Influence of Drought Stress on Growth and Essential Oil Yield of Ocimum Species
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site Description
2.2. Plant Material and Treatments
2.3. Data Collection
2.4. Data Analysis
3. Result
3.1. Relative Water Content and Chlorophyll Content (SPAD Value)
3.2. Plant Height and Canopy Diameter
3.3. Leaf Area and Root Fresh Weight
3.4. Fresh and Dry Herb Weight
3.5. Essential Oil Content and Essential Oil Yield
3.6. Glandular Hair
3.7. Total Polyphenol Content and Antioxidant Capacity
3.8. Essential Oil Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hiltunen, R.; Holm, Y. Basil: The Genus Ocimum; Harwood Academic Publishers: Amsterdam, The Netherlands, 2006; pp. 1–38. [Google Scholar]
- Maddi, R.; Amani, P.; Bhavitha, S.; Gayathri, T.; Lohitha, T. A review on Ocimum species: Ocimum americanum L., Ocimum basilicum L., Ocimum gratissimum L. and Ocimum tenuiflorum L. Int. J. Res. Ayurv. Pharm. 2019, 10, 41–48. [Google Scholar]
- Shasany, A.K.; Kole, C. Compendium of Plant Genomes: The Ocimum Genome; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–7. [Google Scholar]
- Li, Q.X.; Chang, C.L. Basil (Ocimum basilicum L.) Oils. In Essential Oils in Food Preservation, Flavor, and Safety; Preedy, V., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2016; pp. 231–238. [Google Scholar]
- Bettaieb, I.; Knioua, S.; Hamrouni, I.; Limam, F.; Marzouk, B. Water-deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts. J. Agric. Food Chem. 2011, 59, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Laribi, B.; Bettaieb, I.; Kouki, K.; Sahli, A.; Mougou, A.; Marzouk, B. Water deficit effects on caraway (Carum carvi L.) growth, essential oil, and fatty acid composition. Indust. Crop Prod. 2009, 31, 34–42. [Google Scholar] [CrossRef]
- Simon, J.E.; Reiss-Bubenheim, D.; Joly, R.J.; Charles, D.J. Water stress-induced alterations in essential oil content and composition of sweet basil. J. Essen. Oil Res. 1992, 4, 71–75. [Google Scholar] [CrossRef]
- Mohammedi, H.; Mecherara-Idjeri, S.; Hassani, A. Variability in essential oil composition, antioxidant and antimicrobial activities of Ruta montana L. collected from different geographical regions in Algeria. J. Essen. Oil Res. 2020, 32, 88–101. [Google Scholar] [CrossRef]
- Liao, Z.; Huang, Q.; Cheng, Q.; Khan, S.; Yu, X. Seasonal variation in chemical compositions of essential oils extracted from Lavandin flowers in the Yun-Gui plateau of China. Molecules 2021, 26, 5639. [Google Scholar] [CrossRef]
- Napoli, E.; Giovino, A.; Carrubba, A.; How Yuen Siong, V.; Rinoldo, C.; Nina, O.; Ruberto, G. Variations of essential oil constituents in oregano (Origanum vulgare subsp. viridulum (O. heracleoticum) over cultivation Cycles. Plants 2020, 9, 1174. [Google Scholar] [CrossRef]
- Ozliman, S.; Yaldiz, G.; Camlica, M.; Ozsoy, N. Chemical components of essential oils and biological activities of the aqueous extract of Anethum graveolens L. grown under inorganic and organic conditions. Chem. Biol. Technol. Agric. 2021, 8, 20. [Google Scholar] [CrossRef]
