Antifungal Activity of Ginger Rhizome Extract against Fusarium solani
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Fungal Pathogen
2.3. Plant Extraction
2.4. Antifungal Activity Assays
2.4.1. Effect of GRE on F. solani Growth
Determination of Mycelial Growth
Determination of Spore Germination
Morphological Observation of Fungal Hyphae
2.4.2. Effect of GRE on the Cell Membrane Integrity of F. solani
Determination of the Relative Conductivity
Determination of the Soluble Protein Content
Determination of the Soluble Sugar Content
2.4.3. Effect of GRE on the Cell Membrane Integrity of F. solani
Enzyme Extraction
Determination of Pectinase Activity
Determination of β-Glucosidase Activity
2.4.4. Determination of Respiratory Metabolic Pathway Enzyme Activities
2.4.5. Determination of Fusaric Acid (FA) Content
2.5. Compositional Analysis of GRE by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)
2.6. Determination of the Effects of 4-Hydroxybenzaldehyde and Quercetin on F. solani Growth
2.7. Statistical Analysis
3. Results
3.1. Effect of GRE on F. solani Growth
3.1.1. Effects of GRE on Mycelial Growth and Spore Germination
3.1.2. Effect of GRE on Mycelial Morphology
3.2. Effect of GRE on the Cell Membrane Integrity of F. solani
3.2.1. Effect of GRE on the Relative Conductivity of F. solani
3.2.2. Effect of GRE on the Soluble Protein Content in F. solani
3.2.3. Effect of GRE on the Soluble Sugar Content in F. solani
3.3. Effect of GRE on Cell Wall Degrading Enzyme Activities in F. solani
3.3.1. Effect of GRE on Pectinase Activity in F. solani
3.3.2. Effect of GRE on β-Glucosidase Activity in F. solani
3.4. Effect of GRE on the Respiratory Metabolism of F. solani
3.5. Effect of GRE on the FA Content in F. solani
3.6. Chemical Components of GRE
3.7. Effects of 4-Hydroxybenzaldehyde and Quercetin on F. solani
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Liu, X.; Xiao, Y.; Wen, Y.; Li, K.; Ma, Z.; Yang, L.; Zhu, Y.; Yin, J. Genome-wide characterization and function analysis uncovered roles of wheat LIMs in responding to adverse stresses and TaLIM8-4D function as a susceptible gene. Plant Genome. 2022, 15, e20246. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Chiusa, G.; Cervi, C.; Trevisan, M.; Ghebbion, C. Fungal Growth and Ergosterol Content in Tomato Fruits Infected by Fungi. Ital. J. Food Sci. 1996, 4, 283–289. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201301791669 (accessed on 1 September 2022).
- Rojo, F.G.; Reynoso, M.M.; Ferez, M.; Chulze, S.N.; Torres, A.M. Biological Control by Trichoderma Species of Fusarium Solani Causing Peanut Brown Root Rot Under Field Conditions. Crop. Prot. 2007, 26, 549–555. [Google Scholar] [CrossRef]
- Meenu, G.; Kaushal, M. Diseases infecting ginger (Zingiber Officinale Roscoe): A review. Agric. Rev. 2017, 38, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Pegg, K.G.; Coates, L.; O’Neill, W.; Turner, D. The Epidemiology of Fusarium Wilt of Banana. Front. Plant Sci. 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prihatna, C.; Barbetti, M.J.; Barker, S.J. A Novel Tomato Fusarium Wilt Tolerance Gene. Front. Microbiol. 2018, 9, 1226. [Google Scholar] [CrossRef]
- Ravikumara, B.M.; Ramanagouda, G.; Naik, M.K.; Telangre, R.; Sharma, M. Distribution and Pathogenic Diversity in Fusarium Udum Butler Isolates: The Causal Agent of Pigeonpea Fusarium Wilt. BMC Plant Biol. 2022, 22, 147. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, X.; Zhang, J.; He, Y.; Zhu, X.; Zhou, X.; Gong, H.; Yin, J.; Liu, Y. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem. 2020, 156, 209–220. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, Y.; Ma, D.; Xu, W.; Zhou, J.; Yan, H.; Yang, L.; Yin, J. Screening, identification, and optimization of fermentation conditions of an antagonistic endophyte to wheat head blight. Agronomy 2019, 9, 476. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Yadav, P.K.; Sarhan, A.T. Botanical Fungicides; Current Status, Fungicidal Properties and Challenges for Wide Scale Adoption: A Review. Rev. Food Agric. 2021, 2, 63–68. