicylic acid foliar sprays. Front. Plant Sci. 2021, 12, 645547. [Google Scholar] [CrossRef]
- Sharma, N.; Belsare, C. Effect of plant bio-regulators and nutrients on fruit cracking and quality in pomegranate (Punica granatum L.) ‘G-137’ in Himachal Pradesh. Acta Hortic. 2011, 890, 347–352. [Google Scholar] [CrossRef]
- Joshi, M.; Schmilovitch, Z.; Ginzberg, I. Pomegranate fruit growth and skin characteristics in hot and dry climate. Front. Plant. Sci. 2021, 12, 725479. [Google Scholar] [CrossRef]
- Ebeling, W.; Pence, R.J. New pomegranate mite: Russeting and cracking of peel characterize injury responsible for much culling. Calif. Agric. 1949, 3, 11–14. [Google Scholar]
- Sahu, P.; Sharma, N. Fruit cracking and quality of pomegranate (Punica granatum L.) cv. Kandhari as influenced by CPPU and boron. J. Pharmacogn. Phytochem. 2019, 8, 2644–2648. [Google Scholar] [CrossRef]
- Grimm, E.; Khanal, B.P.; Winkler, A.; Knoche, M.; Köpcke, D. Structural and physiological changes associated with the skin spot disorder in apple. Postharvest Biol. Technol. 2012, 64, 111–118. [Google Scholar] [CrossRef]
- Byers, M.A. A scarf skin-like disorder of apples. HortScience 1977, 12, 226–227. [Google Scholar] [CrossRef] [Green Version]
- Ferree, D.C.; Ellis, M.A.; Bishop, B.L. Scarf skin on ‘Rome Beauty’: Time of origin and influence of fungicides and GA4+7. J. Am. Soc. Hortic. Sci. 1984, 109, 422–427. [Google Scholar]
- Williams, M.H.; Vesk, M.; Mullins, M.G. Development of the banana fruit and occurrence of the maturity bronzing disorder. Ann. Bot. 1990, 65, 9–19. [Google Scholar] [CrossRef]
- Campbell, S.J.; Williams, W.T. Factors associated with maturity bronzing of banana fruit. Aust. J. Exp. Agric. 1976, 16, 428–432. [Google Scholar] [CrossRef]
- Beach, S.A.; Booth, N.O.; Taylor, O.M. The Apples of New York; J.B. Lyon: Albany, GA, USA, 1905; Volume 1. [Google Scholar]
- Weber, R.W.S.; Zabel, D. White haze and scarf skin, two little-known cosmetic defects of apples in northern Germany. Eur. J. Hortic. Sci. 2011, 76, 45–50. [Google Scholar]
- Williams, M.H.; Vesk, M.; Mullins, M.G. Characteristics of the surface of banana peel in cultivars susceptible and resistant to maturity bronzing. Can. J. Bot. 1989, 67, 2154–2160. [Google Scholar] [CrossRef]
- Daniells, J.W.; Lisle, A.T.; Ofarrell, P.J. Effect of bunch-covering methods on maturity bronzing, yield, and fruit quality of bananas in North Queensland. Aust. J. Exp. Agric. 1992, 32, 121–125. [Google Scholar] [CrossRef]
- Daniells, J.W.; Lisle, A.T.; Bryde, N.J. Effect of bunch trimming and leaf removal at flowering on maturity bronzing, yield, and other aspects of fruit quality of bananas in North Queensland. Aust. J. Exp. Agric. 1994, 34, 259–265. [Google Scholar] [CrossRef]
- Meyer, A. A study of the skin structure of Golden Delicious apples. Proc. Am. Soc. Hortic. Sci. 1944, 45, 105–110. [Google Scholar]
- Schreiber, L.; Franke, R.; Hartmann, K. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 2005, 220, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Franke, R.; Schreiber, L. Suberin—A biopolyester forming apoplastic plant interfaces. Curr. Opin. Plant. Biol. 2007, 10, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Considine, J.; Brown, K. Physical aspects of fruit growth: Theoretical analysis of distribution of surface growth forces in fruit in relation to cracking and splitting. Plant Physiol. 1981, 68, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Eccher, T.; Hajnajari, H. Fluctuations of endogenous gibberellin A4 and A7 content in apple fruits with different sensitivity to russet. Acta Hortic. 2006, 727, 537–543. [Google Scholar] [CrossRef]
