Yield and Quality of Winter Jujube under Different Fertilizer Applications: A Field Investigation in the Yellow River Delta
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Region and Sampling
2.2. Analysis of Soil and Leaf Samples
2.3. Fruit Quality Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Properties and NPK in Leaf Samples
3.2. Fruit Yield and Quality
3.3. Correlation between Fruit Quality and Leaf NPK Contents and Soil Properties
4. Discussion
4.1. Effect of Fertilization Mode on Soil Properties
4.2. Effect of Fertilization Mode on Fruit Yield and Quality
4.3. Fertilization Strategy for Winter Jujube Cultivation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keles, H. Changes of some horticultural characteristics in jujube (Ziziphus jujube Mill.) fruit at different ripening stages. Turk. J. Agr. For. 2020, 44, 391–398. [Google Scholar] [CrossRef]
- Yang, S.; Xing, S.; Liu, C.; Du, Z.; Wang, H.; Xu, Y. Effects of root pruning on the vegetative growth and fruit quality of Zhanhuadongzao trees. Hort. Sci. 2010, 37, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.F.; Wang, X.J.; Guo, S.H. Investigation on the development of “Zhanhua” winter jujube production. Bull. Agric. Sci. Technol. 2021, 3, 14–16. (In Chinese) [Google Scholar]
- Gao, Q.H.; Wu, C.S.; Wang, M. The jujube (Ziziphus jujuba Mill.) fruit: A review of current knowledge of fruit composition and health benefits. J. Agric. Food Chem. 2013, 61, 3351–3363. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, M.; Ozrenk, K.; Ercisli, S.; Kan, T.; Kodad, O.; Hegedus, A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014, 47, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.G.; Pan, Z.L. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Mill.) during three edible maturity stages. LWT—Food Sci. Technol. 2016, 66, 56–62. [Google Scholar] [CrossRef]
- Gao, Q.H.; Wu, C.S.; Yu, J.G.; Wang, M.; Ma, Y.J.; Cui, L.L. Textural characteristic, antioxidant activity, sugar, organic acid, and phenolic profiles of 10 promising jujube (Ziziphus jujuba Mill.) selections. J. Food Sci. 2012, 77, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Holmes, A.W.; McCurran, A.G.; Saunders, S.J. Impact of management systems on soil properties and their relationships to kiwifruit quality. Commun. Soil Sci. Plant Anal. 2011, 42, 332–357. [Google Scholar] [CrossRef]
- Guo, K.B.; Guo, Z.; Guo, Y.; Qiao, G. The effects of soil nutrient on fruit quality of “Hayward” kiwifruit (Actinidia chinensis) in Northwest China. Eur.J. Hortic. Sci. 2020, 85, 471–476. [Google Scholar] [CrossRef]
- Sun, H.L.; Huang, X.; Chen, T.; Zhou, P.Y.; Huang, X.X.; Jin, W.X.; Liu, D.; Zhang, J.G.; Zhou, J.G.; Wang, Z.J.; et al. Fruit quality prediction based on soil mineral element content in peach orchard. Food Sci. Nutr. 2022, 10, 1756–1767. [Google Scholar] [CrossRef]
- Galindo, A.; Noguera-Artiaga, L.; Cruz, Z.N.; Burló, F.; Hernández, F.; Torrecillas, A.; Carbonell-Barrachina, Á.A. Sensory and physico-chemical quality attributes of jujube fruits as affected by crop load. LWT-Food Sci. Technol. 2015, 63, 899–905. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Lakshmanan, P.; Wang, X.Z.; Xiong, H.Y.; Yang, L.S.; Liu, B.; Shi, X.J.; Chen, X.P.; Wang, J.; Zhang, Y.Q.; et al. Global reactive nitrogen loss in orchard systems: A review. Sci. Total Environ. 2022, 821, 153462. [Google Scholar] [CrossRef] [PubMed]
