Overwintering Improves Ranunculus Cut Flower Production in the US Intermountain West
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Environmental Conditions (15 Nov.–15 Jul.)
3.2. Emergence
3.3. Harvest Timing
3.4. Field Yield
3.5. High Tunnel Yield
3.6. Marketing and Crop Value
3.7. On-Farm Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faust, J.E.; Dole, J.M. Cut Flowers and Foliages; CAB International: Wallingford, UK, 2021. [Google Scholar]
- Armitage, A.M.; Laushman, J.M. Specialty Cut Flowers, 2nd ed.; Timber Press: Portland, OR, USA, 2003. [Google Scholar]
- Connolly, J.R.; McCracken, V.A. Cut Flower Prices at Farmers Markets: A Bouquet Pricing Study. Washington State University Extension. 2016. Available online: https://research.libraries.wsu.edu/xmlui/bitstream/handle/2376/6124/TB13.pdf?sequence=1andisAllowed=y (accessed on 5 June 2020).
- Kelly, J.W. Field Production of Cut Flowers. HortScience 1991, 26, 1136–1138. [Google Scholar] [CrossRef]
- Laushman, J.; Association of Specialty Cut Flower Growers, Oberlin, OH, USA. Personal communication, 2022.
- Utah Cut Flower Farm Association. UCFFA. 2022. Available online: https://utahflowerfarms.com (accessed on 21 June 2022).
- Loyola, C.E.; Dole, J.M.; Dunning, R. North American Specialty Cut Flower Production and Postharvest Survey. HortTechnology 2019, 29, 338–359. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, N.; Luria, G.; Bruner, M.; Nishri, Y.; Dori, I.; Matan, E.; Ioffe, M. Development of “Stem-Topple” Disorder in Ranunculus Asiaticus Is Related to Localised Disturbances in Tissue Calcium Levels. J. Hortic. Sci. Biotechnol. 2008, 83, 525–531. [Google Scholar] [CrossRef]
- Bernstein, N.; Ioffe, M.; Luria, G.; Bruner, M.; Nishri, Y.; Philosoph-Hadas, S.; Salim, S.; Dori, I.; Matan, E. Effects of K and N Nutrition on Function and Production of Ranunculus Asiaticus. Pedosphere 2011, 21, 288–301. [Google Scholar] [CrossRef]
- Wien, H.C. Cut Flower Cultural Practice Studies and Variety Trials 2014. Cornell University Extension. 2014. Available online: https://cpb-us-e1.wpmucdn.com/blogs.cornell.edu/dist/b/8704/files/2020/12/2014cutflowerreport.pdf (accessed on 13 December 2021).
- Rauter, S.; Stock, M.; Ward, R. Ranunculus Cut Flower Production Budget, One High Tunnel, Northern Utah, 2022. Utah State University Extension. Available online: https://digitalcommons.usu.edu/extension_curall/2289 (accessed on 30 September 2022).
- USDA Agricultural Marketing Service Boston Commodity Pricing: Ranunculus. 2022. Available online: https://www.marketnews.usda.gov/mnp/fv-report-top-filters?type=termPrice&commAbr=RANU&locName=&commName=RANUNCULUS&startIndex=1&rowDisplayMax=25&portal=fv&navType=byComm&navClass=ORNAMENTALS&termNavClass=&shipNavClass=&movNavClass=&stateID=&volume=&repType=termPriceDaily&locAbr=&environment=&organic=&repDate=03%2F03%2F2020&Go=Go (accessed on 7 September 2022).
- Benzakein, E.; Chai, J. Floret Farm’s Cut Flower Garden; Chronicle Books: San Francisco, CA, USA, 2017. [Google Scholar]
- Ortiz, M.A.; Hyrczyk, K.; Lopez, R.G. Comparison of High Tunnel and Field Production of Specialty Cut Flowers in the Midwest. HortScience 2012, 47, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, R.; Peterson, R.L.; Melville, L.H.; Machado, C.F.; Bewley, J.D. Seasonal Adaptations of the Tuberous Roots of Ranunculus Asiaticus to Desiccation and Resurrection by Changes in Cell Structure and Protein Content. New Phytol. 2005, 166, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Meynet, J. Ranunculus. In The Physiology of Flower Bulbs; Hertogh, A.D., Nard, M.L., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1993; pp. 603–610. [Google Scholar]
- Floret Farm. How to Grow Anemones and Ranunculus. 2021. Available online: Htps://s3.amazonaws.com/kajabi-storefronts-production/sites/14614/themes/577851/downloads/Eqmr2SdHTxmGEsy1CnsD_Floret-Fall-Mini-Course-How-to-Grow-Anemones-and-Ranunculus.pdf (accessed on 12 October 2021).