- Creasy, L.L. The correlation of weather parameters with russet of Golden Delicious apples under orchard conditions. J. Am. Soc. Hortic. Sci. 1980, 105, 735–738. [Google Scholar]
- Barcelo-Vidal, C.; Bonany, J.; Martin-Fernandez, J.A.; Carbo, J. Modelling of weather parameters to predict russet on ‘Golden Delicious’ apple. J. Hortic. Sci. Biotechnol. 2013, 88, 624–630. [Google Scholar] [CrossRef]
- Straube, J.; Chen, Y.H.; Khanal, B.P.; Shumbusho, A.; Zeisler-Diehl, V.; Suresh, K.; Schreiber, L.; Knoche, M.; Debener, T. Russeting in apple is initiated after exposure to moisture ends: Molecular and biochemical evidence. Plants 2021, 10, 65. [Google Scholar] [CrossRef]
- Faust, M.; Shear, C.B. Fine structure of the fruit surface of three apple cultivars. J. Am. Soc. Hortic. Sci. 1972, 97, 351–355. [Google Scholar]
- Peschel, S.; Knoche, M. Characterization of microcracks in the cuticle of developing sweet cherry fruit. J. Am. Soc. Hortic. Sci. 2005, 130, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Khanal, B.P.; Le, T.L.; Si, Y.; Knoche, M. Russet susceptibility in apple is associated with skin cells that are larger, more variable in size, and of reduced fracture strain. Plants 2020, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
- Maguire, K.M. Factors Affecting Mass Loss of Apples; Massey University: Palmerston North, New Zealand, 1998. [Google Scholar]
- Knoche, M.; Khanal, B.P.; Brüggenwirth, M.; Thapa, S. Patterns of microcracking in apple fruit skin reflect those of the cuticular ridges and of the epidermal cell walls. Planta 2018, 248, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Khanal, B.P.; Knoche, M. Mechanical properties of apple skin are determined by epidermis and hypodermis. J. Am. Soc. Hortic. Sci. 2014, 139, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Khanal, B.P.; Knoche, M. Mismatch between cuticle deposition and area expansion in fruit skins allows potentially catastrophic buildup of elastic strain. Planta 2016, 244, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Khanal, B.P.; Schlüter, O.K.; Knoche, M. Direct evidence for a radial gradient in age of the apple fruit cuticle. Front. Plant Sci. 2021, 12, 730837. [Google Scholar] [CrossRef] [PubMed]
- Khanal, B.P.; Knoche, M.; Bußler, S.; Schlüter, O. Evidence for a radial strain gradient in apple fruit cuticles. Planta 2014, 240, 891–897. [Google Scholar] [CrossRef]
- Konarska, A. The structure of the fruit peel in two varieties of Malus domestica Borkh. (Rosaceae) before and after storage. Protoplasma 2013, 250, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Conway, W.S.; Watada, A.E.; Sams, C.E.; Erbe, E.F.; Wergin, W.P. Heat treatment affects epicuticular wax structure and postharvest calcium uptake in ‘Golden Delicious’ apples. HortScience 1994, 29, 1056–1058. [Google Scholar] [CrossRef] [Green Version]
- Eccher, T. Influenza di alcuni fitormoni sulla rugginositá della “Golden Delicious”. Riv. Ortoflorofruttìc. Ital. 1975, 59, 246–261. [Google Scholar]
