Phytochemical, Antioxidant, Anti-Microbial, and Pharmaceutical Properties of Sumac (Rhus coriaria L.) and Its Genetic Diversity
Abstract
:1. Introduction
2. Bibliometric Analysis and Scientific Trends
3. Botanical Description
4. Uses and Phytochemistry
5. Antioxidant and Protective Activity
6. Antibacterial Activity
7. Pharmaceutical and Therapeutic Activity
Pharmacological Properties | Solvent | Activity | Ref. |
---|---|---|---|
Antioxidant activity | Methanol extract | Strong antioxidant activity, such as BHA. | [38] |
Strong antioxidant activity. Moderate inhibiting effect of lipid peroxidation compared to synthetic antioxidants. | [29] | ||
Higher antioxidant capacity and reducing power than ascorbic acid. | [35] | ||
Sumac juice | Beneficial effect on muscle performance among athletes in oral administration of sumac juice. | [42] | |
Ethyl acetate EtOAc fraction | Inhibition or slowing down the progress of skeletal muscle atrophy (human myoblasts) by decreasing ROS via SOD and catalase-dependent mechanisms. | [47] | |
Ethanol extract | Acts as a cell cycle inhibitor or apoptosis inducer in endothelial cells (HMEC-1) subjected to UV-A damage and ROS onset. | [48] | |
Ethanol and methanol Extracts | Antibacterial activity of Gram positive (B. cereus, B. megaterium, B. subtilis, B. thuringiensis). | [49] | |
Water extract | Stronger antioxidant activity than BHT. | [39] | |
Antimicrobial activity against coliform. | [50] | ||
Dietary sumac | Increasing the TAC and cholesterol levels in adult male rabbits. | [40] | |
Increasing TAC and decreasing serum glucose, HbA1c, apo-B, apo-A1 in diabetic patients. | [41] | ||
Antibacterial activity | Ethanol 80% extract | Antibacterial activity on both Gram-positive and Gram-negative bacteria. | [12] |
Ethanol 20% extract | Strong antimicrobial activity against B. cereus and H. pylori. | [52] | |
Water extract | Antimicrobial activity against Streptococcus mutans, S. sanguinis, S. sobrinus, S. salivarius, and E. faecalis. | [53] | |
Methanol extract | Strong antimicrobial activity against Streptococcus mutans. | [54] | |
Antidiabetic activity | Methanol extract after fractionation with ethyl acetate and hexane | Significant hypoglycemic activity through α-amylase inhibition. | [57] |
Lyophilized extract | Antidiabetic activity in diabetic rats induced by STZ (lower) HbA1c, ADSCs (higher), MDA (lower). | [14] | |
Ethanol 96% extract | Higher HDL, SOD, CAT. Lower LDL, maltase, and sucrase activities. | [58] | |
Reduction in postprandial blood glucose (PBG) by 24% (at 5 hr, acute) in rats. Significantly lower PBG (by 26%) and higher SOD and CAT in the long term (21 died). | [58] | ||
Lipid-lowering and hypocholesterolic activity | Methanol extract | Reduction in serum lipid levels in hypercholesterolemic rats. Reversing hypertrophic cardiac histology. | [60] |
Dietary supplement sumac fruits, and 80% methanol extract | Decrease in cholesterol in the blood of rabbits. | [40] | |
A fat diet with 2% of sumac powder | A significant decrease in total cholesterol, LDL-C, fibrinogen, and oxidative stress markers, compared to the high-cholesterol diet group of rabbits. | [62] | |
Dietary sumac | Reduction in serum Total-C, LDL-C, and TG levels, one month of administration of R. coriaria to young dyslipidemic adolescents. Administration; its effect on HDL-C was not significant. | [63] | |
A significant increase in serum HDL cholesterol levels in the sumac group of eighty patients with hyperlipidemia. | [64] | ||