- Lundquist, V.; Pellett, H. Preliminary Survey of Cold Hardiness Levels of Several Bulbous Ornamental Plant Species. HortScience 1976, 11, 161–162. [Google Scholar] [CrossRef]
- Sakai, A. The Frost-Hardiness of Bulbs and Tubers. Engei Gakkai Zasshi 1960, 29, 233–238. [Google Scholar] [CrossRef]
- Sakai, A.; Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Sakai, A.; Yoshie, F. Freezing Tolerance of Ornamental Bulbs and Corms. J. Jpn. Soc. Hortic. Sci. 1984, 52, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Horovitz, A. Ranunculus. In Handbook of Flowering; Halevy, A.H., Ed.; CRC Press: Boca Raton, FL, USA, 1985; Volume 4, pp. 155–161. [Google Scholar]
- Utah Climate Center. Greenville Farm, UT. 2022. Available online: https://climate.usu.edu/mchd/ (accessed on 24 July 2022).
- Bankhead, L.; Paisley Flower Farm, Wellsville, UT, USA. Personal communication, 2021.
- Pratt, T.; Allen, L.N.; Rosenberg, D.E.; Keller, A.A.; Kopp, K. Urban Agriculture and Small Farm Water Use: Case Studies and Trends from Cache Valley, Utah. Agric. Water Manag. 2019, 213, 24–35. [Google Scholar] [CrossRef]
- Carey, E.E.; Jett, L.; Lamont, W.J.; Nennich, T.T.; Orzolek, M.D.; Williams, K.A. Horticultural Crop Production in High Tunnels in the United States: A Snapshot. HortTechnology 2009, 19, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Blomgren, T.; Frisch, T. High Tunnels: Using Low-Cost Technology to Increase Yields, Improve Quality and Extend the Season. University of Vermont Center for Sustainable Agriculture. 2007. Available online: https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/9/24091/files/2016/09/High-Tunnel-Case-Studies-SARE-UVM-2007-1eul90d.pdf (accessed on 8 December 2021).
- Wien, H.C. Floral Crop Production in High Tunnels. HortTechnology 2009, 19, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; Stock, M.; Black, B.; Drost, D.; Dai, X. Improving Snapdragon Cut Flower Production through High Tunnel Season Extension, Transplant Timing, and Cultivar Selection. HortScience 2021, 56, 1206–1212. [Google Scholar] [CrossRef]
- Owen, W.G.; Hilligoss, A.; Lopez, R.G. Late-Season High Tunnel Planting of Specialty Cut Flowers in the Midwestern United States Influences Yield and Stem Quality. HortTechnology 2016, 26, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Wien, H.C. Optimizing High Tunnel Use for Cut Flower Production in the Northeastern United States. Acta Hortic. 2013, 987, 55–58. [Google Scholar] [CrossRef]
- Rauter, S.; Stock, M.; Black, B.; Drost, D. Low Tunnels for Field Cut Flower Production. Utah State University Extension. 2021. Available online: https://digitalcommons.usu.edu/extension_curall/2242 (accessed on 3 October 2022).
- Hanks, R.J.; Bowers, S.A.; Bark, L.D. Influence of Soil Surface Conditions on Net Radiation, Soil Temperature, and Evaporation. Soil Sci. 1961, 91, 233–238. [Google Scholar] [CrossRef]
- Fred, C. Gloeckner, Inc. Anemone and Ranunculus Catalog; Fred, C. Gloeckner, Inc.: Harrison, NY, USA, 2020. [Google Scholar]
- Ohkawa, K. Growth and Flowering of Ranunculus Asiaticus. Acta Hortic. 1986, 177, 165–172. [Google Scholar] [CrossRef]
- Wien, H.C. Cut Flower Cultural Practice Studies and Variety Trials 2015. Cornell University Extension. 2015. Available online: http://www.hort.cornell.edu/wien/cutflowers/reports/2015cutflowerreport.pdf (accessed on 8 December 2021).
