The Importance of Mycorrhizal Fungi in the Development and Secondary Metabolite Production of Echinacea purpurea and Relatives (Asteraceae): Current Research Status and Perspectives
Abstract
:1. Introduction
2. Importance of Chemical Compounds Reported in Echinacea purpurea
2.1. Alkamides
2.2. Caffeic Acid Derivates
2.3. Glycoproteins and Polysaccharides
2.4. Volatiles
3. Echinacea purpurea Cultivation with Mutualistic–Symbiotic Microorganisms
Microorganisms | Experimental Setup | Effects | References |
---|---|---|---|
Glomus intraradices | - plants grown in a greenhouse, in pots filled with autoclaved sand/soil mixture (1:1, v/v) for 13 weeks | - increase in total mass, height, and leaves number - increase in P and Cu content in the shoot - increase in different phenolic acids content (cichoric, caftaric, and chlorogenic acids, and cynarin) in root - increase in total phenolic acids content in shoot | [86] |
Glomus intraradices, Gigaspora margarita, Beauveria bassiana | - plants grown in a greenhouse, in pots with calcined montmorillonite clay for 12 weeks | - increase in biomass and positive influence on plants development in severe nutrient deficiency stress, in the case of G. intraradices - increase in cichoric and caftaric acids content in leaves in the case of G. intraradices, and in the whole plant (root + shoot) in the case of G. intraradices, and those treated with mycorrhiza in combination with Beauveria bassiana - increase in relative concentration of two alkamides in roots in the case of plants treated only with Beauveria bassiana, high phosphorus and B. bassiana, and mycorrhyza in combination with B. bassiana - increase in beta-carophyllene, alpha-humulene, and germacrene- D in leaves in the case of G. intraradices, high phosphorus and B. bassiana, and mycorrhyza in combination with B. bassiana | [87,88] |
Azospirillum lipoferum, Azotobacter chroococcum, Pseudomonas fluorescens, Glomus intraradices | - seedlings with 4–6 leaves transplanted and grown in open field conditions, on clay-loam soil, harvested after 6 months (October) in the first year, and in August in the second year | - combination of the three bacteria species with mycorrhiza resulted in significantly higher root and shoot mass, shoot length, larger number of branches, flower buds, and inflorescences, the results being similar with those obtained by NPK treatment - treatments with mycorrhiza or with the mixture of the three bacteria increased the essential oil content of roots in the first year | [89] |
Rhizophagus irregularis, Pseudomonas fluorescens | - 90-day-old seedlings transplanted in open field conditions, harvested after 6 months (November) in the first year, and in September in the second year | - increase in N, Cu, Fe and P contents in the case of mycorrhizal plants and those treated with Pseudomonas fluorescens - increase in relative water content, plant height, leaf number, and leaf area index in the case of mycorrhizal plants - increase in Zn content and plant height in the case of plants treated with P. fluorescens - increase in the biological yield (g plant/m2) in the case of mycorrhizal plants and those treated with P. fluorescens in the second year | [90] |
4. Plants from the Asteraceae Family Cultivated with Mutualistic–Symbiotic Microorganisms
4.1. Greenhouse Experiments
4.2. Semi-Open Field and Open Field Experiments
5. Mycorrhiza’s Mechanism of Action in Secondary Metabolite Production
Host Plant | Inocula | Upregulated Genes | Role of the Genes | References |
---|---|---|---|---|
Artemisia annua | Rhizophagus irregularis | TTG1 | synthesis of a transcription factor involved in the formation of glandular hairs | [114] |
DXS1 | formation of 1-deoxy-D-xylulose-5- phosphate (DXP) in the MEP pathway | |||
DXR | formation of 2-C-methyl-D-erythritol-4-phosphate (MEP) | |||
ADS, CYP71AV1, DBR2, ALDH1 | biosynthesis of artemisinin | |||
Stevia rebaudiana | Rhizophagus irregularis | MDS | synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (MDS), a key enzyme in the MEP pathway | [109] |
the first stage of the synthesis of steviol glycosides: | ||||
DXS1 | formation of 1-deoxy-D-xylulose-5- phosphate (DXP) in the MEP pathway | |||
DXR | formation of 2-C-methyl-D-erythritol-4-phosphate (MEP) | |||
the second stage of the synthesis of steviol-glycosides | ||||