Decreasing the cardiovascular risk factors in persons with mild to moderate hyperlipidemia (reduced BMI, blood pressure, and total cholesterol; triglycerides remained unchanged). | [66] | ||
Significant increases in HDL-C and Apo-A1 levels in response to sumac supplementation in patients with hyperlipidemia. | [65] | ||
Reduction in blood TC, VLDL-c, and FBS concentrations in broiler chicken. | [61] | ||
Beneficial effects on broilers reared under stressful conditions. | [67] |
8. Genetic Characterization
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roberfroid, M.B. A European consensus of scientific concepts of functional foods. Nutrition 2000, 16, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Teoh, S.L.; Ngorsuraches, S.; Lai, N.M.; Chaiyakunapruk, N. Consumer Preferences and Willingness to Pay for Nutraceuticals: A Discrete Choice Experiment. Value Health Reg. Issues 2021, 24, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Corrado, G.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Zarrelli, A.; Giannini, P.; Ritieni, A.; De Pascale, S.; Kyriacou, M.C.; Rouphael, Y. Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae 2021, 7, 211. [Google Scholar] [CrossRef]
- Budhwar, S.; Chakraborty, M. Novel Dietary and Nutraceutical Supplements from Legumes. In Sustainable Agriculture Reviews 45; Springer: Cham, Switzerland, 2020; pp. 53–70. [Google Scholar] [CrossRef]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef]
- Bursal, E.; Köksal, E. Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Res. Int. 2011, 44, 2217–2221. [Google Scholar] [CrossRef]
- Kossah, R.; Nsabimana, C.; Zhao, J.; Chen, H.; Tian, F.; Zhang, H.; Chen, W. Comparative Study on the Chemical Composition of Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) Fruits. Pak. J. Nutr. 2009, 8, 1570–1574. [Google Scholar] [CrossRef] [Green Version]
- Sakhr, K.; El Khatib, S. Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac–Rhus coriaria): A review. Heliyon 2020, 6, e03207. [Google Scholar] [CrossRef] [Green Version]
- Pickersgill, B. The Archaeological Record of Chili Peppers (Capsicum spp.) and the Sequence of Plant Domestication in Peru. Am. Antiq. 1969, 34, 54–61. [Google Scholar] [CrossRef]
- Fereidoonfar, H.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M. Morphological variability of sumac (Rhus coriaria L.) germplasm using multivariate analysis. Ind. Crop. Prod. 2018, 120, 162–170. [Google Scholar] [CrossRef]
- Zalacain, A.; Prodanov, M.; Carmona, M.; Alonso, G.L. Optimisation of Extraction and Identification of Gallotannins from Sumac Leaves. Biosyst. Eng. 2003, 84, 211–216. [Google Scholar] [CrossRef]
- Fazeli, M.R.; Amin, G.; Attari, M.M.A.; Ashtiani, H.; Jamalifar, H.; Samadi, N. Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control. 2007, 18, 646–649. [Google Scholar] [CrossRef]
- Riddle, J.M. Book Review: De materia medica. Med. Hist. 2006, 50, 553–554. [Google Scholar] [CrossRef] [Green Version]
- Doğan, A.; Çelik, İ. Healing effects of sumac (Rhus coriaria) in streptozotocin-induced diabetic rats. Pharm. Biol. 2016, 54, 2092–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janbaz, K.H.; Shabbir, A.; Mehmood, M.H.; Gilani, A.H. Pharmacological basis for the medicinal use of Rhus coriaria in hyperactive gut disorders. Bangladesh J. Pharmacol. 2014, 9, 636–644. [Google Scholar] [CrossRef] [Green Version]
- El Hasasna, H.; Saleh, A.; Al Samri, H.; Athamneh, K.; Attoub, S.; Arafat, K.; Benhalilou, N.; Alyan, S.; Viallet, J.; Al Dhaheri, Y.; et al. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci. Rep. 2016, 6, 21144. [Google Scholar] [CrossRef]