- Gioffrè, G.; Ursino, D.; Labate, M.L.C.; Giuffrè, A.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): A Review. Emirates J. Food Agric. 2020, 32, 835–845. [Google Scholar] [CrossRef]
- Llorens-Molina, J.A.; Ygueravide, B.; Vacas, S. Essential oil composition of berries of Juniperus oxycedrus L. ssp. Oxycedrus according to their ripening stage. J. Essen. Oil Res. 2019, 31, 276–285. [Google Scholar] [CrossRef]
- Maria, G.A.; Riccardo, N. Citrus bergamia, Risso: The peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emirates J. Food Agric. 2020, 32, 522–532. [Google Scholar] [CrossRef]
- Nurzyñska-Wierdak, R. Morphological Variability and Essential Oil Composition of four Ocimum basilicum L. cultivars. J. Essen. Oil-Bearing Plants 2014, 17, 112–119. [Google Scholar] [CrossRef]
- Radácsi, P.; Inotai, K.; Sárosi, S.; Hári, K.; Seidler-Łożykowska, K.; Musie, S.; Zámboriné, É.N. Effect of irrigation on the production and volatile compounds of sweet basil cultivars (L.). Herba Polon. 2020, 66, 14–24. [Google Scholar] [CrossRef]
- Nozipho, M.M.; Puffy, S.; Martin, S.J.; Learmonth, R.A.; Mojela, N.; Teubes, C. Plant shoot age and temperature effects on essential oil yield and oil composition of rose-scented Geranium (Pelargonium sp.) grown in South Africa. J. Essen. Oil Res. 2006, 18, 106–110. [Google Scholar]
- dos Santos, C.P.; de Oliveira, T.C.; Pinto, J.A.O.; Fontes, S.S.; Cruz, E.M.O.; de Fátima Arrigoni-Blank, M.; Andrade, T.M.; de Matos, I.L.; Alves, P.B.; Innecco, R.; et al. Chemical diversity and influence of plant age on the essential oil from Lippia sidoides Cham. germplasm. Ind. Crops Prod. 2015, 76, 416–421. [Google Scholar] [CrossRef]
- Daghbouche, S.; Ammar, I.; Rekik, D.M.; Djazouli, Z.E.; Zebib, B.; Merah, O. Effect of phenological stages on essential oil composition of Cytisus triflorus L’Her. J. King Saud Uni. Sci. 2020, 32, 2383–2387. [Google Scholar] [CrossRef]
- Sarmoum, R.; Haid, S.; Biche, M.; Djazouli, Z.; Zebib, B.; Merah, O. Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.). Agronomy 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Zarrinpashne, S.; Kandi, S.G. A study on the extraction of essential oil of Persian black cumin using static supercritical CO2 extraction, and comparison with hydro-distillation extraction method. Separation Sci. Tech. 2019, 54, 1778–1786. [Google Scholar] [CrossRef]
- Vidic, D.; Čopra-Janićijević, A.; Miloš, M.; Maksimović, M. Effects of different methods of isolation on volatile composition of Artemisia annua L. Int. J. Anal. Chem. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Rowshan, V.; Bahmanzadegan, A.; Saharkhiz, M.J. Influence of storage conditions on the essential oil composition of Thymus daenensis Celak. Indust. Crops Prod. 2013, 49, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Ghasemifar, Z.; Arianfar, A.; Mohammadi, A. The effect of storage conditions on the essential oil of Ziziphora clinopodiodes. J. Essen. Oil Bearing Plants 2020, 23, 616–621. [Google Scholar] [CrossRef]
- Damalas, C.A. Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic. 2019, 246, 360–365. [Google Scholar] [CrossRef]