- Reche, J.; Hernández, F.; Almansa, M.S.; Carbonell-Barrachina, Á.; Legua, A.P.; Amorós, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. LWT—Food Sci. Technol. 2019, 99, 438–444. [Google Scholar] [CrossRef]
- Ye, S.L.; Liu, T.C.; Niu, Y. Effects of organic fertilizer on water use, photosynthetic characteristics, and fruit quality of pear jujube in northern Shaanxi. Open Chem. 2020, 18, 537–545. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agro-Chemical Analysis; Agricultural Scientech Press: Beijing, China, 2000. [Google Scholar]
- Cui, N.B.; Du, T.S.; Kang, S.Z.; Li, F.S.; Zhang, J.H.; Wang, M.X.; Li, Z.J. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees. Agric. Water Manag. 2008, 95, 489–497. [Google Scholar] [CrossRef]
- Schnier, H.F. Nitrogen-15 recovery fraction in flooded tropical rice as affected by added nitrogen interaction. Eur. J. Agron. 1994, 3, 161–167. [Google Scholar] [CrossRef]
- Lopes, J.I.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Raimundo, S.; Arrobas, M.; Rodrigues, M.Â.; Correia, C.M. Inorganic fertilizationat high N rate increased olive yield of a rain fed orchard but reduced soil organic matter in comparison to three organic amendments. Agronomy 2021, 11, 2172. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, H.; Wu, G.; Chen, X.; Gruda, N.; Li, X.; Dong, J.; Duan, Z. Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Front. Plant Sci. 2021, 12, 736613. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, T.; Peng, J.; Zhang, P.; Liu, X.; Zhong, C. Multivariate analysis of relationship between soil nutrients and fruit quality in ‘Donghong’ kiwifruit. Plant Sci. J. 2021, 39, 193–200. [Google Scholar]
- Tian, J.H.; Wei, K.; Condron, L.M.; Chen, Z.H.; Xu, Z.W.; Feng, J.; Chen, L.J. Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogen-mineralizing enzymes in semi-arid steppe and abandoned cropland. Plant Soil 2017, 417, 217–229. [Google Scholar] [CrossRef]
- Mao, X.L.; Xu, X.L.; Lu, K.P.; Gielen, G.; Luo, J.F.; He, L.Z.; Donnison, A.; Xu, Z.X.; Xu, J.; Yang, W.Y. Effect of 17 years of organic and inorganic fertilizer applications on soil phosphorus dynamics in a rice-wheat rotation cropping system in eastern China. J. Soil Sediment. 2015, 15, 1889–1899. [Google Scholar] [CrossRef]
- Sanyal, D.; Brar, B.S.; Dheri, G.S. Organic and inorganic integrated fertilization improves non-exchangeable potassium release and potassium availability in soil. Commun. Soil Sci. Plant 2019, 50, 2013–2022. [Google Scholar] [CrossRef]
- Qiao, L.; Cao, M.; Zheng, J.; Zhao, Y.; Zheng, Z. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC Plant Biol. 2017, 17, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, A.E.; Poulton, P.R.; Coleman, K. Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 2009, 101, 1–57. [Google Scholar]
- Sereme, A.; Dabire, C.; Koala, M.; Somda, M.K.; Traore, A.S. Influence of organic and mineral fertilizers on the antioxidants and total phenolic compounds level in tomato (Solanum lycopersicum) var. Mongal F1. J. Exp. Biol. Agric. Sci. 2016, 4, 414–420. [Google Scholar] [CrossRef]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Fenoll, J.; Flores, P. Impact of nitrogen supply limitation on tomato fruit composition. Sci. Hortic. 2020, 264, 109173. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Gong, X.; Li, S.; Pang, J.; Chen, Z.; Sun, J. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agric. Water Manag. 2021, 245, 106570. [Google Scholar] [CrossRef]