- Heidari, H.; Ahangarpour, A.; Junghani, M.S.; Absari, R.; Khoogar, M.; Ghaedi, E. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice. Res. Pharm. Sci. 2017, 12, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.T. The Manufacture of Leather: Description of All of the Processes for the Tanning, Tawing, Currying, Finishing; HC Baird & Co: Milwaukee, WI, USA, 1885. [Google Scholar]
- Shabbir, A. Rhus coriaria linn, a plant of medicinal, nutritional and industrial importance: A review. J. Anim. Plant Sci. 2012, 22, 505–512. [Google Scholar]
- Said, O.; Khalil, K.; Fulder, S.; Azaizeh, H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J. Ethnopharmacol. 2002, 83, 251–265. [Google Scholar] [CrossRef]
- Sezik, E.; Yeşilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J. Ethnopharmacol. 2001, 75, 95–115. [Google Scholar] [CrossRef]
- Lev, E.; Amar, Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J. Ethnopharmacol. 2002, 82, 131–145. [Google Scholar] [CrossRef]
- Tuzlacı, E.; Aymaz, P.E. Turkish folk medicinal plants, Part IV: Gönen (Balıkesir). Fitoterapia 2001, 72, 323–343. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, H. Could Sumac Be Effective on COVID-19 Treatment? J. Med. Food 2021, 24, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reida, I.M.; Jamous, R.M.; Ali-Shtayeh, M.S. Phytochemistry, Pharmacological Properties and Industrial Applications of Rhus coriaria L. (Sumac). Jordan J. Biol. Sci. 2014, 7, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Mavlyanov, S.M.; Islambekov, S.Y.; Karimdzhanov, A.K.; Ismaikov, A.I. Anthocyans and organic acids of the fruits of some species of sumac. Chem. Nat. Compd. 1997, 33, 209. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Ardalani, H.; Hassanpour Moghadam, M.; Hadipanah, A.; Fotovat, F.; Azizi, A.; Soltani, J. Identification and characterization of chemical composition of Rhus coriaria L. fruit from Hamadan, Western Iran. J. Med. Herbs 2016, 6, 195–198. [Google Scholar]
- Kosar, M.; Bozan, B.; Temelli, F.; Baser, K. Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food Chem. 2007, 103, 952–959. [Google Scholar] [CrossRef]
- Romeo, F.V.; Ballistreri, G.; Fabroni, S.; Pangallo, S.; Li Destri Nicosia, M.G.; Schena, L.; Rapisarda, P. Chemical Characterization of Different Sumac and Pomegranate Extracts Effective against Botrytis cinerea Rots. Molecules 2015, 20, 11941–11958. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Ferk, F.; Simić, T.; Brantner, A.; Dušinská, M.; Kundi, M.; Hoelzl, C.; Nersesyan, A.; Knasmüller, S. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies. Mutat. Res. Mol. Mech. Mutagen. 2009, 661, 10–17. [Google Scholar] [CrossRef]
- Kossah, R.; Nsabimana, C.; Zhang, H.; Chen, W. Optimization of Extraction of Polyphenols from Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) Fruits. Res. J. Phytochem. 2010, 4, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Raodah, M.; Al-, A.; Alia, Z.H.; Faleeha, H.H. The Antioxidant and Antimicrobial of Syrian Sumac (Rhus coriaria) Fruit Extracts. J. Nat. Sci. Res. 2014, 4, 36–40. [Google Scholar]
- Bozan, B.; Kosar, M.; Tunalier, Z.; Ozturk, N.; Başer, K.H.C. Antioxidant and free radical scavenging activities of Rhus coriaria and cinnamomum cassia extracts. Acta Aliment. 2003, 32, 53–61. [Google Scholar] [CrossRef]
- Al-Muwaly, K.Y.; Al-Flayeh, K.A.; Ali, A. Antioxidant and free radical scavenging effects of Iraqi sumac (Rhus coriaria L). Baghdad Sci. J. 2013, 10, 921–933. [Google Scholar] [CrossRef]