- Radácsi, P.; Inotai, K.; Sárosi, S.; Czövek, P.; Bernáth, J.; Németh, É. Effect of water supply on the physiological characteristic and production of basil (Ocimum basilicum L.). Europ. J. Horti. Sci. 2010, 75, 193–197. [Google Scholar]
- Khalid, K.A. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 2006, 20, 289–296. [Google Scholar]
- Kordi, S.; Saidi, M.; Ghanbari, F. Induction of Drought Tolerance in Sweet Basil (Ocimum basilicum L) by Salicylic Acid. Int. J. Agric. Food Res. 2013, 2, 18–26. [Google Scholar] [CrossRef]
- Alishah, H.M.; Heidari, R.; Hassani, A.; Dizaji, A.A. Effect of water stress on some morphological and biochemical characteristics of burple basil (Ocimum basilicum). J. Biol. Sci. 2006, 6, 763–767. [Google Scholar]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Ghanbari, M.; Ariafar, S. The study of different levels of zeolite application on quantitative and qualitative parameters in basil (Ocimum basilicum L.) under drought conditions. Int. J. Agric. Res. Rev. 2013, 3, 844–853. [Google Scholar]
- Khan, M.M.; Hanif, M.A.; Abraham, A.S. Variations in basil antioxidant contents in relation to deficit irrigation. J. Med. Plants Res. 2012, 6, 2220–2223. [Google Scholar]
- dos Santos, M.S.; Costa CA, S.; Gomes, F.P.; do Bomfim Costa, L.C.; de Oliveira, R.A.; da Costa Silva, D. Effects of water deficit on morpho-physiology, productivity, and chemical composition of Ocimum africanum Lour (Lamiaceae). Afr. J. Agric. Res. 2016, 11, 1924–1934. [Google Scholar]
- Rasouli, D.; Fakheri, B. Effects of drought stress on quantitative and qualitative yield, physiological characteristics, and essential oil of Ocimum basilicum L. and Ocimum americanum L. Iran. J. Med. Arom. Plants 2016, 32, 900–914. [Google Scholar]
- Szabó, K.; Zubay, P.; Zámboriné, N. What shapes our knowledge of the relationship between water deficiency stress and plant volatiles? Acta Physiol. Plant. 2020, 42, 130. [Google Scholar] [CrossRef]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part I: A study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Barrs, H.D. Determination of water deficits in plant tissues. In Water Deficits and Plant Growth; Koslowski, T.T., Ed.; Academic Press: New York, NY, USA, 1968; pp. 235–368. [Google Scholar]
- Weatherley, P.E. Studies in the water relations of the cotton plant I. The field measurement of water deficits in leaves. New Phytol. 1950, 49, 81–97. [Google Scholar]
- Hungarica, P. Pharmacopoeia Hungarica, 7th ed.; ResearchGate: Budapest, Hungary, 1986; pp. 395–398. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phospho-tungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- van Den Dool, H.; Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Tátrai, Z.A.; Sanoubar, R.; Pluhár, Z.; Mancarella, S.; Orsini, F.; Gianquinto, G. Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. Int. J. Agron. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Radácsi, P.; Inotai, K.; Sárosi, S.; Németh, É. Effect of soil water content on the physiological parameters, production, and active substances of summer savory (Satureja hortensis L.). Acta Scientiarum Polonorum Hortorum Cultus 2016, 15, 3–12. [Google Scholar]