GGDPS | synthesis of geranylgeranyl diphosphate synthase (GGDPS) | |||
CPPS, KS, KO, KAH | formation of steviol | |||
the third stage of the synthesis of steviol glycosides: | ||||
UGT85C2, UGT74G1, UGT76G1 | glycosylation of steviol | |||
Stevia rebaudiana | Piriformospora indica | DXR, GGDPS, KS, KO UGT85C2, UGT74G1, UGT76G1 | same roles as above | [116] |
Medicago truncatula | Rhizophagus irregularis | 3′GT, DFR, CHMT, 4CL, LDOX, ANTHOCYANIN 5-AROMATIC ACYLTRANSFERASE, ANTHOCYANIDIN 3-O-GLUCOSYL-TRANSFERASE, ISOFLAVONOID GLYCOSYL-TRANSFERASE, ISOFLAVONOID MALONYL TRANSFERASE, CAFFEATE 3-O-METHYL-TRANSFERASE | synthesis of phenylpropanoids, flavonoids and anthocyanins | [111] |
TERPENE SYNTHASE1, HMG-CoA REDUCTASE, SQE3,UGT73K1, CYP76A61, CYP93E2, CYP72a67v2 | terpenoid biosynthesis | |||
TRIACYLGLYCEROL LIPASE, DGAT | lipid biosynthesis | |||
9-LOX, 13-LOX, AOS, AOC, MYC2, JAZ | jasmonic acid (JA) biosynthesis | |||
HOMEOBOX-LEU ZIPPER ATHB-7, ZEAXANTHIN EPOXIDASE | abscisic acid (ABA) biosynthesis | |||
CYTOKININ-O-GLUCOSYL- TRANSFERASE | cytokinin (CK) biosynthesis | |||
Glycyrrhiza uralensis | Rhizophagus irregularis | HMGR | synthesis of mevalonic acid (MVA) in the mevalonate pathway | [112] |
SQS1, β-AS, LUP | formation of squalene, β-amyrin and lupeol | |||
CYP88D6, CYP72A154 | formation of glycyrrhetinic acid, the precursor of glycyrrhizin | |||
CHS | formation of liquiricin | |||
Helianthus annuus | Rhizophagus irregularis and Rhizoctonia solani parasitic fungi | PAL1, C4H | phenylpropanoid synthesis | [113] |
CHS, CHI2, F3H, FLS1, DFR, F30H | synthesis of flavonoids | |||
AN1, AN2 | conversion of anthocyanidin to anthocyanin | |||
HCT, HQT, C3H | synthesis of chlorogenic acid |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruni, R.; Brighenti, V.; Caesar, L.K.; Bertelli, D.; Cech, N.B.; Pellati, F. Analytical Methods for the Study of Bioactive Compounds from Medicinally Used Echinacea Species. J. Pharm. Biomed. Anal. 2018, 160, 443–477. [Google Scholar] [CrossRef]
- Cao, C.; Kindscher, K. The Medicinal Chemistry of Echinacea Species. In Echinacea: Herbal Medicine with a Wild History; Kindscher, K., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 127–145. ISBN 978-3-319-18156-1. [Google Scholar]
- Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J.; Calhelha, R.C.; Santos, P.F.; Ferreira, I.C.F.R. Echinacea purpurea (L.) Moench: Chemical Characterization and Bioactivity of Its Extracts and Fractions. Pharmaceuticals 2020, 13, 125. [Google Scholar] [CrossRef]
- Senica, M.; Mlinsek, G.; Veberic, R.; Mikulic-Petkovsek, M. Which Plant Part of Purple Coneflower (Echinacea purpurea (L.) Moench) Should Be Used for Tea and Which for Tincture? J. Med. Food 2019, 22, 102–108. [Google Scholar] [CrossRef]
- Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; Sierra-Palacios, E.D.C.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on Phytochemical, Antioxidant, Anti-Inflammatory, Hypoglycaemic and Antiproliferative Activities of Echinacea Purpurea and Echinacea Angustifolia Extracts. Pharm. Biol. 2017, 55, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, B.H.; Stiles, A.R.; Saxena, P.K.; Liu, C.-Z. Gibberellic Acid Increases Secondary Metabolite Production in Echinacea Purpurea Hairy Roots. Appl. Biochem. Biotechnol. 2012, 168, 2057–2066. [Google Scholar] [CrossRef]
- Blumenthal, M.; Lindstrom, A.; Ooyen, C.; Lynch, M.E. Herb Supplement Sales Increase 4.5% in 2011. HerbalGram 2012, 95, 60–64. [Google Scholar]
- Šutovská, M.; Capek, P.; Kazimierová, I.; Pappová, L.; Jošková, M.; Matulová, M.; Fraňová, S.; Pawlaczyk, I.; Gancarz, R. Echinacea Complex—Chemical View and Anti-Asthmatic Profile. J. Ethnopharmacol. 2015, 175, 163–171. [Google Scholar] [CrossRef]
- British Pharmacopoeia Commission. British Pharmacopoeia; The Stationery Office: London, UK, 2020; Volume IV. [Google Scholar]
- Comisia Farmacopeei Romane. Farmacopeea Română; X.; Editura Medicala: Bucharest, Romania, 2020. [Google Scholar]
- Pharmacopea Hungarica VIII. Pharmacopea Hungarica VIII. (VIII. Magyar Gyógyszerkönyv); VIII.; Medicina Könyvkiadó Rt.: Budapest, Hungary, 2004. [Google Scholar]
- ESCOP E/S/C/O/P Monographs. The Scientific Foundation for Herbal Medicinal Products; II.; Thieme: New York, NY, USA, 2003. [Google Scholar]