- Onkar, S.; Mohammed, A.; Nida, A.; Ali, M. New antifungal aromatic compounds from the seeds of Rhus coriaria L. Int. Res. J. Pharm. 2011, 2, 188–194. [Google Scholar]
- Reidel, R.V.B.; Cioni, P.L.; Majo, L.; Pistelli, L. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition. Chem. Biodivers. 2017, 14, e1700270. [Google Scholar] [CrossRef]
- Özcan, M. Effect of Sumach (Rhus coriaria L.) Extracts on the Oxidative Stability of Peanut Oil. J. Med. Food 2003, 6, 63–66. [Google Scholar] [CrossRef]
- Bozkurt, H. Investigation of the effect of sumac extract and BHT addition on the quality of sucuk (Turkish dry-fermented sausage). J. Sci. Food Agric. 2006, 86, 849–856. [Google Scholar] [CrossRef]
- Capcarova, M.; Slamecka, J.; Abbas, K.; Kolesarova, A.; Kalafova, A.; Valent, M.; Filipejova, T.; Chrastinova, L.; Ondruska, L.; Massanyi, P. Effects of dietary inclusion of Rhus coriaria on internal milieu of rabbits. J. Anim. Physiol. Anim. Nutr. 2012, 96, 459–465. [Google Scholar] [CrossRef]
- Shidfar, F.; Rahideh, S.T.; Rajab, A.; Khandozi, N.; Hosseini, S.; Shidfar, S.; Mojab, F. The Effect of Sumac (Rhus coriaria L.) Powder on Serum Glycemic Status, ApoB, ApoA-I and Total Antioxidant Capacity in Type 2 Diabetic Patients. Iran. J. Pharm. Res. 2014, 13, 1249. [Google Scholar]
- Alghadir, A.; Gabr, S. Efficacy of Rhus coriaria (sumac) juice in reducing muscle pain during aerobic exercise. Acta Physiol. Hung. 2016, 103, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2017, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Jamous, R.M.; Abu-Zaitoun, S.Y.; Akkawi, R.J.; Ali-Shtayeh, M.S. Antiobesity and Antioxidant Potentials of Selected Palestinian Medicinal Plants. Evidence-Based Complement. Altern. Med. 2018, 2018, 8426752. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef] [PubMed]
- Taskin, T.; Dogan, M.; Yilmaz, B.N.; Senkardes, I. Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatal. Agric. Biotechnol. 2020, 27, 101670. [Google Scholar] [CrossRef]
- Najjar, F.; Rizk, F.; Carnac, G.; Nassar, R.; Jabak, S.; Sobolev, A.P.; Saada, Y.B.; El Sabban, M.; Hamade, A. Protective effect of Rhus coriaria fruit extracts against hydrogen peroxide-induced oxidative stress in muscle progenitors and zebrafish embryos. PeerJ 2017, 2017, e4144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozza, E.; Melzi, G.; Marabini, L.; Marinovich, M.; Piazza, S.; Khalilpour, S.; Dell’Agli, M.; Sangiovanni, E. Rhus coriaria L. Fruit Extract Prevents UV-A-Induced Genotoxicity and Oxidative Injury in Human Microvascular Endothelial Cells. Antioxidants 2020, 9, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasar-Abbas, S.; Halkman, A. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int. J. Food Microbiol. 2004, 97, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Gulmez, M.; Oral, N.; Vatansever, L. The Effect of Water Extract of Sumac (Rhus coriaria L.) and Lactic Acid on Decontamination and Shelf Life of Raw Broiler Wings. Poult. Sci. 2006, 85, 1466–1471. [Google Scholar] [CrossRef]
- Adwan, G.M.; Abu-shanab, B.; Adwan, K.; Abu-shanab, F. Antibacterial Effects of Nutraceutical Plants Growing in Palestine on Pseudomonas aeruginosa. Turk. J. Biol. 2006, 30, 239–242. [Google Scholar]
- Kossah, R.; Nsabimana, C.; Zhang, H.; Chen, W. Evaluation of antimicrobial and antioxidant activities of Syrian sumac fruit extract. J. Nat. Prod. 2013, 6, 96–102. [Google Scholar]
- Vahid-Dastjerdi, E.; Sarmast, Z.; Abdolazimi, Z.; Mahboubi, A.; Amdjadi, P.; Kamalinejad, M. Effect of Rhus coriaria L. water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire. Iran. J. Microbiol. 2014, 6, 269–275. [Google Scholar] [PubMed]