- Beadle, C.L.; Ludlow, M.M.; Honeysett, J.L. Water relations. In Techniques in Bioproductivity and Photosynthesis, 2nd ed.; Coombs, J., Hall, D.O., Long, S.P., Scurlock, J.M.O., Eds.; Pergamon: Oxford, UK, 1985; pp. 50–61. [Google Scholar]
- Rahimia, A.; Hosseinib, S.M.; Pooryoosefc, M.; Fatehd, I. Variation of leaf water potential, relative water content, and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. Plant Ecophysiol. 2010, 2, 53–60. [Google Scholar]
- Puangbut, D.; Jogloy, S.; Vorasoot, N. Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions. Agric. Water Manag. 2017, 188, 29–35. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stresses: Effects, mechanisms, and management. Agron. Sust. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates Inc. Publishers: Sunderland, MA, USA, 2006; pp. 33–46. [Google Scholar]
- Sirousmehr, A.; Arbabi, J.; Asgharipour, M.R. Effect of drought stress levels and organic manures on yield, essential oil content, and some morphological characteristics of sweet basil (Ocimum basilicum). Adv. Environ. Biol. 2014, 8, 1322–1327. [Google Scholar]
- Martínez-Natarén, D.A.; Villalobos-Perera, P.A.; Munguía-Rosas, M.A. Morphology and density of glandular trichomes of Ocimum campechianum and Ruellia nudiflora in contrasting light environments: A scanning electron microscopy study. Flora 2018, 248, 28–33. [Google Scholar] [CrossRef]
- Werker, E.; Putievsky, E.; Ravid, U.; Dudai, N.; Katzir, I. Glandular Hairs and Essential Oil in Developing Leaves of Ocimum basilicum L. (Lamiaceae). Ann. Bot. 1993, 71, 43–50. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Romero, M.; Llanderal, A.; Cermeño, P.; Lao, M.; Segura, M. Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in Six lamiaceae species. Water 2019, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Forouzandeh, M.; Fanoudi, M.; Arazmjou, E.; Tabiei, H. Effect of drought stress and types of fertilizers on the quantity and quality of medicinal plant basil (Ocimum basilicum L.). Indian J. Innov. Dev. 2012, 1, 734–737. [Google Scholar]
- Sorial, M.E.; El-Gamal, S.M.; Gendy, A.A. Response of sweet basil to jasmonic acid application in relation to different water supplies. Biosci. Res. 2010, 7, 39–47. [Google Scholar]
- Gupta, S.; Srivastava, A.; Shasany, A.K.; Gupta, A.K. Genetics, Cytogenetics, and Genetic Diversity in the Genus Ocimum. In The Ocimum Genome; Springer: Cham, Switzerland, 2018; pp. 73–87. [Google Scholar]
- Putievsky, E.; Galambosi, B. Production systems of sweet basil. In Basil: The Genus Ocimum; Hiltunen, R., Holm, Y., Eds.; Harwood Academic Publishers: Amsterdam, The Netherlands, 1999; pp. 39–66. [Google Scholar]
pH H2O | Humus % | NO3-N mg/Kg | P2O5 mg/Kg | K2O mg/Kg | Ca % | Mg mg/Kg | Fe mg/Kg | Mn mg/Kg | Zn mg/Kg | Cu mg/Kg |
---|---|---|---|---|---|---|---|---|---|---|
7.19 | 2.76 | 39.20 | 154.00 | 193.00 | 0.50 | 67.70 | 43.10 | 26.80 | 40.60 | 1.48 |
Species | Relative Water Content (%) | Chlorophyll Content (SPAD Value) | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 85.38 Aa | 79.95 Aa | 71.60 Ab | 40.18 Ab | 42.62 Bb | 54.00 Aa |
