Transcriptome Analysis of Watercore in Pineapple
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Assays for Monosaccharide Content
2.3. Determination of Cell Wall Composition
2.4. Assays for Calcium Content
2.5. Extraction and Determination of Total Phenolic Content
2.6. RNA Extraction, cDNA Library Preparation, and RNA Sequencing
2.7. Quality Control and Mapping
2.8. Differential Gene Expression and Enrichment Analysis
2.9. Gene Expression Analysis by Using Quantitative Real-Time PCR
2.10. Data Analysis
3. Results
3.1. Phenotype and Physiology Responses of Pineapples with Watercore
3.2. Transcriptome Assembly
3.3. Functional Annotation and Classification of DEGs
3.4. Isolation of Genes Related to Pineapple Watercore
3.5. Isolation of Transcription Factors (TFs) Related to Pineapple Watercore
3.6. Confirmation of DEGs Related to the Phenylpropanoid Biosynthesis Pathway Using qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.M.; Hashim, N.; Aziz, S.A.; Lasekan, O. Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int. 2020, 137, 109675. [Google Scholar] [CrossRef]
- Chen, C.C.; Paull, R.E. Sugar metabolism and pineapple flesh translucency. J. Am. Soc. Hortic. Sci. 2000, 125, 558–562. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Paull, R.E. Fruit temperature and crown removal on the occurrence of pineapple fruit translucency. Sci. Hortic. 2001, 88, 85–95. [Google Scholar] [CrossRef]
- Paull, R.E.; Reyes, M.E. Preharvest weather conditions and pineapple fruit translucency. Sci. Hortic. 1996, 66, 59–67. [Google Scholar] [CrossRef]
- Murai, K.; Chen, N.J.; Paull, R.E. Pineapple crown and slip removal on fruit quality and translucency. Sci. Hortic. 2021, 283, 110087. [Google Scholar] [CrossRef]
- Cano-Reinoso, D.M.; Kharisun, K.; Soesanto, L.; Wibowo, C. Effect of calcium and silicon fertilization after flowering on pineapple mineral status and flesh translucency. Plant Physiol. Rep. 2022, 27, 96–108. [Google Scholar] [CrossRef]
- Nishitania, C.; Inoueb, E.; Saitoa, T.; Ogatac, N.; Kitac, K.; Gonaic, T.; Kasumic, M.; Ishiic, R.; Sawamuraa, Y.; Takadaa, N.; et al. Transcriptome analysis of watercore in Pyrus pyrifolia by comparing pairs of susceptible and resistant F1 sibs. Sci. Hortic. 2020, 264, 109136. [Google Scholar] [CrossRef]
- Orcheski, B.; Meng, D.; Bai, Y.; Fei, Z.J.; Cheng, L.L. The transcriptomes of healthy and bitter pit-affected ‘Honeycrisp’ fruit reveal genes associated with disorder development and progression. Tree Genet. Genomes 2021, 17, 37. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, C.M.; Zhao, X.; Fei, Z.J.; Wan, K.K.; Zhang, Z.; Pang, X.M.; Yin, X.; Bai, Y.; Sun, X.Q.; et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees. PLoS Genet. 2016, 12, e1006433. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Wang, W.; Du, L.Q.; Xie, J.H.; Yao, Y.L.; Sun, G.M. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening. Int. J. Mol. Sci. 2012, 13, 9460–9477. [Google Scholar] [CrossRef]
- Phothiset, S.; Charoenrein, S. Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. J. Sci. Food Agric. 2014, 94, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Miqueloto, A.; Amarante, C.V.T.; Steffens, C.A.; Santos, A.; Mitcham, E. Relationship between xylem functionality, calcium content and the incidence of bitter pit in apple fruit. Sci. Hortic. 2014, 165, 319–323. [Google Scholar] [CrossRef]