- Knoche, M.; Peschel, S. Deposition and strain of the cuticle of developing European plum fruit. J. Am. Soc. Hortic. Sci. 2007, 132, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Athoo, T.O.; Khanal, B.P.; Knoche, M. Low cuticle deposition rate in ‘Apple’ mango increases elastic strain, weakens the cuticle and increases russet. PLoS ONE 2021, 16, e0258521. [Google Scholar] [CrossRef] [PubMed]
- Konarska, A. Morphological, histological and ultrastructural changes in fruit epidermis of apple Malus domestica cv. Ligol (Rosaceae) at fruit set, maturity and storage. Acta Biol. Crac. Ser. Bot. 2014, 56, 35–48. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related. Planta 2017, 245, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Mao, L.; Han, X.; Lu, W.; Xie, D.; Ren, X.; Zhao, Y. High oxygen facilitates wound induction of suberin polyphenolics in kiwifruit. J. Sci. Food Agric. 2018, 98, 2223–2230. [Google Scholar] [CrossRef]
- Xiao, Z.; Rogiers, S.Y.; Sadras, V.O.; Tyerman, S.D. Hypoxia in grape berries: The role of seed respiration and lenticels on the berry pedicel and the possible link to cell death. J. Exp. Bot. 2018, 69, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Ho, Q.T.; Verboven, P.; Verlinden, B.E.; Schenk, A.; Delele, M.A.; Rolletschek, H.; Vercammen, J.; Nicolai, B.M. Genotype effects on internal gas gradients in apple fruit. J. Exp. Bot. 2010, 61, 2745–2755. [Google Scholar] [CrossRef] [Green Version]
- Wigginton, M.J. Effects of temperature, oxygen tension and relative humidity on the wound-healing process in the potato tuber. Potato Res. 1974, 17, 200–214. [Google Scholar] [CrossRef]
- Lipton, W.J. Some effects of low-oxygen atmospheres on potato tubers. Am. Potato J. 1967, 44, 292–298. [Google Scholar] [CrossRef]
- Jindal, K.K.; Pal, S.; Chauhan, P.S.; Mankotia, M.S. Effect of promalin and mixtatol on fruit growth, yield efficiency and quality of ‘Starking Delicious’ apple. Acta Hortic. 2004, 636, 533–536. [Google Scholar] [CrossRef]
- Hou, X.; Wei, L.; Xu, Y.; Khalil-Ur-Rehman, M.; Feng, J.; Zeng, J.; Tao, J. Study on russet-related enzymatic activity and gene expression in ‘Shine Muscat’ grape treated with GA3 and CPPU. J. Plant. Interact. 2018, 13, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Flaishman, M.A.; Shargal, A.; Shlizerman, L.; Stern, R.A.; Lev-Yadun, S.; Grafi, G. The synthetic cytokinins CPPU and TDZ prolong the phase of cell division in developing pear (Pyrus communis L.) fruit. Acta Hortic. 2005, 671, 151–157. [Google Scholar] [CrossRef]
- Kano, Y. Effects of CPPU treatment on fruit and rind development of watermelons (Citrullus lanatus Matsum. et Nakai). J. Hortic. Sci. Biotechnol. 2015, 75, 651–654. [Google Scholar] [CrossRef]
- Ganie, M.A.; Akhter, F.; Bhat, M.A.; Malik, A.R.; Junaid, J.M.; Shah, M.A.; Bhat, A.H.; Bhat, T.A. Boron—A critical nutrient element for plant growth and productivity with reference to temperate fruits. Curr. Sci. 2013, 104, 76–85. [Google Scholar]
- Muengkaew, R.; Whangchai, K.; Chaiprasart, P. Application of calcium—boron improve fruit quality, cell characteristics, and effective softening enzyme activity after harvest in mango fruit (Mangifera indica L.). Hortic. Environ. Biotechnol. 2018, 59, 537–546. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 191–248. [Google Scholar]
- Ferri, V.C.; Rombaldi, C.V.; Silva, J.A.; Pegoraro, C.; Nora, L.; Antunes, P.L.; Girardi, C.L.; Tibola, C.S. Boron and calcium sprayed on ‘Fuyu’ persimmon tree prevent skin cracks, groove and browning of fruit during cold storage. Cienc. Rural. 2008, 38, 2146–2150. [Google Scholar] [CrossRef] [Green Version]