- Sivak, M.N.; Walker, D.A. Photosynthesis in vivo can be limited by phosphate supply. New Phytol. 1986, 102, 499–512. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.W.; Li, M.; Zhang, C.M.; Tan, Q.L.; Yang, X.Z.; Sun, X.C.; Pan, Z.Y.; Deng, X.X.; Hu, C.X. Effects of phosphorus on fruit soluble sugar and citric acid accumulations in citrus. Plant Physiol. Bioch. 2021, 160, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Lester, G.E.; Jifon, J.L.; Makus, D.J. Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L) case study. Plant Soil 2010, 335, 117–131. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Chen, S.; Yan, Z.J.; Ha, X.J.; Qin, W.; Chen, Q. Combining application of chemical fertilizer with manure significantly increased potassium availability in an alkaline soil. Nutr. Cycl. Agroecosyst. 2020, 116, 285–298. [Google Scholar] [CrossRef]
- Rodríguez-Ortiz, J.C.; Díaz-Flores, P.E.; Zavala-Sierra, D.; Preciado-Rangel, P.; Rodríguez-Fuentes, H.; Estrada-González, A.J.; Carballo-Méndez, F.J. Organic vs. conventional fertilization: Soil nutrient availability, production, and quality of tomato fruit. Water Air Soil Pollut. 2022, 233, 87. [Google Scholar] [CrossRef]
- Hopkirk, G.; Snelgar, W.P.; Horne, S.F.; Manson, P.J. Effect of increased preharvest temperature on fruit quality of kiwifruit (Actinidia deliciosa). J. Hortic. Sci. 1989, 64, 227–237. [Google Scholar] [CrossRef]
- Snelgar, W.P.; Hopkirk, G.; Seelye, R.J.; Martin, P.J.; Manson, P.J. Relationship between canopy density and fruit quality of kiwifruit. N. Z. J. Crop Hortic. Sci. 1998, 26, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Liu, P.; Li, Y.; Ma, L.; Alva, A.; Dou, Z.; Chen, Q.; Zhang, F. Phosphorus in China’s intensive vegetable production systems: Over-fertilization, soil enrichment, and environmental implications. J. Environ. Qual. 2013, 42, 982. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Jiang, S.Y.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.W.; Zhang, Y. Human perturbation of the global phosphorus cycle: Changes and consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef]
- Zhang, M.H.; Sun, D.Y.; Niu, Z.R.; Yan, J.X.; Zhou, X.L.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv. ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
Fertilization Mode | Fertilizer | Application Rate (kg ha−1) | |||
---|---|---|---|---|---|
Organic Manure | N | P | K | ||
OM | Organic manure | 7.5~10.0 × 103 | 100~150 | 35~45 | 85~125 |
OC | Organic manure + NPK compound fertilizer | 3.0~4.5 × 103 | OF: 40~70 CF: 335~380 | OF: 14~20 CF: 86~115 | OF: 34~60 CF: 216~250 |
HC | NPK compound fertilizer at high rate | 0 | 540~600 | 165~200 | 375~450 |
LC | NPK compound fertilizer at low rate | 0 | 150~225 | 65~100 | 100~125 |
Soil Layer | Fertilization Mode | pH | SOM (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
0–20 cm | OM | 7.93 a | 16.1 a | 0.56 a | 0.057 bc | 0.96 a | 29.1 c | 25.7 b | 265 a |
OC | 7.90 a | 15.0 b | 0.55 a | 0.065 ab | 0.93 a | 38.2 b | 42.7 a | 264 a | |
HC | 8.02 a | 12.3 c | 0.45 b | 0.072 a | 0.86 b | 47.2 a | 28.5 b | 185 b | |
LC | 7.96 a | 13.0 c | 0.43 b | 0.048 c | 0.86 b | 31.0 bc | 23.8 b | 167 b | |
20–40 cm | OM | 8.26 a | 9.85 a | 0.48 a | 0.043 a | 0.89 a | 19.1 c | 16.1 a | 223 a |
OC | 8.26 a | 9.23 a | 0.42 a | 0.042 a | 0.85 ab | 33.6 b | 20.5 b | 198 a | |