- Zupan, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Sugar and phenol content in apple with or without watercore. J. Sci. Food Agric. 2016, 96, 2845–2850. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.H.; Wu, Q.S.; Xia, H.; Liu, S.H.; Zhang, H.N.; Zhang, Z.; Sun, G.M. Molecular cloning and characterization of four genes encoding ethylene receptors associated with pineapple (Ananas comosus L.) flowering. Front. Plant Sci. 2016, 7, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melado-Herreros, A.; Munoz-Garcia, M.A.; Blanco, A.; Val, J.; Fernandez-Valle, M.E.; Barreiro, P. Assessment of watercore development in apples with MRI: Effect of fruit location in the canopy. Postharvest Biol. Tec. 2013, 86, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Yamaki, S.; Kajiura, I.; Omura, M.; Matsuda, K. Watercore in Japanese pear (Pyrus seronita Rehder var. ‘Culta’ Rehder) II Chemical changes in watercored tissue. Sci. Hortic. 1976, 4, 271–277. [Google Scholar] [CrossRef]
- Gao, Z.F.; Jayanty, S.; Beaudry, R.; Loescher, W. Sorbitol transporter expression in apple sink tissues: Implications for fruit sugar accumulation and watercore development. J. Am. Soc. Hort. Sci. 2005, 130, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Feng, F.; Cheng, L. Expression patterns of genes involved in sugarmetabolism and accumulation during apple fruit development. PLoS ONE 2012, 7, e33055. [Google Scholar] [CrossRef] [Green Version]
- Gemma, H.; Oomori, S.; Sugaya, S.; Peng, S.-A.; Iwabori, S. Study on watercore occurrence in ‘Hosui’ Japanese pear. Acta Hort. 2002, 596, 845–850. [Google Scholar] [CrossRef]
- Lee, S.H.; Gemma, S.; Sugaya, Y.; Sekosawa, Y.; Kim, W.S. Changes of cell wall polysaccharides related to watercore in ‘Hosui’ pear fruit (P. pyrifolia) grown in alluvial and volcanic soils. Acta Hort. 2008, 772, 327–332. [Google Scholar] [CrossRef]
- Cebulj, A.; Mikulic-Petkovsek, M.; Lucaciu, C.R.; Veberic, R.; Marinovic, S.; Kolarek, M.; Hutabarat, O.S.; Faramarzi, S.; Rattei, T.; Molitor, C.; et al. Alteration of the phenylpropanoid pathway by watercore disorder in apple (Malus x domestica). Sci. Hortic. 2021, 289, 110438. [Google Scholar] [CrossRef]
- Saure, M.C. Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Sci. Hortic. 2005, 105, 65–89. [Google Scholar] [CrossRef]
- Freitas, S.T.D.; Mitcham, E.J. Factors involved in fruit calcium deficiency disorders. Hortic. Rev. 2012, 40, 107–146. [Google Scholar]
- Volz, R.K.; Alspach, P.A.; Fletcher, D.J.; Ferguson, I.B. Genetic variation in bitter pit and fruit calcium concentrations within a diverse apple germplasm collection. Euphytica 2006, 149, 1. [Google Scholar] [CrossRef]
- Storey, R.; Treeby, M.T.; Milne, J. Crease: Another Ca deficiency-related fruit disorder? J. Hortic. Sci. Biotech. 2002, 77, 565–571. [Google Scholar] [CrossRef]
- Huang, X.M.; Yuan, W.Q.; Wang, H.C.; Li, J.G.; Huang, H.B. Early calcium accumulation may play a role in spongy tissue formation in litchi pericarp. J. Hortic. Sci. Biotech. 2004, 79, 947–952. [Google Scholar] [CrossRef]
- Cano-Reinoso, D.M.; Soesanto, L.; Wibowo, C. Review: Fruit collapse and heart rot disease in pineapple: Pathogen characterization, ultrastructure infections of plant and cell mechanism resistance. Biodiversitas 2021, 22, 2477–2488. [Google Scholar] [CrossRef]
- Chen, N.J.; Paull, R.E. Production and postharvest handling of low acid hybrid pineapple. Acta Hortic. 2017, 1166, 25–34. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Chen, H.J.; Cao, S.F.; Fang, X.J.; Mu, H.L.; Yang, H.L.; Wang, X.; Xu, Q.Q.; Gao, H.Y. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 2015, 188, 44–48. [Google Scholar] [CrossRef]
- Song, L.; Wang, Z.; Wang, Z.; Meng, G.; Zhai, R.; Cai, M.; Ma, F.; Xu, L. Screening of cell wall related genes that are expressed differentially during ripening of pears with different softening characteristics. Postharvest Biol. Tec. 2016, 115, 1–8. [Google Scholar] [CrossRef]