- Ghanbarpour, E.; Rezaei, M.; Lawson, S. Reduction of cracking in pomegranate fruit after foliar application of humic acid, calcium-boron and kaolin during water stress. Erwerbs Obstbau 2019, 61, 29–37. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.K.; Meghwal, P.R. Fruit cracking in pomegranate: Extent, cause, and management—A review. Int. J. Fruit Sci. 2020, 20, S1234–S1253. [Google Scholar] [CrossRef]
- Kavvadias, V.; Daggas, T.; Paschalidis, C.; Vavoulidou, E.; Theocharopoulos, S. Effect of boron application on yield, quality, and nutritional status of peach cultivar Andross. Commun. Soil Sci. Plant. Anal. 2012, 43, 134–148. [Google Scholar] [CrossRef]
- Schumann, C.; Winkler, A.; Brüggenwirth, M.; Köpcke, K.; Knoche, M. Crack initiation and propagation in sweet cherry skin: A simple chain reaction causes the crack to ‘run’. PLoS ONE 2019, 14, e0219794. [Google Scholar] [CrossRef] [Green Version]
- Racsko, J.; Schrader, L.E. Sunburn of apple fruit: Historical background, recent advances and future perspectives. Crit. Rev. Plant Sci. 2012, 31, 455–504. [Google Scholar] [CrossRef]
- Chonhenchob, V.; Kamhangwong, D.; Kruenate, J.; Khongrat, K.; Tangchantra, N.; Wichai, U.; Singh, S.P. Preharvest bagging with wavelength-selective materials enhances development and quality of mango (Mangifera indica L.) cv. Nam Dok Mai #4. J. Sci. Food Agric. 2011, 91, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Abdel Gawad-Nehad, M.A.; EL-Gioushy, S.F.; Baiea, M.H.M. Impact of different bagging types on preventing sunburn injury and quality improvement of Keitt mango fruits. Middle East J. Agric. Res. 2017, 6, 484–494. [Google Scholar]
- Sarkomi, F.H.; Moradinezhad, F.; Khayat, M. Pre-harvest bagging influences sunburn, cracking and quality of pomegranate fruits. J. Hortic. Postharvest Res. 2019, 2, 131–142. [Google Scholar] [CrossRef]
- Buthelezi, N.M.D.; Mafeo, T.P.; Mathaba, N. Preharvest bagging as an alternative technique for enhancing fruit quality: A review. HortTechnology 2021, 31, 4–13. [Google Scholar] [CrossRef]
- Hudina, M.; Stampar, F. Bagging of ‘Concorde’ pears (Pyrus communis L.) influences fruit quality. Acta Hortic. 2011, 909, 625–630. [Google Scholar] [CrossRef]
- Macnee, N.; Hilario, E.; Tahir, J.; Currie, A.; Warren, B.; Rebstock, R.; Hallett, I.C.; Chagne, D.; Schaffer, R.J.; Bulley, S.M. Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation. BMC Plant Biol. 2021, 21, 334. [Google Scholar] [CrossRef]
- Petit, J.; Bres, C.; Mauxion, J.P.; Bakan, B.; Rothan, C. Breeding for cuticle-associated traits in crop species: Traits, targets, and strategies. J. Exp. Bot 2017, 68, 5369–5387. [Google Scholar] [CrossRef]
- Falginella, L.; Cipriani, G.; Monte, C.; Gregori, R.; Testolin, R.; Velasco, R.; Troggio, M.; Tartarini, S. A major QTL controlling apple skin russeting maps on the linkage group 12 of ‘Renetta Grigia di Torriana’. BMC Plant Biol. 2015, 15, 150. [Google Scholar] [CrossRef] [Green Version]
- Legay, S.; Guerriero, G.; Deleruelle, A.; Lateur, M.; Evers, D.; André, C.M.; Hausman, J.F. Apple russeting as seen through the RNA-seq lens: Strong alterations in the exocarp cell wall. Plant Mol. Biol. 2015, 88, 21–40. [Google Scholar] [CrossRef]
- Si, Y.; Khanal, B.P.; Sauheitl, L.; Knoche, M. Cutin synthesis in developing, field-grown apple fruit examined by external feeding of labelled precursors. Plants 2021, 10, 497. [Google Scholar] [CrossRef]