O. x africanum | 82.85 Aa | 75.32 Ab | 66.54 Abc | 43.27 Ab | 51.68 Aa | 53.11 Aa |
O. americanum | 85.85 Aa | 73.58 Ab | 56.74 Bc | 40.47 Ab | 45.80 ABb | 51.69 Aa |
Species | Plant Height (cm) | Canopy Diameter (cm) | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 60.30 Aa | 60.00 Aa | 55.50 Ac | 45.90 Ba | 42.50 Aba | 35.90 Ab |
O. x africanum | 52.50 Ba | 47.80 Bb | 45.40 Bb | 45.50 Ba | 40.30 Bb | 34.40 Ac |
O. americanum | 51.10 Ba | 47.50 Bb | 41.00 Cc | 49.70 Aa | 46.80 Aa | 36.80 Ab |
Species | Leaf Area (cm2/Leaf) | Root Fresh Weight (g/PLANT) | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 45.15 Aa | 38.33 Aa | 22.31 Ab | 84.83 Aa | 63.83 Ab | 34.67 Ac |
O. x africanum | 10.64 Ba | 8.18 Bb | 5.45 Bc | 18.50 Ba | 15.00 Ba | 8.50 Bb |
O. americanum | 11.76 Ba | 8.83 Bb | 5.50 Bc | 13.67 Ba | 7.83 Cb | 5.90 Bb |
Species | Fresh Herb Weight (g/Plant) | Dry Herb Weight (g/Plant) | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 344.70 Aa | 279.00 Ab | 169.90 Ac | 75.30 Aa | 58.00 Ab | 34.90 Ac |
O. x africanum | 212.30 Ca | 134.80 Cb | 93.70 Bc | 49.70 Ca | 38.10 Bb | 26.30 Bc |
O. americanum | 217.40 Ba | 191.20 Bb | 97.50 Bc | 65.20 Ba | 56.70 Ab | 31.10 ABc |
Species | Essential Oil Content (mL/100 g DM.; %) | Essential Oil Yield (mL/Plant) | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 1.15 Ba | 0.61 Bb | 0.70 Bab | 0.78 Ba | 0.34 Bb | 0.24 Bb |
O. x africanum | 2.79 Aa | 2.72 Aa | 2.76 Aa | 1.28 Aa | 0.97 Ab | 0.68 Ac |
O. americanum | 0.70 Ba | 0.76 Ba | 0.54 Cb | 0.44 Ca | 0.40 Ba | 0.16 Cb |
Species | Glandular Hair Density/100 mm2 | Glandular Hair Number/Leaf | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 235.70 Bb | 306.58 Ba | 236.94 Bb | 10306.43 Aa | 11937.80 Aa | 5435.00 Bb |
O. x africanum | 944.04 Ab | 869.40 Ab | 1381.84 Aa | 10100.30 Aa | 7360.70 Bb | 7307.10 Ab |
O. americanum | 347.02 Bab | 308.47 Bb | 402.98 Ba | 4132.46 Ba | 2724.66 Cb | 2128.60 Cb |
Species | Total Polyphenol Content (mg GAE/g DW) | Antioxidant Capacity (mg AAE/g DW) | ||||
---|---|---|---|---|---|---|
Soil Water Capacity (%) | ||||||
70 | 50 | 30 | 70 | 50 | 30 | |
O. basilicum ‘Genovese’ | 72.67 Bb | 73.19 Ab | 81.63 Aa | 124.37 Aa | 113.95 Ab | 108.66 Ab |
O. x africanum | 82.73 Aa | 77.99 Aa | 74.57 Aa | 126.84 Aa | 120.02 Aab | 110.03 Ab |
O. americanum | 73.20 Ba | 66.70 Aa | 75.48 Aa | 96.39 Ba | 78.54 Bb | 60.74 Bc |
Components | RT | RI | O. basilicum ‘Genovese’ | O. x africanum | O. americanum | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
70% | 50% | 30% | 70% | 50% | 30% | 70% | 50% | 30% | |||
α-pinene (M) | 5.56 | 938 | 0.53 | 0.17 | 0.24 | 1.75 | 2.50 | 2.57 | 0.06 | 0.05 | 0.10 |
camphen (M) | 5.95 | 952 | 0.80 | 0.07 | 0.09 | 2.38 | 1.68 | 2.44 | 0.06 | - | 0.03 |
β-pinene (M) | 6.64 | 981 | 0.70 | 0.32 | 0.61 | 2.06 | 3.33 | 2.71 | 0.07 | - | 0.07 |
limonene (M) | 8.19 | 1029 | 2.28 | 0.38 | 0.56 | 10.78 | 12.15 | 11.55 | 0.17 | 0.14 | 0.26 |
1,8-cineole (OM) | 8.38 | 1034 | 9.46 | 8.51 | 9.42 | 21.58 | 30.37 | 23.49 | 0.33 | 0.13 | 0.22 |
linalool (OM) | 10.76 | 1097 | 35.02 | 38.49 | 35.21 | 0.99 | 1.18 | 0.50 | 4.81 | 5.17 | 5.66 |