- Kacergius, T.; Abu-Lafi, S.; Kirkliauskiene, A.; Gabe, V.; Adawi, A.; Rayan, M.; Qutob, M.; Stukas, R.; Utkus, A.; Zeidan, M.; et al. Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutans biofilm formation by optical profilometry: Potential applications for oral health. Mol. Med. Rep. 2017, 16, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhaleh, M.; Sohrabi, N.; Zangeneh, M.M.; Zangeneh, A.; Moradi, R.; Zhaleh, H. Chemical Composition and Antibacterial Effects of Essential Oil of Rhus coriaria Fruits in the West of Iran (Kermanshah). J. Essent. Oil Bear. Plants 2018, 21, 493–501. [Google Scholar] [CrossRef]
- Mahdavi, S.; Hesami, B.; Sharafi, Y. Antimicrobial and Antioxidant Activities of Iranian Sumac (Rhus coriaria L.) Fruit Ethanolic Extract. J. Appl. Microbiol. Biochem. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Giancarlo, S.; Rosa, L.M.; Nadjafi, F.; Francesco, M. Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Nat. Prod. Res. 2006, 20, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Kouhsari Montasser, S.; Feshani Monavar, A. Antidiabetic properties of the ethanolic extract of Rhus coriaria fruits in rats. DARU J. Fac. Pharm. Tehran Univ. Med. Sci. 2010, 18, 270. [Google Scholar]
- Anwer, T.; Sharma, M.; Khan, G.; Iqbal, M.; Ali, M.S.; Alam, M.S.; Safhi, M.M.; Gupta, N. Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats. Acta Pol. Pharm. Drug Res. 2013, 70, 861–867. [Google Scholar]
- Shafiei, M.; Nobakht, M.; Moazzam, A.A. Lipid-lowering effect of Rhus coriaria L. (sumac) fruit extract in hypercholesterolemic rats. Die Pharm.-Int. J. Pharm. Sci. 2011, 66, 988–992. [Google Scholar] [CrossRef]
- Golzadeh, M.; Farhoomand, P.; Daneshyar, M. Dietary Rhus coriaria L. powder reduces the blood cholesterol, VLDL-c and glucose, but increases abdominal fat in broilers. S. Afr. J. Anim. Sci. 2013, 42, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Madihi, Y.; Merrikhi, A.; Baradaran, A.; Rafieian-Kopaei, M.; Shahinfard, N.; Ansari, R.; Shirzad, H.; Mesripour, A. Impact of Sumac on postprandialhigh-fat oxidative stress. Pak. J. Med. Sci. 2013, 29, 340–345. [Google Scholar] [CrossRef]
- Sabzghabaee, A.; Kelishadi, R.; Golshiri, K.; Ghannadi, A.; Badri, S. Clinical Effects of Rhus coriaria Fruits on Dyslipidemia in Adolescents: A Triple-blinded Randomized Placebo-controlled Trial. Med. Arch. 2014, 68, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajmohammadi, Z.; Shams, M.; Zibainejad, M.J.; Nimrouzi, M.; Fardidi, P.; Heydari, M. Rhus coriaria L. (Sumac) in Patients with Hyperlipidemia; A Double Blind Randomized Clinical Trial. Iran. J. Med. Sci. 2016, 41, S10. [Google Scholar] [PubMed]
- Hajmohammadi, Z.; Heydari, M.; Nimrouzi, M.; Faridi, P.; Zibaeenezhad, M.J.; Omrani, G.R.; Shams, M. Rhus coriaria L. increases serum apolipoprotein-A1 and high-density lipoprotein cholesterol levels: A double-blind placebo-controlled randomized clinical trial. J. Integr. Med. 2018, 16, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Salehizadeh, L.; Keshvari, M.; Taheri, M.; Spence, N.D.; Farvid, M.S.; Rafieian-Kopaei, M.; Sarrafzadegan, N. Potential Cardioprotective Effects of Sumac Capsule in Patients with Hyperlipidemia: A Triple-Blind Randomized, Placebo-Controlled Crossover Trial. J. Am. Coll. Nutr. 2018, 37, 286–292. [Google Scholar] [CrossRef]
- Alishah, A.S.; Daneshyar, M.; Aghazadeh, A. The Effect of Dietary Sumac Fruit Powder (Rhus coriaria L.) On Performance and Blood Antioxidant Status of Broiler Chickens Under Continuous Heat Stress Condition. Ital. J. Anim. Sci. 2012, 12, 36–43.e6. [Google Scholar] [CrossRef] [Green Version]