- De Hertogh, A. Holland Bulb Forcer’s Guide; The International Flower Bulb Centre and the Dutch Bulb Exporters Association: Hilegom, The Netherlands, 1996. [Google Scholar]
- Dole, J.M. Research Approaches for Determining Cold Requirements for Forcing and Flowering of Geophytes. HortScience 2003, 38, 341–346. [Google Scholar] [CrossRef]
- USDA Soil Survey: Millville Silt Loam. Available online: https://casoilresource.lawr.ucdavis.edu/gmap/ (accessed on 13 October 2021).
- Black, B.; Drost, D.; Rowley, D.; Hefelbower, R. Constructing A Low-Cost High Tunnel. Utah State University Extension. 2011. Available online: https://digitalcommons.usu.edu/extension_curall/298 (accessed on 8 December 2021).
- Cerveny, C.B.; Miller, W.B.; Björkman, T.; Mattson, N.S. Soaking Temperature of Dried Tuberous Roots Influences Hydration Kinetics and Growth of Ranunculus asiaticus (L.). HortScience 2012, 47, 212–216. [Google Scholar] [CrossRef]
- Utah Climate Center. Map Server, Utah State University. 2022. Available online: https://climate.usu.edu/mapServer/mapGUI/index.php (accessed on 24 October 2022).
- Shahri, W.; Tahir, I. Flower Development and Senescence in Ranunculus asiaticus L. J. Fruit Ornam. Plant Res. 2011, 19, 123–131. [Google Scholar]
- Western Regional Climate Center NCDC 1981–2010 Monthly Normals: Utah State University, Logan, Utah. Available online: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ut5186 (accessed on 9 September 2022).
- Lewis, M.; Stock, M.; Ward, R.; Black, B.; Drost, D. Snapdragon Cut Flower Production Budget, One High Tunnel, Northern Utah, 2020. Utah State University Extension. 2020. Available online: https://digitalcommons.usu.edu/extension_curall/2140 (accessed on 29 August 2022).
- Lewis, M.; Stock, M.; Ward, R.; Black, B.; Drost, D. Peony Cut Flower Production Budget, One High Tunnel, Northern Utah, 2020. Utah State University Extension. 2020. Available online: https://digitalcommons.usu.edu/extension_curall/2165 (accessed on 29 August 2022).
Total Yield (Stems per m2) | Marketable Yield (Stems per m2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Planting Date | |||||||||
Cultivar | PS | Insulation | Nov. | Mar. | Apr. | Nov. | Mar. | Apr. | |
‘Amandine’ | +PS | -LT-M | 15 ± 3 B, b, Y | 84 ± 16 A, a, X | 69 ± 13 A, a, X | 15 ± 4 B, b, Y | 71 ± 15 A, a, X | 53 ± 12 A, a, X | |
-LT+M | 60 ± 12 A, a, X | 88 ± 19 A, a, X | 62 ± 12 A, a, X | 46 ± 10 A, a, X | 71 ± 17 A, a, X | 45 ± 10 A, a, X | |||
+LT-M | 66 ± 13 A, a, Y | 97 ± 19 A, a, X | 74 ± 14 A, a, X | 56 ± 12 A, a, X | 84 ± 18 A, a, X | 53 ± 11 A, a, X | |||
+LT+M | 79 ± 15 A, a, X | 88 ± 17 A, a, X | 55 ± 11 A, a, X | 64 ± 14 A, a, X | 75 ± 16 A, a, X | 39 ± 9 A, a, X | |||
-PS | -LT-M | 30 ± 7 B, b, X | 66 ± 13 A, a, X | 27 ± 5 B, a, Y | 29 ± 8 A, b, X | 57 ± 12 A, a, X | 28 ± 7 A, a, Y | ||
-LT+M | 90 ± 17 A, a, X | 73 ± 14 A, a, X | 38 ± 7 B, a, Y | 61 ± 13 A, ab, X | 51 ± 11 AB, a, X | 28 ± 6 B, a, X | |||