- Li, C.R.; Shen, W.B.; Lu, W.J.; Jiang, Y.M.; Xie, J.H.; Chen, J.Y. 1-MCP delayed softening and affected expression of XET and EXP genes in harvested cherimoya fruit. Postharvest Biol. Tec. 2009, 52, 254–259. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Rea, P.A.; Britten, C.J.; Jennings, I.R.; Calvert, C.M.; Skiera, L.A.; Leigh, R.A.; Sanders, D. Regulation of vacuolar H+-pyrophosphatase by free calcium: A reaction kinetic analysis. Plant Physiol. 1992, 100, 1706–1715. [Google Scholar] [CrossRef] [Green Version]
- Shigaki, T.; Rees, I.; Nakhleh, L.; Hirschi, K.D. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J. Mol. Evol. 2006, 63, 815–825. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Mohanta, N.; Mohanta, Y.K.; Parida, P.; Bae, H. Genome-wide identification of calcineurin b-like (cbl) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events. BMC Plant Biol. 2015, 15, 189. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Lee, Y.; Lee, I.C.; Nam, H.G.; Kwak, J.M. Calmodulin 1 regulates senescence and ABA response in Arabidopsis. Front. Plant Sci. 2018, 9, 803. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.Y.; Du, X. Identifcation characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii. Sci. Rep. 2020, 10, 7474. [Google Scholar] [CrossRef]
- Zhang, K.; Yue, D.Y.; Wei, W.; Hu, Y.; Feng, J.Y.; Zou, Z.R. Characterization and functional analysis of calmodulin and calmodulin-like genes in Fragaria vesca. Front. Plant Sci. 2016, 7, 1820. [Google Scholar] [CrossRef] [Green Version]
- Magnan, F.; Ranty, B.; Charpenteau, M.; Sotta, B.; Galaud, J.P.; Aldon, D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 2008, 56, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Durian, G.; Sedaghatmehr, M.; Matallana-Ramirez, L.P.; Schilling, S.M.; Schaepe, S.; Guerra, T.; Herde, M.; Witte, C.P.; Mueller-Roeber, B.; Schulze, W.X.; et al. Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1. Plant Cell 2020, 32, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Ohura, I.; Kawakita, K.; Yokota, N.; Fujiwara, M.; Shimamoto, K.; Doke, N.; Yoshioka, H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 2007, 19, 1065–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.N.; Ng, C.K.-Y.; Fan, L.M. MYB transcription factors, active players in abiotic stress signaling. Environ. Exp. Bot. 2015, 114, 80–91. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB transcription factor genes as regulators for plant responses: An overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Reads | Total Mapped Reads | Multiple Mapped | Uniquely Mapped |
---|---|---|---|---|
CK1 | 44,916,542 | 42,011,267 (93.53%) | 2,149,734 (4.79%) | 39,861,533 (88.75%) |
CK2 | 48,666,772 | 45,257,409 (92.99%) | 2,367,889 (4.87%) | 42,889,520 (88.13%) |
CK3 | 42,914,366 | 36,218,955 (84.40%) | 1,833,786 (4.27%) | 34,385,169 (80.13%) |
MS1 | 46,000,320 | 42,912,877 (93.29%) | 2,303,502 (5.01%) | 40,609,375 (88.28%) |
MS2 | 41,521,304 | 38,836,987 (93.54%) | 1,942,808 (4.68%) | 36,894,179 (88.86%) |
MS3 | 40,849,212 | 38,192,793 (93.50%) | 1,919,456 (4.70%) | 36,273,337 (88.80%) |
Gene_Id | Gene_Symbol | Type | log2FoldChange | Description |
---|---|---|---|---|
Aco011722 | AcPME | Up | 2.854137583 | pectinesterase 11 |
Aco012969 | AcXET | Up | 1.255265087 | xyloglucan endotrans glucosylase/hydrolase 30 |
Aco016281 | AcIVR1 | Up | 2.289863633 | acid beta-fructofuranosidase |
Aco026402 | AcPKP1 | Up | 2.056829939 | pyruvate kinase family protein |
Aco011398 | AcFRK1 | Up | 1.438435348 | 5-dehydro-2-deoxygluconokinase |
Aco017741 | AcPGMP | Up | 1.386643938 | phosphoglucosamine mutase |
Aco015729 | AcGAE3 | Up | 1.355618 | UDP-glucose 4-epimerase |
Aco012399 | AcUGD4 | Up | 1.486515 | UDP-glucose 6-dehydrogenase family protein |
Aco004861 | AcUGD4 | Up | 2.250983 | UDP-glucose 6-dehydrogenase family protein |
Aco013872 | AcTRE | Up | 1.003237359 | trehalase 1 |
Aco012649 | AcBGLU43 | Up | 4.306265672 | beta glucosidase 43 |