- Munteanu, L.S.; Tămaș, M.; Muntean, S.; Muntean, L.; Duda, M.M.; Vârban, D.I.; Mureșan, S. Tratat de Plante Medicinale Cultivate Și Spontane, 3rd ed.; Risoprint: Cluj-Napoca, Romania, 2016; pp. 609–622. [Google Scholar]
- ESCOP E/S/C/O/P Monographs. The Scientific Foundation for Herbal Medicinal Products-Supplement; II Edition, Supplement; Thieme: New York, NY, USA, 2009. [Google Scholar]
- Galambosi, B. Cultivation in Europe. In Echinacea; CRC Press: Boca Raton, FL, USA, 2004; pp. 45–68. ISBN 0-429-21569-X. [Google Scholar]
- Kindscher, K.; Riggs, M. Cultivation of Echinacea Angustifolia and Echinacea Purpurea. In Echinacea: Herbal Medicine with a Wild History; Kindscher, K., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–33. ISBN 978-3-319-18156-1. [Google Scholar]
- Berbec, S.; Krol, B.; Wolski, T. The Effect of Soil and Fertilization on the Biomass and Phenolic Acids Content in Coneflower (Echinacea Purpurea Moench.). Herba Pol. 1998, 4, 397–402. [Google Scholar]
- Li, P.; Wu, H.; Geng, S.; Wang, X.; Lu, W.; Yang, Y.; Shultz, L.M.; Tang, T.; Zhang, N. Germination and Dormancy of Seeds in Echinacea purpurea (L.) Moench (Asteraceae). Seed Sci. Technol. 2007, 35, 9–20. [Google Scholar] [CrossRef]
- Rady, M.R.; Aboul-Enein, A.M.; Ibrahim, M.M. Active Compounds and Biological Activity of in Vitro Cultures of Some Echinacea Purpurea Varieties. Bull. Natl. Res. Cent. 2018, 42, 20. [Google Scholar] [CrossRef]
- Lata, H.; Andrade, Z.D.; Schaneberg, B.; Bedir, E.; Khan, I.; Moraes, R. Arbuscular Mycorrhizal Inoculation Enhances Survival Rates and Growth of Micropropagated Plantlets of Echinacea Pallida. Planta Med. 2003, 69, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Lema-Rumińska, J.; Kulus, D.; Tymoszuk, A.; Varejão, J.M.T.B.; Bahcevandziev, K. Profile of Secondary Metabolites and Genetic Stability Analysis in New Lines of Echinacea purpurea (L.) Moench Micropropagated via Somatic Embryogenesis. Ind. Crops Prod. 2019, 142, 111851. [Google Scholar] [CrossRef]
- Giovannini, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Crang, R.; Lyons-Sobaski, S.; Wise, R. Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 3-319-77315-1. [Google Scholar]
- Koide, R.T.; Mosse, B. A History of Research on Arbuscular Mycorrhiza. Mycorrhiza 2004, 14, 145–163. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Arbuscular Mycorrhizas. In Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010; pp. 11–149. [Google Scholar]
- Arnold, A.E.; Lutzoni, F. Diversity and Host Range of Foliar Fungal Endophytes: Are Tropical Leaves Biodiversity Hotspots? Ecology 2007, 88, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal Endophytes: Unique Plant Inhabitants with Great Promises. Appl. Microbiol. Biotechnol. 2011, 90, 1829–1845. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Doidy, J.; van Tuinen, D.; Lamotte, O.; Corneillat, M.; Alcaraz, G.; Wipf, D. The Medicago Truncatula Sucrose Transporter Family: Characterization and Implication of Key Members in Carbon Partitioning towards Arbuscular Mycorrhizal Fungi. Mol. Plant 2012, 5, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Arora, N.; Upadhyay, H. Chapter 11—Arbuscular Mycorrhizal Fungi: Source of Secondary Metabolite Production in Medicinal Plants. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, J., Gehlot, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 155–164. ISBN 978-0-12-821005-5. [Google Scholar]
- Parsons, J.L.; Liu, R.; Smith, M.L.; Harris, C.S. Echinacea Fruit: Phytochemical Localization and Germination in Four Species of Echinacea. Botany 2018, 96, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Darvizheh, H.; Zahedi, M.; Abaszadeh, B.; Razmjoo, J. Effects of Irrigation Regime and Foliar Application of Salicylic Acid and Spermine on the Contents of Essential Oil and Caffeic Acid Derivatives in Echinacea purpurea L. J. Plant Growth Regul. 2018, 37, 1267–1285. [Google Scholar] [CrossRef]
- Attarzadeh, M.; Balouchi, H.; Rajaie, M.; Dehnavi, M.M.; Salehi, A. Improving Growth and Phenolic Compounds of Echinacea Purpurea Root by Integrating Biological and Chemical Resources of Phosphorus under Water Deficit Stress. Ind. Crops Prod. 2020, 154, 112763. [Google Scholar] [CrossRef]