+LT-M | 111 ± 21 A, a, X | 70 ± 13 A, a, X | 29 ± 6 B, a, Y | 91 ± 20 A, a, X | 59 ± 13 A, a, X | 22 ± 5 B, a, Y | |||
+LT+M | 114 ± 22 A, a, X | 60 ± 12 B, a, X | 32 ± 6 B, a, Y | 95 ± 21 A, a, X | 44 ± 10 B, a, Y | 28 ± 7 B, a, X | |||
‘LaBelle’ | +PS | -LT-M | 23 ± 5 B, b, X | 103 ± 20 A, a, X | 74 ± 14 A, a, X | 18 ± 5 B, b, X | 85 ± 18 A, a, X | 45 ± 10 A, a, X | |
-LT+M | 81 ± 16 A, a, X | 99 ± 19 A, a, X | 91 ± 18 A, a, X | 29 ± 6 B, b, Y | 74 ± 16 A, a, X | 70 ± 15 A, a, X | |||
+LT-M | 71 ± 14 A, a, X | 129 ± 25 A, a, X | 76 ± 15 A, a, X | 67 ± 16 A, a, X | 101 ± 22 A, a, X | 58 ± 13 A, a, X | |||
+LT+M | 110 ± 21 A, a, X | 110 ± 21 A, a, X | 73 ± 14 A, a, X | 88 ± 19 A, a, X | 80 ± 17 AB, a, X | 42 ± 9 B, a, X | |||
-PS | -LT-M | 25 ± 5 B, b, X | 78 ± 15 A, a, X | 42 ± 8 AB, a, Y | 20 ± 5 B, b, X | 68 ± 15 A, a, X | 22 ± 5 B, b, Y | ||
-LT+M | 117 ± 23 A, a, X | 65 ± 12 A, a, X | 73 ± 14 A, a, X | 77 ± 17 A, a, X | 44 ± 10 A, a, Y | 55 ± 12 A, a, X | |||
+LT-M | 108 ± 21 A, a, X | 81 ± 16 AB, a, X | 46 ± 9 B, a, Y | 73 ± 16 A, a, X | 72 ± 16 A, a, X | 38 ± 8 A, ab, X | |||
+LT+M | 127 ± 24 A, a, X | 80 ± 15 AB, a, X | 66 ± 13 B, a, X | 105 ± 23 A, a, X | 66 ± 14 AB, a, X | 46 ± 10 B, ab, X |
Total Yield (Stems per m2) | Marketable Yield (Stems per m2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Planting Date | |||||||||
Cultivar | PS | Nov. | Jan. | Feb. | Mar. | Nov. | Jan. | Feb. | Mar. |
AM | +PS | 281 ± 34 A, a, X | 192 ± 23 AB, a, X | 153 ± 19 B, a, X | 71 ± 9 C, a, Y | 261 ± 33 A, a, X | 180 ± 23 AB, a, X | 138 ± 17 B, a, Y | 57 ± 7 C, a, Y |
-PS | 214 ± 26 A, a, Y | 166 ± 20 AB, a, X | 117 ± 14 B, a, Y | 43 ± 5 C, b, X | 202 ± 26 A, a, X | 152 ± 19 A, a, X | 90 ± 11 B, b, Y | 32 ± 4 C, b, Y | |
LB | +PS | 316 ± 38 A, a, X | 196 ± 24 B, a, X | 201 ± 25 B, a, X | 102 ± 12 C, a, X | 286 ± 36 A, a, X | 187 ± 24 A, a, X | 188 ± 24 A, a, X | 94 ± 12 B, a, X |
-PS | 286 ± 35 A, a, X | 182 ± 22 B, a, X | 159 ± 19 B, a, X | 46 ± 6 C, b, X | 259 ± 33 A, a, X | 168 ± 21 B, a, X | 136 ± 17 B, a, X | 46 ± 6 C, b, X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauter, S.; Stock, M.; Black, B.; Drost, D.; Dai, X.; Ward, R. Overwintering Improves Ranunculus Cut Flower Production in the US Intermountain West. Horticulturae 2022, 8, 1128. https://doi.org/10.3390/horticulturae8121128
Rauter S, Stock M, Black B, Drost D, Dai X, Ward R. Overwintering Improves Ranunculus Cut Flower Production in the US Intermountain West. Horticulturae. 2022; 8(12):1128. https://doi.org/10.3390/horticulturae8121128
Chicago/Turabian StyleRauter, Shannon, Melanie Stock, Brent Black, Dan Drost, Xin Dai, and Ruby Ward. 2022. "Overwintering Improves Ranunculus Cut Flower Production in the US Intermountain West" Horticulturae 8, no. 12: 1128. https://doi.org/10.3390/horticulturae8121128
APA StyleRauter, S., Stock, M., Black, B., Drost, D., Dai, X., & Ward, R. (2022). Overwintering Improves Ranunculus Cut Flower Production in the US Intermountain West. Horticulturae, 8(12), 1128. https://doi.org/10.3390/horticulturae8121128