HC | 8.25 a | 6.50 b | 0.35 b | 0.041 a | 0.76 b | 40.7 a | 13.1 bc | 138 b | |
LC | 8.28 a | 7.04 b | 0.38 b | 0.042 a | 0.76 b | 20.2 c | 11.3 c | 135 b |
Fertilization Mode | Yield (t ha−1) | TSS (mg g−1) | Vc (mg g−1) | Protein (mg g−1) | TA (mg g−1) | Firmness (N cm−2) | TSS/TA |
---|---|---|---|---|---|---|---|
OM | 2.14 c | 195.9 a | 2.23 ab | 3.62 a | 3.39 ab | 8.54 b | 5.79 a |
OC | 2.81 b | 179.8 b | 2.14 b | 3.51 a | 3.28 b | 8.73 b | 5.50 a |
HC | 3.37 a | 159.3 c | 2.17 b | 2.96 b | 3.51 a | 9.18 a | 4.56 c |
LC | 1.92 c | 176.5 b | 2.36 a | 3.45 a | 3.42 a | 9.33 a | 5.17 b |
Parameter | Yield | TSS | Vc | Protein | TA | Firmness | TSS/TA | |
---|---|---|---|---|---|---|---|---|
0–20 cm soil | SOM | −0.500 * | 0.748 ** | −0.200 | 0.644 ** | −0.371 | −0.236 | 0.835 ** |
TN | −0.116 | 0.363 | −0.228 | 0.638 ** | −0.484* | −0.055 | 0.610 ** | |
TP | 0.720 ** | −0.362 | 0.017 | −0.306 | 0.342 | 0.285 | −0.477 | |
TK | −0.077 | −0.011 | −0.283 | 0.011 | −0.332 | −0.319 | 0.201 | |
AN | 0.831 ** | −0.719 ** | 0.013 | −0.656 ** | 0.418 | 0.245 | −0.824 ** | |
AP | 0.299 | 0.065 | −0.038 | 0.397 | −0.170 | 0.050 | 0.170 | |
AK | −0.212 | 0.609 ** | −0.032 | 0.572 * | −0.131 | −0.110 | 0.571 * | |
20–40 cm soil | SOM | −0.411 | 0.334 | −0.025 | 0.561 * | −0.223 | −0.298 | 0.414 |
TN | −0.328 | 0.464 | 0.182 | 0.356 | −0.114 | −0.249 | 0.468 | |
TP | 0.025 | 0.180 | 0.419 | −0.095 | 0.522* | 0.497 * | −0.142 | |
TK | −0.210 | 0.245 | −0.065 | 0.382 | −0.368 | −0.420 | 0.407 | |
AN | 0.851 ** | −0.629 ** | −0.153 | −0.617 ** | 0.234 | −0.099 | −0.651 ** | |
AP | −0.311 | 0.374 | 0.062 | 0.490 * | −0.164 | −0.175 | 0.417 | |
AK | −0.410 | 0.384 | −0.106 | 0.570 * | −0.239 | −0.237 | 0.468 | |
Vegetative shoot | N | 0.613 ** | −0.061 | −0.199 | −0.467 | 0.179 | −0.305 | −0.135 |
P | −0.283 | 0.528 * | 0.237 | −0.002 | −0.046 | −0.214 | 0.471 | |
K | −0.203 | 0.268 | −0.041 | 0.420 | −0.224 | 0.108 | 0.391 | |
Fruit-bearing shoot | N | 0.194 | −0.256 | 0.421 | 0.188 | 0.194 | 0.586 * | −0.276 |
P | −0.432 | 0.400 | −0.011 | 0.480 | −0.545 * | −0.493 * | 0.650 ** | |
K | −0.094 | 0.332 | 0.042 | 0.231 | −0.163 | 0.230 | 0.404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yu, H.; Yao, H.; Deng, T.; Yin, K.; Liu, J.; Wang, Z.; Xu, J.; Xie, W.; Zhang, Z. Yield and Quality of Winter Jujube under Different Fertilizer Applications: A Field Investigation in the Yellow River Delta. Horticulturae 2023, 9, 152. https://doi.org/10.3390/horticulturae9020152
Zhang Y, Yu H, Yao H, Deng T, Yin K, Liu J, Wang Z, Xu J, Xie W, Zhang Z. Yield and Quality of Winter Jujube under Different Fertilizer Applications: A Field Investigation in the Yellow River Delta. Horticulturae. 2023; 9(2):152. https://doi.org/10.3390/horticulturae9020152
Chicago/Turabian StyleZhang, Yanpeng, Hui Yu, Haiyan Yao, Tingting Deng, Kuilin Yin, Jingtao Liu, Zhenhua Wang, Jikun Xu, Wenjun Xie, and Zaiwang Zhang. 2023. "Yield and Quality of Winter Jujube under Different Fertilizer Applications: A Field Investigation in the Yellow River Delta" Horticulturae 9, no. 2: 152. https://doi.org/10.3390/horticulturae9020152
APA StyleZhang, Y., Yu, H., Yao, H., Deng, T., Yin, K., Liu, J., Wang, Z., Xu, J., Xie, W., & Zhang, Z. (2023). Yield and Quality of Winter Jujube under Different Fertilizer Applications: A Field Investigation in the Yellow River Delta. Horticulturae, 9(2), 152. https://doi.org/10.3390/horticulturae9020152