- Burlou-Nagy, C.; Bănică, F.; Jurca, T.; Vicaș, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants 2022, 11, 1244. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, B.H.; Giger, E.; Baumann, T.W. Echinacea: Anatomy, Phytochemical Pattern, and Germination of the Achene. Planta Med. 1991, 57, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Thappa, R.; Bakshi, S.; Dhar, P.; Agarwal, S.; Kitchlu, S.; Kaul, M.; Suri, K. Significance of Changed Climatic Factors on Essential Oil Composition of Echinacea Purpurea under Subtropical Conditions. Flavour Fragr. J. 2004, 19, 452–454. [Google Scholar] [CrossRef]
- Holla, M.; Vaverkova, S.; Farkas, P.; Tekel, J. Content of Essential Oil Obtained from Flower Heads of Echinacea purpurea L. and Identification of Selected Components. Herba Pol. 2005, 51, 3–4. [Google Scholar]
- Stănescu, U.; Oana, C.; Clara, A.A.; Anca, M. Plante Medicinale de la A la Z.; Hăncianu, M., Ed.; III.; Elefant Online: Bucuresti, Romania, 2018; ISBN 978-973-46-4942-6. [Google Scholar]
- Proksch, A.; Wagner, H. Structural Analysis of a 4-O-Methyl-Glucuronoarabinoxylan with Immuno-Stimulating Activity from Echinacea Purpurea. Phytochemistry 1987, 26, 1989–1993. [Google Scholar] [CrossRef]
- Wagner, H.; Stuppner, H.; Schäfer, W.; Zenk, M. Immunologically Active Polysaccharides of Echinacea Purpurea Cell Cultures. Phytochemistry 1988, 27, 119–126. [Google Scholar] [CrossRef]
- Classen, B. Characterization of an Arabinogalactan-Protein from Suspension Culture of Echinacea Purpurea. Plant Cell Tiss. Organ Cult. 2007, 88, 267–275. [Google Scholar] [CrossRef]
- Mudge, E.; Lopes-Lutz, D.; Brown, P.; Schieber, A. Analysis of Alkylamides in Echinacea Plant Materials and Dietary Supplements by Ultrafast Liquid Chromatography with Diode Array and Mass Spectrometric Detection. J. Agric. Food Chem. 2011, 59, 8086–8094. [Google Scholar] [CrossRef] [PubMed]
- Zaushintsena, A.; Milentyeva, I.; Babich, O.; Noskova, S.; Kiseleva, T.; Popova, D.; Bakin, I.; Lukin, A. Quantitative and Qualitative Profile of Biologically Active Substances Extracted from Purple Echinacea (Echinacea purpurea L.) Growing in the Kemerovo Region: Functional Foods Application. Foods Raw Mater. 2019, 7, 84–92. [Google Scholar] [CrossRef]
- Moazami, Y.; Gulledge, T.V.; Laster, S.M.; Pierce, J.G. Synthesis and Biological Evaluation of a Series of Fatty Acid Amides from Echinacea. Bioorg. Med. Chem. Lett. 2015, 25, 3091–3094. [Google Scholar] [CrossRef]
- Cruz, I.; Cheetham, J.J.; Arnason, J.T.; Yack, J.E.; Smith, M.L. Alkamides from Echinacea Disrupt the Fungal Cell Wall-Membrane Complex. Phytomedicine 2014, 21, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Chicca, A.; Raduner, S.; Pellati, F.; Strompen, T.; Altmann, K.-H.; Schoop, R.; Gertsch, J. Synergistic Immunomopharmacological Effects of N-Alkylamides in Echinacea Purpurea Herbal Extracts. Int. Immunopharmacol. 2009, 9, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Clifford, L.J.; Nair, M.G.; Rana, J.; Dewitt, D.L. Bioactivity of Alkamides Isolated from Echinacea purpurea (L.) Moench. Phytomedicine 2002, 9, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Murthy, H.N.; Kim, Y.-S.; Park, S.-Y.; Paek, K.-Y. Biotechnological Production of Caffeic Acid Derivatives from Cell and Organ Cultures of Echinacea Species. Appl. Microbiol. Biotechnol. 2014, 98, 7707–7717. [Google Scholar] [CrossRef]
- Stanisavljević, I.; Stojičević, S.; Veličković, D.; Veljković, V.; Lazić, M. Antioxidant and Antimicrobial Activities of Echinacea (Echinacea purpurea L.) Extracts Obtained by Classical and Ultrasound Extraction. Chin. J. Chem. Eng. 2009, 17, 478–483. [Google Scholar] [CrossRef]
- Lin, S.-D.; Sung, J.-M.; Chen, C.-L. Effect of Drying and Storage Conditions on Caffeic Acid Derivatives and Total Phenolics of Echinacea Purpurea Grown in Taiwan. Food Chem. 2011, 125, 226–231. [Google Scholar] [CrossRef]
- Choffe, K.L.; Victor, J.M.R.; Murch, S.J.; Saxena, P.K. In Vitro Regeneration of Echinacea purpurea L.: Direct Somatic Embryogenesis and Indirect Shoot Organogenesis in Petiole Culture. In Vitro Cell. Dev. Biol.-Plant 2000, 36, 30–36. [Google Scholar] [CrossRef]
- Lin, Z.; Neamati, N.; Zhao, H.; Kiryu, Y.; Turpin, J.A.; Aberham, C.; Strebel, K.; Kohn, K.; Witvrouw, M.; Pannecouque, C.; et al. Chicoric Acid Analogues as HIV-1 Integrase Inhibitors. J. Med. Chem. 1999, 42, 1401–1414. [Google Scholar] [CrossRef]