Aco020618 | AcPAL2 | Up | 2.133105338 | phenylalanine ammonia-lyase 2 |
Aco006521 | Ac4CL3 | Up | 1.183466534 | 4-coumarate:CoA ligase 1 |
Aco025129 | Ac4CL5 | Up | 2.921188885 | 4-coumarate:CoA ligase 1 |
Aco016947 | AcHCT | Up | 1.499476601 | hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase |
Aco012069 | AcHCT | Up | 2.79269754 | hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase |
Aco007241 | AcCYP98A1 | Up | 1.636505965 | cytochrome P450%2C family 98%2C subfamily A%2C polypeptide 3 |
Aco012235 | AcCYP | Up | 2.542137756 | cytochrome P450 superfamily protein |
Aco012068 | AcACT | Up | 2.951152256 | HXXXD-type acyl-transferase family protein |
Aco005277 | AcACT | Up | 2.402289818 | HXXXD-type acyl-transferase family protein |
Aco005931 | AcALDH2C4 | Up | 1.807339101 | aldehyde dehydrogenase family 2 member C4 |
Aco014080 | AcCAD1 | Up | 1.019355317 | alcohol dehydrogenase |
Aco001617 | AcPER1 | Up | 3.546972408 | peroxidase superfamily protein |
Aco002056 | AcPER74 | Up | 1.025435249 | peroxidase superfamily protein |
Aco004613 | AcPER51 | Up | 1.074516138 | peroxidase superfamily protein |
Aco004906 | AcPER51 | Up | 1.117580037 | peroxidase superfamily protein |
Aco006231 | AcPER19 | Up | 2.525533948 | hypothetical protein |
Aco008430 | AcPER42 | Up | 1.195773495 | peroxidase superfamily protein |
Aco021357 | AcPOD | Up | 4.360885615 | peroxidase 2 |
Aco019975 | AcMenE | Up | 1.155621331 | 2-succinylbenzoate-CoA ligase |
Aco001760 | AcCaM | Up | 1.428628 | calmodulin 4 |
Aco011911 | AcCDPK | Up | 1.089562 | calcium-dependent protein kinase family protein |
Aco005383 | AcPG | Down | −2.069971595 | pectin lyase-like superfamily protein |
Aco012764 | AcPG | Down | −1.164585972 | pectin lyase-like superfamily protein |
Aco002117 | AcPG | Down | −1.223500285 | pectin lyase-like superfamily protein |
Aco005884 | Acβ-GAL | Down | −1.218990617 | beta galactosidase 1 |
Aco008843 | Acβ-GAL | Down | −1.169607745 | beta-galactosidase 3.2.1.23 |
Aco009217 | AcSUS7 | Down | −4.053601538 | sucrose synthase 6 |
Aco022842 | AcBGLU16 | Down | −1.011064316 | beta glucosidase 46 |
Aco022841 | AcBGLU18 | Down | −1.068956025 | beta glucosidase 46 |
Aco027476 | AcBGLU26 | Down | −1.396179751 | beta glucosidase 43 |
Aco007727 | AcPAL | Down | −1.356980424 | phenylalanine ammonia-lyase 4.3.1.24 |
Aco003045 | AcPER11 | Down | −2.311152206 | peroxidase superfamily protein |
Aco021986 | AcPER1 | Down | −2.087255016 | peroxiredoxin-6 |
Aco017493 | AcOMT2 | Down | −1.475079229 | O-methyltransferase 1 |
Aco001959 | AcACA1 | Down | −1.7013 | calcium-transporting ATPase |
Aco004232 | AcACA7 | Down | −1.77096 | calcium-transporting ATPase |
Aco007015 | AcACA4 | Down | −1.22819 | calcium-transporting ATPase |
Aco019320 | AcCML25 | Down | −2.35851 | calmodulin-like 23 |
Aco024800 | AcCML29 | Down | −2.16685 | calmodulin-like 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Li, M.; Lin, W.; Liu, S.; Wu, Q.; Fu, Q.; Zhu, Z.; Gao, Y.; Zhang, X. Transcriptome Analysis of Watercore in Pineapple. Horticulturae 2022, 8, 1175. https://doi.org/10.3390/horticulturae8121175
Yao Y, Li M, Lin W, Liu S, Wu Q, Fu Q, Zhu Z, Gao Y, Zhang X. Transcriptome Analysis of Watercore in Pineapple. Horticulturae. 2022; 8(12):1175. https://doi.org/10.3390/horticulturae8121175
Chicago/Turabian StyleYao, Yanli, Mingwei Li, Wenqiu Lin, Shenghui Liu, Qingsong Wu, Qiong Fu, Zhuying Zhu, Yuyao Gao, and Xiumei Zhang. 2022. "Transcriptome Analysis of Watercore in Pineapple" Horticulturae 8, no. 12: 1175. https://doi.org/10.3390/horticulturae8121175
APA StyleYao, Y., Li, M., Lin, W., Liu, S., Wu, Q., Fu, Q., Zhu, Z., Gao, Y., & Zhang, X. (2022). Transcriptome Analysis of Watercore in Pineapple. Horticulturae, 8(12), 1175. https://doi.org/10.3390/horticulturae8121175