- Hassanpour, S.; MaheriSis, N.; Eshratkhah, B. Plants and secondary metabolites (Tannins): A Review. Int. J. For. Soil Eros. 2011, 1, 47–53. [Google Scholar]
- Haldhar, S.M.; Kumar, R.; Corrado, G.; Berwal, M.K.; Gora, J.S.; Thaochan, N.; Samadia, D.K.; Hussain, T.; Rouphael, Y.; Kumar, P.; et al. A Field Screening of a Pomegranate (Punica granatum) Ex-Situ Germplasm Collection for Resistance against the False Spider Mite (Tenuipalpus punicae). Agriculture 2022, 12, 1686. [Google Scholar] [CrossRef]
- Genovese, A.; Basile, B.; Lamorte, S.; Lisanti, M.; Corrado, G.; Lecce, L.; Strollo, D.; Moio, L.; Gambuti, A. Influence of Berry Ripening Stages over Phenolics and Volatile Compounds in Aged Aglianico Wine. Horticulturae 2021, 7, 184. [Google Scholar] [CrossRef]
- Okuda, T.; Ito, H. Tannins of Constant Structure in Medicinal and Food Plants—Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [Green Version]
- Isik, S.; Tayman, C.; Cakir, U.; Koyuncu, I.; Taskin Turkmenoglu, T.; Cakir, E. Sumac (Rhus coriaria) for the prevention and treatment of necrotizing enterocolitis. J. Food Biochem. 2019, 43, e13068. [Google Scholar] [CrossRef] [PubMed]
- El Hasasna, H.; Athamneh, K.; Al Samri, H.; Karuvantevida, N.; Al Dhaheri, Y.; Hisaindee, S.; Ramadan, G.; Al Tamimi, N.; AbuQamar, S.; Eid, A.; et al. Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation. Sci. Rep. 2015, 5, 13013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athamneh, K.; El Hasasna, H.; Al Samri, H.; Attoub, S.; Arafat, K.; Benhalilou, N.; Al Rashedi, A.; Al Dhaheri, Y.; AbuQamar, S.; Eid, A.; et al. Rhus coriaria increases protein ubiquitination, proteasomal degradation and triggers non-canonical Beclin-1-independent autophagy and apoptotic cell death in colon cancer cells. Sci. Rep. 2017, 7, 11633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalilpour, S.; Sangiovanni, E.; Piazza, S.; Fumagalli, M.; Beretta, G.; Dell’Agli, M. In vitro evidences of the traditional use of Rhus coriaria L. fruits against skin inflammatory conditions. J. Ethnopharmacol. 2019, 238, 111829. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Momeni, A.; Maghsoodi, H.; Rezapour, S.; Shiravand, M.; Mardani, M. Reduction of expression of IL-18, IL-1β genes in the articular joint by sumac fruit extract (Rhus coriaria L.). Mol. Genet. Genom. Med. 2019, 7, e664. [Google Scholar] [CrossRef] [Green Version]
- Khalilpour, S.; Latifi, S.; Behnammanesh, G.; Majid, A.M.S.A.; Majid, A.S.A.; Tamayol, A. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J. Neurol. Sci. 2017, 375, 430–441. [Google Scholar] [CrossRef]
- Khalilpour, S.; Behnammanesh, G.; Majid, A.M.S.A.; Tamayol, A.; Majid, A.S.A. Assessment of neuroprotective properties of Rhus coriaria L. ethanol extract in an in vitro model of retinal degeneration. J. Herb. Med. 2017, 10, 45–52. [Google Scholar] [CrossRef]
- Gabr, S.A.; Alghadir, A.H. Evaluation of the Biological Effects of Lyophilized Hydrophilic Extract of Rhus coriaria on Myeloperoxidase (MPO) Activity, Wound Healing, and Microbial Infections of Skin Wound Tissues. Evid.-Based Complement Altern. Med. 2019, 2019, 5861537. [Google Scholar] [CrossRef]
- Pourahmad, J.; Eskandari, M.R.; Shakibaei, R.; Kamalinejad, M. A search for hepatoprotective activity of aqueous extract of Rhus coriaria L. against oxidative stress cytotoxicity. Food Chem. Toxicol. 2010, 48, 854–858. [Google Scholar] [CrossRef]