camphor (OM) | 12.68 | 1144 | 9.49 | 1.21 | 1.12 | 34.96 a | 21.18 b | 27.83 ab | |||
α-terpineol (OM) | 14.55 | 1189 | 1.44 | 1.56 | 1.50 | 2.49 | 3.13 | 2.38 | 0.48 | 0.52 | 0.47 |
nerol (OM) | 16.15 | 1227 | 0.23 | - | - | - | - | - | 8.51 | 9.28 | 9.87 |
neral (citral b) (OM) | 16.58 | 1238 | 0.33 | - | - | - | - | - | 24.93 | 21.67 | 21.65 |
geranial (citral a) (OM) | 17.86 | 1268 | 0.46 | - | - | - | - | - | 32.84 | 30.26 | 29.97 |
iso-bornyl acetate (OM) | 18.41 | 1281 | 1.80 | 2.86 | 3.77 | - | - | - | - | - | - |
eugenol (OM) | 21.44 | 1361 | 3.50 | 2.60 | 2.44 | 0.07 | 0.06 | 0.15 | 0.07 | - | |
α-copaene (S) | 22.03 | 1377 | 0.45 | 0.32 | 0.24 | 1.67 | 1.89 | 2.39 | 0.39 | 0.45 | 0.54 |
trans-β-caryophyllene (S) | 23.68 | 1420 | 0.49 | 0.38 | 0.37 | 1.16 | 1.37 | 1.76 | 3.63 | 4.50 | 5.71 |
trans-α-bergamotene (S) | 24.36 | 1437 | 3.83 | 5.00 | 6.77 | 0.24 | 0.28 | 0.17 | 1.51 | 1.81 | 2.08 |
α-humulene (S) | 25.07 | 1454 | 1.25 | 1.12 | 1.04 | 4.86 | 5.37 | 6.66 | 0.91 | 1.03 | 1.15 |
germacrene D (S) | 26.18 | 1482 | 2.58 | 3.95 | 3.63 | 1.42 | 1.46 | 1.58 | 1.46 | 1.93 | 1.75 |
guaiene, δ- (S) | 27.18 | 1507 | 2.35 | 3.64 | 3.11 | 0.15 | 0.15 | 0.12 | - | - | - |
cis-γ-cadinene (S) | 27.49 | 1515 | 2.40 | 3.75 | 3.35 | 0.10 | 0.07 | 0.20 | - | - | - |
δ-cadinene (S) | 27.8 | 1524 | 0.96 | 0.90 | 0.92 | 2.07 | 2.28 | 2.74 | 0.17 | 0.19 | 0.23 |
bisabolene <(Z)-α-> (S) | 28.54 | 1544 | 1.70 | 0.09 | 0.10 | 1.57 | 2.26 | 1.07 | 3.98 | 5.11 | 5.57 |
caryophyllene oxide (OS) | 30.2 | 1590 | 0.17 | - | - | - | - | - | 2.82 | 2.85 | 2.55 |
tau-cadinol (OS) | 32.26 | 1644 | 6.55 | 10.52 | 9.54 | 0.18 | 0.19 | - | 0.14 | 0.14 | 0.24 |
other (components ≤ 2%) | 7.83 | 11.07 | 12.46 | 8.22 | 8.11 | 8.62 | 9.89 | 11.71 | 9.64 | ||
Total identified | 96.60 | 96.91 | 96.49 | 98.70 | 99.01 | 98.78 | 97.31 | 97.01 | 97.76 | ||
Monoterpenes | 5.72 | 1.78 | 2.97 | 19.04 | 22.15 | 21.65 | 0.99 | 0.44 | 0.54 | ||
Oxygenated Monoterpenes | 62.33 | 54.14 | 51.88 | 65.38 | 60.87 | 58.97 | 71.97 | 71.69 | 76.37 | ||
Sesquiterpenes | 19.99 | 25.92 | 25.71 | 13.56 | 15.64 | 17.22 | 18.65 | 16.13 | 13.01 | ||
Oxygenated Sesquiterpenes | 8.41 | 13.08 | 11.79 | 0.18 | 0.19 | 0.00 | 5.86 | 6.28 | 5.66 | ||
Phenylpropanes | 0.27 | 0.36 | 0.48 | 0.79 | 1.23 | 1.18 | 0.14 | 0.09 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulugeta, S.M.; Radácsi, P. Influence of Drought Stress on Growth and Essential Oil Yield of Ocimum Species. Horticulturae 2022, 8, 175. https://doi.org/10.3390/horticulturae8020175
Mulugeta SM, Radácsi P. Influence of Drought Stress on Growth and Essential Oil Yield of Ocimum Species. Horticulturae. 2022; 8(2):175. https://doi.org/10.3390/horticulturae8020175
Chicago/Turabian StyleMulugeta, Sintayehu Musie, and Péter Radácsi. 2022. "Influence of Drought Stress on Growth and Essential Oil Yield of Ocimum Species" Horticulturae 8, no. 2: 175. https://doi.org/10.3390/horticulturae8020175
APA StyleMulugeta, S. M., & Radácsi, P. (2022). Influence of Drought Stress on Growth and Essential Oil Yield of Ocimum Species. Horticulturae, 8(2), 175. https://doi.org/10.3390/horticulturae8020175