- Pires, C.; Martins, N.; Carvalho, A.M.; Barros, L.; Ferreira, I.C.F.R. Phytopharmacologic Preparations as Predictors of Plant Bioactivity: A Particular Approach to Echinacea purpurea (L.) Moench Antioxidant Properties. Nutrition 2016, 32, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Facino, R.M.; Carini, M.; Aldini, G.; Saibene, L.; Pietta, P.; Mauri, P. Echinacoside and Caffeoyl Conjugates Protect Collagen from Free Radical-Induced Degradation: A Potential Use of Echinacea Extracts in the Prevention of Skin Photodamage. Planta Med. 1995, 61, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-L.; Chiu, C.-C.; Yi-Fu Chen, J.; Chan, K.-C.; Lin, S.-D. Cytotoxic Effects of Echinacea Purpurea Flower Extracts and Cichoric Acid on Human Colon Cancer Cells through Induction of Apoptosis. J. Ethnopharmacol. 2012, 143, 914–919. [Google Scholar] [CrossRef]
- Jeong, J.-A.; Wu, C.-H.; Murthy, H.N.; Hahn, E.-J.; Paek, K.-Y. Application of an Airlift Bioreactor System for the Production of Adventitious Root Biomass and Caffeic Acid Derivatives of Echinacea Purpurea. Biotechnol. Bioproc. E 2009, 14, 91–98. [Google Scholar] [CrossRef]
- Wagner, H.; Proksch, A. An Immunostimulating Active Principle from Echinacea Purpurea. Z Angew. Phytother. 1981, 2, 166–171. [Google Scholar]
- Kaarlas, M.; Yu, H. Popularity, Diversity, and Quality of Echinacea. In Echinacea; CRC Press: Boca Raton, FL, USA, 2004; pp. 143–166. ISBN 0-429-21569-X. [Google Scholar]
- Lim, T.K. Echinacea Purpurea. In Edible Medicinal And Non-Medicinal Plants: Volume 7, Flowers; Lim, T.K., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 340–371. ISBN 978-94-007-7395-0. [Google Scholar]
- Cozzolino, R.; Malvagna, P.; Spina, E.; Giori, A.; Fuzzati, N.; Anelli, A.; Garozzo, D.; Impallomeni, G. Structural Analysis of the Polysaccharides from Echinacea Angustifolia Radix. Carbohydr. Polym. 2006, 65, 263–272. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Phytochemistry of the Genus Echinacea. In Echinacea; CRC Press: Boca Raton, FL, USA, 2004; pp. 71–88. ISBN 0-429-21569-X. [Google Scholar]
- Miller, S.C. Echinacea: A Miracle Herb against Aging and Cancer? Evidence In Vivo in Mice. Evid.-Based Complement. Altern. Med. 2005, 2, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.C.; Yu, H. Echinacea: The Genus Echinacea; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-0-203-02269-6. [Google Scholar]
- Mohamed Sharif, K.O.; Tufekci, E.F.; Ustaoglu, B.; Altunoglu, Y.C.; Zengin, G.; Llorent-Martínez, E.J.; Guney, K.; Baloglu, M.C. Anticancer and Biological Properties of Leaf and Flower Extracts of Echinacea purpurea (L.) Moench. Food Biosci. 2021, 41, 101005. [Google Scholar] [CrossRef]
- Hou, R.; Xu, T.; Li, Q.; Yang, F.; Wang, C.; Huang, T.; Hao, Z. Polysaccharide from Echinacea Purpurea Reduce the Oxidant Stress in Vitro and in Vivo. Int. J. Biol. Macromol. 2020, 149, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Burger, R.A.; Torres, A.R.; Warren, R.P.; Caldwell, V.D.; Hughes, B.G. Echinacea-Induced Cytokine Production by Human Macrophages. Int. J. Immunopharmacol. 1997, 19, 371–379. [Google Scholar] [CrossRef]
- Luettig, B.; Steinmüller, C.; Gifford, G.E.; Wagner, H.; Lohmann-Matthes, M.-L. Macrophage Activation by the Polysaccharide Arabinogalactan Isolated From Plant Cell Cultures of Echinacea Purpurea. JNCI J. Natl. Cancer Inst. 1989, 81, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Barrett, B. Medicinal Properties of Echinacea: A Critical Review. Phytomedicine 2003, 10, 66–86. [Google Scholar] [CrossRef]
- Block, K.I.; Mead, M.N. Immune System Effects of Echinacea, Ginseng, and Astragalus: A Review. Integr. Cancer 2003, 2, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Raso, G.M.; Pacilio, M.; Di Carlo, G.; Esposito, E.; Pinto, L.; Meli, R. In-Vivo and in-Vitro Anti-Inflammatory Effect of Echinacea Purpurea and Hypericum Perforatum. J. Pharm. Pharmacol. 2002, 54, 1379–1383. [Google Scholar] [CrossRef]
- Vimalanathan, S.; Kang, L.; Amiguet, V.T.; Livesey, J.; Arnason, J.T.; Hudson, J. Echinacea Purpurea. Aerial Parts Contain Multiple Antiviral Compounds. Pharm. Biol. 2005, 43, 740–745. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, F.; Xie, Y.; Xie, S.; Liu, Y.; Yang, Y.; Zhou, C.; Wan, X. A Review: Natural Polysaccharides from Medicinal Plants and Microorganisms and Their Anti-Herpetic Mechanism. Biomed. Pharmacother. 2020, 129, 110469. [Google Scholar] [CrossRef]