- Beretta, G.; Rossoni, G.; Santagati, N.; Facino, R. Anti-Ischemic Activity and Endothelium-Dependent Vasorelaxant Effect of Hydrolysable Tannins from the Leaves of Rhus coriaria (Sumac) in Isolated Rabbit Heart and Thoracic Aorta. Planta Med. 2009, 75, 1482–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.; Park, J.Y.; Lee, Y.S.; Joh, H.J.; Kang, S.J.; Murukarthick, J.; Lee, H.O.; Hur, Y.-J.; Kim, Y.; Kim, K.H.; et al. The Complete Chloroplast Genome Sequence and Intra-Species Diversity of Rhus chinensis. Plant Breed. Biotechnol. 2017, 5, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Mohammad Rawashde, I.; Latif Ghzawi, A.; Rawashdeh, N.Q.; Rahman Al-Tawaha, A.; Salama, B.; Mohammad Rawashdeh, I.; ab Rawashdeh, N.Q.; Khairallh, K. Genetic Variation among Sumac (Rhus coriaria L.) Sample s Collected from Three Lo-cations in Jordan as Revealed by Aflp Markers. Adv. Environ. Biol. 2009, 3, 107–112. [Google Scholar]
- Sütyemez, M.; Güvenç, G.; Bükücü, B.; Özcan, A. The Determination of Genetic Diversity among some Sumac (Rhus coriaria L.) Genotypes. Erwerbs-Obstbau 2019, 61, 355–361. [Google Scholar] [CrossRef]
- Mohammadi Alaghoz, R.; Darvishzadeh, R.; Alijanpour, A.; Razi, M. Assessment of relationship between morphological variability in sumac population and environmental variants by canonical correlation analysis. For. Res. Dev. 2020, 6, 627–643. [Google Scholar]
- Prakash, S.; Van Staden, J. Assessment of genetic relationships between Rhus L. species using RAPD markers. Genet. Resour. Crop Evol. 2006, 54, 7–11. [Google Scholar] [CrossRef]
- Alaghuz, R.M.; Darvishzadeh, R.; Alijanpour, A.; Razi, M. Toward the identification of molecular markers associated with phytochemical traits in the Iranian sumac (Rhus coriaria L.) population. Food Sci. Nutr. 2021, 9, 3142–3154. [Google Scholar] [CrossRef] [PubMed]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.-A.; Justes, E.; Journet, E.-P.; Aubertot, J.-N.; Savary, S.; Bergez, J.-E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
Descriptor | Result |
Documents | 183 |
Year of first document | 1993 |
Annual growth rate | 8.26% |
Average citation per document | 18.83 |
Authors | 691 |
Average authors per document | 4.34 |
Single authored documents | 7 |
International co-authorship | 26.23% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, A.; Yousefi, S.; Basile, B.; Corrado, G.; Giovino, A.; Salami, S.A.; Papini, A.; Martinelli, F. Phytochemical, Antioxidant, Anti-Microbial, and Pharmaceutical Properties of Sumac (Rhus coriaria L.) and Its Genetic Diversity. Horticulturae 2022, 8, 1168. https://doi.org/10.3390/horticulturae8121168
Perrone A, Yousefi S, Basile B, Corrado G, Giovino A, Salami SA, Papini A, Martinelli F. Phytochemical, Antioxidant, Anti-Microbial, and Pharmaceutical Properties of Sumac (Rhus coriaria L.) and Its Genetic Diversity. Horticulturae. 2022; 8(12):1168. https://doi.org/10.3390/horticulturae8121168
Chicago/Turabian StylePerrone, Anna, Sanaz Yousefi, Boris Basile, Giandomenico Corrado, Antonio Giovino, Seyed Alireza Salami, Alessio Papini, and Federico Martinelli. 2022. "Phytochemical, Antioxidant, Anti-Microbial, and Pharmaceutical Properties of Sumac (Rhus coriaria L.) and Its Genetic Diversity" Horticulturae 8, no. 12: 1168. https://doi.org/10.3390/horticulturae8121168
APA StylePerrone, A., Yousefi, S., Basile, B., Corrado, G., Giovino, A., Salami, S. A., Papini, A., & Martinelli, F. (2022). Phytochemical, Antioxidant, Anti-Microbial, and Pharmaceutical Properties of Sumac (Rhus coriaria L.) and Its Genetic Diversity. Horticulturae, 8(12), 1168. https://doi.org/10.3390/horticulturae8121168