Cultivar | Symptoms | Causes | Management |
---|---|---|---|
Apple | Russet as rough and brown skin [17,28], often in stem [29] and calyx cavities [30], some cultivars with entire surface russeted [31], high susceptibility during early fruit development [12,29,32,33,34] | Moisture [35,36,37,38] or high humidity [17,35], damage by pesticides, growth regulators, surfactants and other substances [19,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61], frost [27,34], fungi [62,63,64,65,66], viruses [67,68,69], insects [70,71] | Spray application of growth regulators [30,32,33,56,58,72,73,74,75,76,77,78,79,80,81], CaCl2 [82], prohexadione-calcium [72], organic/mineral bio-stimulators [83], chlorogenic acid [84], coatings [82], insecticides to prevent insect damage [71], shading nets [85], rain shelters [48], bagging [17,48,82,86] |
Pear | Russet as dull-brownish skin patches, more in calyx and cheek than in neck [87], some cultivars completely russeted [23], high susceptibility during early development [87] | Surface moisture [88,89,90], high humidity [90], growth stress [87], fungicides, thinners and growth regulators [89,90,91,92,93], insects [94,95,96], bacteria [97], fungi [98,99] | Bagging [100,101,102,103,104], spray application of GA4+7 [105], mancozeb + sulfur [105] or kaolin ± mancozeb [106] |
Citrus | Russet as rough texture, brownish-black, greyish discoloration [107]. | (Rust) mites, thrips and other sucking insects [107,108,109], mechanical damage by wind, hail, contact with branches [110,111] | Zineb against citrus mites [108,109,112] |
Prune | On immature fruit: longitudinal stripes at stylar end [113], mature: rough, brown, dried surface [113] | Copper spray [113], mechanical damage by wind, abrasion by leaves, shoots, adjacent fruits [113,114], exposure to surface wetness or free water, high humidity [113,114], scab [115] | Captafol, ziram for scab control [113] |
Loquat | Deep brown stripes, approx. 1 mm wide [116,117] | Growth stress [116,117], microclimate (high temperature) [116], very high light intensities [116] | Shading using nets to decrease growth rate during cell division phase [116,118] |
Tomato | Russet as rough corky discolored surface [119], also referred to as ‘shoulder check’ [119] or ‘cuticle cracking’ [120] | Rust mites [71,121], growth stress [120,122,123], surface moisture [119] | Non-susceptible cultivars [123], moderate thinning [123], spray application of Ca+B [119,124] |
Melon | Rind netting common in some cultivars [14], russet as dry, white to brownish ridges [14] | Growth stress [125,126], surface moisture [125], wounding [14] | Rind netting desirable, countermeasures not needed |
Grape berry | Brown patches of russet [127] | Surfactants [128], fungicides [129], insects [71,130], surface moisture [131] | Spray applications of GA3, GA3 + CPPU [132], insecticides [71], Ca [133] |
Mango | Rough brownish irregular patches of russet [134], beginning at lenticels [134] | Surface moisture, cold nights [134] | Bagging [135] |
Pomegranate | Corky surface [136] | High humidity [136,137], heat waves [138], temperature fluctuation during maturation [136], pomegranate mite [139] | Spray applications of GA3, CPPU [137,140], acetylsalicylic acid [136], sulfur dust against pomegranate mites [139] |
Disorder | Crop Affected | Symptoms | Causes | Management |
---|---|---|---|---|