- Pellati, F.; Epifano, F.; Contaldo, N.; Orlandini, G.; Cavicchi, L.; Genovese, S.; Bertelli, D.; Benvenuti, S.; Curini, M.; Bertaccini, A.; et al. Chromatographic Methods for Metabolite Profiling of Virus- and Phytoplasma-Infected Plants of Echinacea Purpurea. J. Agric. Food Chem. 2011, 59, 10425–10434. [Google Scholar] [CrossRef]
- Vaverková, S.; Mikulásová, M.; Habán, M.; Tekel’, J.; Hollá, M.; Otepka, P. Variability of the Essential Oil from Three Sorts of Echinacea MOENCH Genus during Ontogenesis. Ceska Slov. Farm. 2007, 56, 121–124. [Google Scholar]
- Bauer, R.; Remiger, P.; Wagner, H. Alkamides from the Roots of Echinacea Purpurea. Phytochemistry 1988, 27, 2339–2342. [Google Scholar] [CrossRef]
- Balciunaite, G.; Haimi, P.-J.; Mikniene, Z.; Savickas, G.; Ragazinskiene, O.; Juodziukyniene, N.; Baniulis, D.; Pangonyte, D. Identification of Echinacea purpurea (L.) Moench Root LysM Lectin with Nephrotoxic Properties. Toxins 2020, 12, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coss, E.; Kealey, C.; Brady, D.; Walsh, P. A Laboratory Investigation of the Antimicrobial Activity of a Selection of Western Phytomedicinal Tinctures. Eur. J. Integr. Med. 2018, 19, 80–83. [Google Scholar] [CrossRef]
- Ahmadi, F.; Samadi, A.; Sepehr, E.; Rahimi, A.; Shabala, S. Optimizing Hydroponic Culture Media and NO3−/NH4+ Ratio for Improving Essential Oil Compositions of Purple Coneflower (Echinacea purpurea L.). Sci. Rep. 2021, 11, 8009. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea Plants as Antioxidant and Antibacterial Agents: From Traditional Medicine to Biotechnological Applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef]
- Indras, D.M.; Marek, C.B.; Penteado, A.J.; Ferreira, F.S.; Silva, F.C.; Itinose, A.M. Evaluation of the Toxic Effects of the Bottled Medicine (Garrafada) Containing the Echinacea Purpurea, Annona Muricata, Tabebuia Avellanedae, Pterodon Emarginatus and Uncaria Tomentosa in Rats. JMPR 2020, 14, 105–117. [Google Scholar] [CrossRef]
- Nyalambisa, M.; Oyemitan, I.A.; Matewu, R.; Oyedeji, O.O.; Oluwafemi, O.S.; Songca, S.P.; Nkeh-Chungag, B.N.; Oyedeji, A.O. Volatile Constituents and Biological Activities of the Leaf and Root of Echinacea Species from South Africa. Saudi Pharm. J. 2017, 25, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Deqiang, Y.; Yi, Y.; Ling, J.; Yuling, T.; Xiumei, Y.; Fang, H.; Zhongwen, X. Anti-Inflammatory Effects of Essential Oil in Echinacea purpurea L. Pak. J. Pharm. Sci. 2013, 26, 403–408. [Google Scholar]
- Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Doraki, N.; Naghdi Badi, H. Evaluation Antioxidant and Antimicrobial Effects of Cinnamon Essential Oil and Echinacea Extract in Kolompe. J. Med. Plants 2013, 12, 14–28. [Google Scholar]
- Teke, M.A.; Mutlu, Ç. Insecticidal and Behavioral Effects of Some Plant Essential Oils against Sitophilus granarius L. and Tribolium Castaneum (Herbst). J. Plant. Dis. Prot. 2021, 128, 109–119. [Google Scholar] [CrossRef]
- An, D.; Wu, C.-H.; Wang, M.; Wang, M.; Chang, G.-N.; Chang, X.-J.; Lian, M.-L. Methyl Jasmonate Elicits Enhancement of Bioactive Compound Synthesis in Adventitious Root Co-Culture of Echinacea Purpurea and Echinacea Pallida. In Vitro Cell. Dev. Biol.-Plant 2022, 58, 181–187. [Google Scholar] [CrossRef]
- Araim, G.; Saleem, A.; Arnason, J.T.; Charest, C. Root Colonization by an Arbuscular Mycorrhizal (AM) Fungus Increases Growth and Secondary Metabolism of Purple Coneflower, Echinacea purpurea (L.) Moench. J. Agric. Food Chem. 2009, 57, 2255–2258. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, R. Fungal Endophytes Enhance Growth and Production of Natural Products in Echinacea Purpurea (Moench.). Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2010. [Google Scholar]
- Gualandi, R.J.; Augé, R.M.; Kopsell, D.A.; Ownley, B.H.; Chen, F.; Toler, H.D.; Dee, M.M.; Gwinn, K.D. Fungal Mutualists Enhance Growth and Phytochemical Content in Echinacea Purpurea. Symbiosis 2014, 63, 111–121. [Google Scholar] [CrossRef]