Skin spots | Apple | Irregular patches of small, round and brown spots, develops in CA-storage, promoted by 1-MCP [141] | Moisture-induced microcracks late in the season [36,141] | Reducing surface wetness duration, for susceptible batches, no storage or cool-storage only [36,141] |
Scarf skin | Apple | Whitish lines or stripes [146], whitish or opalescent sheen [147], due to formation of subepidermal air spaces [142] | Unknown | - |
Maturity bronzing or maturity stain | Banana | Pre-harvest necrosis of the skin, bronze coloration [144] | Growth stress [148], water stress [144] | Bagging [149], reducing the number of leaves [150] |
Chemical | Category | Crop | Cultivar | Time of Application | Effect on Russet | Reference |
---|---|---|---|---|---|---|
Di-l-p-methene (2.5%) | Antitranspirant | Apple | Golden Delicious | 4, 13, 21 and 27 DAFB | Increased | [48] |
B (300 mg L−1) B (300 mg L−1) + Ca (2 g L−1) | Foliar fertilizer | Tomato | Mountain Spring | Weekly | Decreased | [119] |
Dithane (4 kg ha−1) Packhard (0.5% Ca) | Foliar fertilizer | Apple | Golden Delicious Spur | Flowering, PF and FS | Increased | [39] |
Zn (100 g ha−1) | Foliar fertilizer | Apple | Elstar | Green and pink stage and at bloom beginning | Increased | [40] |
Captafol (1.8 g a.i. L−1) | Fungicide | Plum | French | 60–90% FB | Decreased | [113] |
Chlorothalonil (3.37 kg ha−1) | Fungicide | Grape berry | Concord | 10 DAFB | Increased | [129] |
Kocide (Copper hydroxide) (0.32 g L−1) | Fungicide | Apple | Braeburn | Weekly starting at pink tip stage | Increased | [41] |
Kocide (Copper hydroxide) (1.5 g L−1) | Fungicide | Apple | Golden Delicious | 3 to 9 weeks after FB | Increased | [42] |
Kocide (Copper hydroxide) (16 or 63 g L−1) | Fungicide | Apple | Granny Smith | Pink bud, FB and PF | Increased | [43] |
Copper hydroxide (50%) (2.5 kg ha−1) + amino acids (10%) (2 L ha−1) | Fungicide | Pear | Conference | PF and 1 week after PF | Increased | [89] |
Copper hydroxide (0.3 g L−1) | Fungicide | Pear | Beurré Bosc | PF, 7, 14 and 21 DAPF | Increased | [91] |
Copper hydroxide | Fungicide | Pear | Bosc | PF | Increased | [90] |
Copper hydroxide Copper oxychloride | Fungicide | Apple | Idared | FB | Increased | [44] |
Copper oxychloride (4 g L−1) | Fungicide | Apple | Red Fuji | Green tip stage | Increased | [19] |
Lime sulfur (6 g L−1) | Fungicide | Apple | Fuji More | 90% FB | Increased | [45] |
Lime sulfur (2%) | Fungicide | Apple | Honeycrisp | Fruitlet stage | Increased | [46] |
Lime sulfur (2%) + winter oil Fish emulsion (3%) + 2% fish oil Fish emulsion (3%) + Tween 20 (0.125%) | Fungicide | Apple | Gala | 20% and 80% FB | Increased | [47] |
Mancozeb (2 g L−1) + Sulfur (2 g L−1) | Fungicide | Pear | Packham’s Triumph | 80% FB | Decreased | [105] |
Wettable sulfur (17 kg ha−1) | Fungicide | Apple | Golden Delicious Spur | FB, PF and FS | Decreased | [39] |
Ziram (2.4 g a.i. L−1) | Fungicide | Plum | French | 60–90% FB | Decreased | [113] |
Diazinon (0.08%) | Insecticide | Apple | Golden Delicious | 18 DAFB | Increased | [48] |
Rape oil (10 or 30 g L−1), Sunflower oil (30 g L−1), Soya oil (30 g L−1) | Oil | Apple | Golden Delicious | FB | Increased | [49] |
Superior oil (0.5%) | Oil | Apple | Golden Delicious | 18 DAFB | Increased | [48] |
Citowett (>1%) Tween 20 (≥1%) | Surfactant | Apple | Golden Delicious | FB, PF and 10 weeks after FB | Increased | [50] |
Ortho X-77 (1.0%) | Surfactant | Apple | Suntan | 3 weeks after FB | Increased | [51] |
Polysorbate 20 (0.5%), Polysorbate 60 (0.5%), Polysorbate 80 (0.5%), Lecithin (0.5%) | Surfactant | Apple | Golden Delicious | At 12.5 + 18 or 18 + 20 mm diameter | Increased | [52] |
Polysorbate 20 (0.5%), Polysorbate 60 (0.5%) | Surfactant | Apple | Fuji | At 12.5 + 18 mm diameter | Increased | [52] |
Potassium soap (500 mg L−1) | Surfactant | Apple | Golden Delicious Smoothee | FB and 2 DAFB | Increased | [53] |
Ammonium thiosulphate (4%) | Thinner | Apple | Golden Delicious | 20% FB | Increased | [55] |
Ammonium thiosulphate (1.2%) | Thinner | Pear | Conference | 20% or 50% FB | Increased | [92] |
Endothal (0.8–1.2 mL L−1) + CyLex (150 mg L−1) | Thinner | Apple | Oregon Spur Red Delicious | 80% FB | Increased | [54] |
Apasil (silicon dioxide) (2.5%) | Other | Apple | Golden Delicious | 1 to 4 applications between 4–25 DAFB | Decreased | [48] |
PEG 20000 (2.5%) | Other | Apple | Golden Delicious | 4, 13, 21 and 27 DAFB | Increased | [48] |
PGR | Crop | Cultivar | Concentration (mg L−1) | Time and Frequency of Application | Effect on Russet | Reference |
---|---|---|---|---|---|---|
BA | Apple | Golden Delicious, Jonathan | 50 or 150 | 80% PF and once after 7–10 d | Increased | [56] |
BA | Apple | Elstar | 200 or 300 | At 10–12 mm fruit diameter | Increased | [57] |
BA | Apple | Golden Delicious | 50 | 0, 4, 12, 26, 42, 57 DAFB | Increased | [58] |
BA | Pear | Bartlett | 150 | PF and 10 mm stage | Increased | [93] |
Daminozide | Apple | Golden Delicious | 2000 | 3 DAFB | Increased | [48] |
Ethephon | Apple | Fuji | 400 | FB | Increased | [59] |
GA4, GA7 and GA4+7 | Apple | Golden Delicious, Karmijn de Sonnaville | 10 | 4 applications in 10 d intervals beginning at PF | Decreased | [32] |
GA4+7 | Apple | Golden Delicious | 200 | 4 applications in 7 d intervals beginning at PF | Decreased | [75] |
GA4+7 | Apple | Golden Delicious | 62.5, 125 or 250 | 8–15 DAFB | Decreased | [76] |
GA4+7 | Apple | Golden Delicious | 25 | 0, 4, 12, 26, 42, 57 DAFB | Decreased | [58] |
GA4+7 | Apple | Golden Delicious | 10 | 4 applications in 10 d intervals beginning at PF | Decreased | [73] |
GA4+7 | Apple | Golden Delicious | 10 | 4 applications in 10 d intervals beginning at PF | Decreased | [77] |
GA4+7 | Apple | Golden Delicious | 10 | PF | Decreased | [33] |
GA4+7 | Apple | Golden Delicious | 15 or 30 | 5 applications in 7 to 10 d intervals beginning at PF | Decreased | [30] |
GA4+7 | Apple | Golden Delicious | 10 | 5 applications in 7 d intervals beginning at FB | Decreased | [78] |
GA4+7 | Apple | Golden Delicious | 20 | 3 applications in 10 d intervals beginning at PF | Decreased | [72] |
GA4+7 | Apple | Golden Delicious, Jonathan | 25–200 | 80% PF and once after 7–10 d | Decreased | [56] |
GA4+7 | Apple | Golden Delicious | 5, 10 | 4 applications in 7 d intervals beginning at PF | Decreased | [79] |
GA4+7 | Pear | Packham’s Triumph | 5, 10, 20 | 80% PF and 0 to 3 additional sprays at 10 or 15 d intervals | Decreased | [105] |
GA4+7 GA4+7 + BA | Apple | Golden Delicious | 6, 12, 24, 50 | Beginning of bloom and 3 additional sprays at 7 d intervals | Decreased | [80] |
GA4+7 + BA | Apple | Scarlet Spur II | 1, 2.5 or 5 | 3 to 4 applications in 10 d intervals beginning at PF | Decreased | [81] |
GA3 | Apple | Karmijn de Sonnaville | 10 | 4 applications in 10 d intervals beginning at PF | Decreased | [32] |