- Hajagha, R.I.; Kirici, S.; Tabrizi, L.; Asgharzadeh, A.; Hamidi, A. Evaluation of Growth and Yield of Purple Coneflower (Echinacea purpurea L.) in Response to Biological and Chemical Fertilizers. JAS 2017, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Attarzadeh, M.; Balouchi, H.; Rajaie, M.; Movahhedi Dehnavi, M.; Salehi, A. Growth and Nutrient Content of Echinacea Purpurea as Affected by the Combination of Phosphorus with Arbuscular Mycorrhizal Fungus and Pseudomonas Florescent Bacterium under Different Irrigation Regimes. J. Environ. Manag. 2019, 231, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Tamokou, J.; Mbaveng, A.; Kuete, V. Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–237. [Google Scholar]
- Cristea, V. Plante Vasculare: Diversitate, Sistematica, Ecologie Si Importanta; Presa Universitara Clujeana: Cluj-Napoca, Romania, 2014; ISBN 978-973-595-648-6. [Google Scholar]
- Duc, N.H.; Vo, A.T.; Haddidi, I.; Daood, H.; Posta, K. Arbuscular Mycorrhizal Fungi Improve Tolerance of the Medicinal Plant Eclipta prostrata (L.) and Induce Major Changes in Polyphenol Profiles under Salt Stresses. Front. Plant Sci. 2021, 11, 612299. [Google Scholar] [CrossRef] [PubMed]
- Kheyri, Z.; Moghaddam, M.; Farhadi, N. Inoculation Efficiency of Different Mycorrhizal Species on Growth, Nutrient Uptake, and Antioxidant Capacity of Calendula officinalis L.: A Comparative Study. J. Soil Sci. Plant Nutr. 2022, 22, 1160–1172. [Google Scholar] [CrossRef]
- Majewska, M.L.; Rola, K.; Zubek, S. The Growth and Phosphorus Acquisition of Invasive Plants Rudbeckia Laciniata and Solidago Gigantea Are Enhanced by Arbuscular Mycorrhizal Fungi. Mycorrhiza 2017, 27, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Johny, L.; Cahill, D.M.; Adholeya, A. AMF Enhance Secondary Metabolite Production in Ashwagandha, Licorice, and Marigold in a Fungi-Host Specific Manner. Rhizosphere 2021, 17, 100314. [Google Scholar] [CrossRef]
- Avio, L.; Maggini, R.; Ujvári, G.; Incrocci, L.; Giovannetti, M.; Turrini, A. Phenolics Content and Antioxidant Activity in the Leaves of Two Artichoke Cultivars Are Differentially Affected by Six Mycorrhizal Symbionts. Sci. Hortic. 2020, 264, 109153. [Google Scholar] [CrossRef]
- de Lazzari Almeida, C.; Sawaya, A.C.H.F.; de Andrade, S.A.L. Mycorrhizal Influence on the Growth and Bioactive Compounds Composition of Two Medicinal Plants: Mikania Glomerata Spreng. and Mikania Laevigata Sch. Bip. Ex Baker (Asteraceae). Braz. J. Bot. 2018, 41, 233–240. [Google Scholar] [CrossRef]
- Avio, L.; Sbrana, C.; Giovannetti, M.; Frassinetti, S. Arbuscular Mycorrhizal Fungi Affect Total Phenolics Content and Antioxidant Activity in Leaves of Oak Leaf Lettuce Varieties. Sci. Hortic. 2017, 224, 265–271. [Google Scholar] [CrossRef]
- Engel, R.; Szabo, K.; Abranko, L.; Rendes, K.; Füzy, A.; Takács, T. Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold. J. Agric. Food Chem. 2016, 64, 3733–3742. [Google Scholar] [CrossRef] [Green Version]
- Vaingankar, J.; Rodrigues, B. Screening for Efficient AM (Arbuscular Mycorrhizal) Fungal Bioinoculants for Two Commercially Important Ornamental Flowering Plant Species of Asteraceae. Biol. Agric. Hortic. 2012, 28, 167–176. [Google Scholar] [CrossRef]
- Tedone, L.; Ruta, C.; De Cillis, F.; De Mastro, G. Effects of Septoglomus Viscosum Inoculation on Biomass Yield and Steviol Glycoside Concentration of Some Stevia Rebaudiana Chemotypes. Sci. Hortic. 2020, 262, 109026. [Google Scholar] [CrossRef]
- Domokos, E.; Jakab-Farkas, L.; Darkó, B.; Bíró-Janka, B.; Mara, G.; Albert, C.; Balog, A. Increase in Artemisia Annua Plant Biomass Artemisinin Content and Guaiacol Peroxidase Activity Using the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis. Front. Plant Sci. 2018, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Domokos, E.; Bíró-Janka, B.; Bálint, J.; Molnár, K.; Fazakas, C.; Jakab-Farkas, L.; Domokos, J.; Albert, C.; Mara, G.; Balog, A. Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis Influences Artemisia Annua Plant Parameters and Artemisinin Content under Different Soil Types and Cultivation Methods. Microorganisms 2020, 8, 899. [Google Scholar] [CrossRef] [PubMed]
- Bączek, K.B.; Wiśniewska, M.; Przybył, J.L.; Kosakowska, O.; Węglarz, Z. Arbuscular Mycorrhizal Fungi in Chamomile (Matricaria recutita L.) Organic Cultivation. Ind. Crops Prod. 2019, 140, 111562. [Google Scholar] [CrossRef]