GA3 | Apple | Golden Delicious | 100 or 200 | PF | Decreased | [33] |
GA3 | Apple | Golden Delicious | 100 | PF | Increased | [60] |
GA3 | Pomegranate | G-137 | 50 | Mid May–Mid June | Decreased | [137] |
CPPU | Apple | Scarlet Spur II | 2, 5 or 10 | 3 to 4 applications in 10 d intervals beginning at PF | Decreased | [81] |
CPPU | Apple | Golden Delicious | 20 | PF | Increased | [60] |
CPPU | Pomegranate | Kandhari | 5 or 10 | Mid May | Decreased | [140] |
CPPU | Pomegranate | G-137 | 5 | Mid May–Mid June | Decreased | [137] |
CPPU+GA3 | Grapes | Shine Muscat | 10 CPPU + 25 GA3 | FB | Decreased | [132] |
CPPU+GA3, CPPU+GA4 | Apple | Golden Delicious | 20 CPPU + 100 GA3/GA4 | PF | Increased | [60] |
Paclobutrazol | Apple | Suntan | 120 or 240 | 3 weeks after FB | Increased | [51] |
Paclobutrazol | Apple | Smoothee Golden Delicious | 250 | Between early bloom and PF | Increased | [61] |
Type of Bag | Crop | Cultivar | Time of Bagging | Effect on Russet | Effect on Color | Reference |
---|---|---|---|---|---|---|
Polythene bag (Kordite freeze bags) | Apple | Golden Delicious, Rome Beauty | 18 mm diameter | Increased | Greener groundcolor | [17] |
Polythene bag with aluminum paper | Pear | Packham’s Triumph | Fruit set | Increased | Not determined | [105] |
Microperforated polypropylene bags | Pear | Doyenne du Comice | 30 DAFB | Decreased | Not determined | [100] |
Nylon (polyamide) | Apple | Golden Delicious, Rome Beauty | 18 mm diameter | Increased | Decreased red color | [17] |
Kraft paper bags | Apple | Golden Delicious, Rome Beauty | 18 mm diameter | Decreased | Decreased red color | [17] |
Kraft paper bags | Mango | Apple | 70 DAFB | Reduced | Decreased red color | [135] |
Kraft paper bags | Apple | Golden Delicious | 5 DAFB | Reduced | Not determined | [48] |
White, yellow and discoloration bags | Apple | Gamhong | 20, 30 and 40 DAFB | Reduced | No change | [82] |
Light impermeable double layer paper bags | Apple | Golden Delicious | 20 DAFB | No russet | Not determined | [86] |
Paper bags (single layer) | Pear | Cuiguan | 35 DAFB | Decreased | More yellow | [101] |
Paper bags (white, single layer) | Pear | Cuiguan | 20 DAFB | No russet | No change | [102] |
Paper bags (yellow-white, double layer) | Pear | Cuiguan | 40 DAFB | No russet | No change | [102] |
Papers bags (single layer + double layers) | Pear | Cuiguan | 28 DAFB | Decreased | Lighter color | [103] |
Paper bags (double layer) | Pear | Cuiguan | 20 + 45 DAFB | No russet | Greener groundcolor | [101] |
Paper bag (double layered with attached filter) | Pear | Niitaka | 30–40 DAFB | Decreased | Lighter color | [104] |
Paper bag (triple layer) | Pear | Concorde | After June drop | Increased | Lighter color | [197] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, A.; Athoo, T.; Knoche, M. Russeting of Fruits: Etiology and Management. Horticulturae 2022, 8, 231. https://doi.org/10.3390/horticulturae8030231
Winkler A, Athoo T, Knoche M. Russeting of Fruits: Etiology and Management. Horticulturae. 2022; 8(3):231. https://doi.org/10.3390/horticulturae8030231
Chicago/Turabian StyleWinkler, Andreas, Thomas Athoo, and Moritz Knoche. 2022. "Russeting of Fruits: Etiology and Management" Horticulturae 8, no. 3: 231. https://doi.org/10.3390/horticulturae8030231
APA StyleWinkler, A., Athoo, T., & Knoche, M. (2022). Russeting of Fruits: Etiology and Management. Horticulturae, 8(3), 231. https://doi.org/10.3390/horticulturae8030231