- Tabar, R.S.; Moieni, A.; Monfared, S.R. Improving Biomass and Chicoric Acid Content in Hairy Roots of Echinacea purpurea L. Biologia 2019, 74, 941–951. [Google Scholar] [CrossRef]
- Kapoor, R.; Anand, G.; Gupta, P.; Mandal, S. Insight into the Mechanisms of Enhanced Production of Valuable Terpenoids by Arbuscular Mycorrhiza. Phytochem. Rev. 2017, 16, 677–692. [Google Scholar] [CrossRef]
- Maes, L.; Van Nieuwerburgh, F.C.W.; Zhang, Y.; Reed, D.W.; Pollier, J.; Vande Casteele, S.R.F.; Inzé, D.; Covello, P.S.; Deforce, D.L.D.; Goossens, A. Dissection of the Phytohormonal Regulation of Trichome Formation and Biosynthesis of the Antimalarial Compound Artemisinin in Artemisia Annua Plants. New Phytol. 2011, 189, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Upadhyay, S.; Singh, V.P.; Kapoor, R. Enhanced Production of Steviol Glycosides in Mycorrhizal Plants: A Concerted Effect of Arbuscular Mycorrhizal Symbiosis on Transcription of Biosynthetic Genes. Plant Physiol. Biochem. 2015, 89, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, R.; Müller, C. Leaf Metabolome in Arbuscular Mycorrhizal Symbiosis. Curr. Opin. Plant Biol. 2015, 26, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, L.; Nziengui, H.; Abreu, I.N.; Šimura, J.; Beebo, A.; Herdean, A.; Aboalizadeh, J.; Široká, J.; Moritz, T.; Novák, O.; et al. Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago Truncatula. Plant Physiol. 2017, 175, 392–411. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Hao, Z.; Zhou, X.; Jiang, X.; Xu, L.; Wu, S.; Zhao, A.; Zhang, X.; Chen, B. Arbuscular Mycorrhiza Facilitates the Accumulation of Glycyrrhizin and Liquiritin in Glycyrrhiza Uralensis under Drought Stress. Mycorrhiza 2018, 28, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Rashad, Y.; Aseel, D.; Hammad, S.; Elkelish, A. Rhizophagus Irregularis and Rhizoctonia Solani Differentially Elicit Systemic Transcriptional Expression of Polyphenol Biosynthetic Pathways Genes in Sunflower. Biomolecules 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Upadhyay, S.; Wajid, S.; Ram, M.; Jain, D.C.; Singh, V.P.; Abdin, M.Z.; Kapoor, R. Arbuscular Mycorrhiza Increase Artemisinin Accumulation in Artemisia Annua by Higher Expression of Key Biosynthesis Genes via Enhanced Jasmonic Acid Levels. Mycorrhiza 2015, 25, 345–357. [Google Scholar] [CrossRef]
- Salehi, M.; Karimzadeh, G.; Naghavi, M.R.; Naghdi Badi, H.; Rashidi Monfared, S. Expression of Key Genes Affecting Artemisinin Content in Five Artemisia Species. Sci. Rep. 2018, 8, 12659. [Google Scholar] [CrossRef]
- Kilam, D.; Saifi, M.; Abdin, M.Z.; Agnihotri, A.; Varma, A. Endophytic Root Fungus Piriformospora Indica Affects Transcription of Steviol Biosynthesis Genes and Enhances Production of Steviol Glycosides in Stevia Rebaudiana. Physiol. Mol. Plant Pathol. 2017, 97, 40–48. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iakab, M.; Domokos, E.; Benedek, K.; Molnár, K.; Kentelky, E.; Buta, E.; Dulf, F.V. The Importance of Mycorrhizal Fungi in the Development and Secondary Metabolite Production of Echinacea purpurea and Relatives (Asteraceae): Current Research Status and Perspectives. Horticulturae 2022, 8, 1106. https://doi.org/10.3390/horticulturae8121106
Iakab M, Domokos E, Benedek K, Molnár K, Kentelky E, Buta E, Dulf FV. The Importance of Mycorrhizal Fungi in the Development and Secondary Metabolite Production of Echinacea purpurea and Relatives (Asteraceae): Current Research Status and Perspectives. Horticulturae. 2022; 8(12):1106. https://doi.org/10.3390/horticulturae8121106
Chicago/Turabian StyleIakab, Martin, Erzsébet Domokos, Klára Benedek, Katalin Molnár, Endre Kentelky, Erzsebet Buta, and Francisc Vasile Dulf. 2022. "The Importance of Mycorrhizal Fungi in the Development and Secondary Metabolite Production of Echinacea purpurea and Relatives (Asteraceae): Current Research Status and Perspectives" Horticulturae 8, no. 12: 1106. https://doi.org/10.3390/horticulturae8121106
APA StyleIakab, M., Domokos, E., Benedek, K., Molnár, K., Kentelky, E., Buta, E., & Dulf, F. V. (2022). The Importance of Mycorrhizal Fungi in the Development and Secondary Metabolite Production of Echinacea purpurea and Relatives (Asteraceae): Current Research Status and Perspectives. Horticulturae, 8(12), 1106. https://doi.org/10.3390/horticulturae8121106