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Peng, H.; Hu, H.; Xi, K.; Zhu, X.; Zhou, J.; Yin, J.; Guo, F.; Liu, Y.; Zhu, Y. Silicon Nanoparticles Enhance Ginger Rhizomes Tolerance to Postharvest Deterioration and Resistance to Fusarium solani. Front. Plant Sci. 2022, 13, 816143. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.Y.; Wong, C.W. Inhibitory Effect of Chemical and Natural Anti-Browning Agents on Polyphenol Oxidase from Ginger (Zingiber Officinale Roscoe). J. Food Sci. Technol. 2018, 55, 3001–3007. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lu, Y.; Zhang, N.; Udenigwe, C.C.; Zhang, Y.; Fu, Y. Preparation, pungency and bioactivity of gingerols from ginger (Zingiber officinale Roscoe): A review. Crit. Rev. Food Sci. Nutr. 2022, 22, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Moorkoth, S.; Prathyusha, N.S.; Manandhar, S.; Xue, Y.; Sankhe, R.; Pai, K.S.R.; Kumar, N. Antidepressant-like Effect of Dehydrozingerone from Zingiber Officinale by Elevating Monoamines in Brain: In Silico and in Vivo Studies. Pharmacol. Rep. 2021, 73, 1273–1286. [Google Scholar] [CrossRef]
- Abdullahi, A.; Khairulmazmi, A.; Yasmeen, S.; Ismail, I.S.; Norhayu, A.; Sulaiman, M.R.; Ahmed, O.H.; Ismail, M.R. Phytochemical Profiling and Antimicrobial Activity of Ginger (Zingiber Officinale) Essential Oils Against Important Phytopathogens. Arab. J. Chem. 2020, 13, 8012–8025. [Google Scholar] [CrossRef]
- Bordoh, P.K.; Ali, A.; DiControlinson, M.; Siddiqui, Y. Antimicrobial Effect of Rhizome and Medicinal Herb Extract in Controlling Postharvest Anthracnose of Dragon Fruit and Their Possible Phytotoxicity. Sci. Hortic. 2020, 265, 109249. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Gardrat, C.; Rezaei, M.R.; Hashemi, M.; Le Coz, C.; Coma, V. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll. 2017, 70, 36–45. [Google Scholar] [CrossRef]
- Agarwal, M.; Walia, S.; Dhingra, S.; Khambay, B.P. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest. Manag. Sci. 2001, 57, 289–300. [Google Scholar] [CrossRef]
- Gholamnezhad, J. Effect of Plant Extracts on Activity of Some Defense Enzymes of Apple Fruit in Interaction with Botrytis Cinerea. J. Integr. Agric. 2019, 18, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Tanweer, S.; Mehmood, T.; Zainab, S.; Ahmad, Z.; Shehzad, A. Comparison and HPLC Quantification of Antioxidant Profiling of Ginger Rhizome, Leaves and Flower Extracts. Clin. Phytosci. 2020, 6, 12. [Google Scholar] [CrossRef]
- Yao, H.J.; Tian, S.P. Effects of A Biocontrol Agent and Methyl Jasmonate on Postharvest Diseases of Peach Fruit and The Possible Mechanisms Involved. J. Appl. Microbiol. 2005, 98, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Zhang, M.; Zhou, D.; Jing, T.; Zang, X.; Qi, D.; Chen, Y.; Li, K.; Zhao, Y.; Tang, W.; et al. Anti-Foc RT4 Activity of a Newly Isolated Streptomyces sp. 5–10 From a Medicinal Plant (Curculigo Capitulata). Front. Microbiol. 2021, 11, 610698. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhou, X.; Fu, M. Inhibiting Effects of Epsilon-Poly-Lysine (ε-PL) on Pencillium Digitatum and Its Involved Mechanism. Postharvest Biol. Technol. 2017, 123, 94–101. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, G.J.; Cho, K.Y. Correlation of Lipid Peroxidation in Botrytis Cinerea Caused by Dicarboximide Fungicides with Their Fungicidal Activity. J. Agric. Food Chem 1998, 46, 737–741. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, J.; Feng, R.; Jia, J.; Han, W.; Gong, H. The Regulatory Role of Silicon on Carbohydrate Metabolism in Cucumis Sativus L. under Salt Stress. Plant Soil. 2016, 406, 231–249. [Google Scholar] [CrossRef]
- Dos Santos, A.A.; Deoti, J.R.; Müller, G.; Dário, M.G.; Stambuk, B.U.; Alves Junior, S.L. Microwell plate-based method for the determination of reducing sugars with the DNS reagent. Braz. J. Food Technol. 2017, 20, e2015113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Z.; Zhan, R.L.; Liu, F.; Li, G.P.; Zhao, Y.L.; Chang, J.M. Pathogenic Effect of Cell Wall Degrading Enzymes Produced by Pathogen Causing Mango Bacterial Leaf Spot. J. Fruit Sci. 2016, 33, 585–593. [Google Scholar] [CrossRef]
- Garbin, A.P.; Garcia, N.F.L.; Cavalheiro, G.F.; Silvestre, M.A.; Rodrigues, A.; Paz, M.F.D.; Fonseca, G.G.; Leite, R.S.R. β-Glucosidase from Thermophilic Fungus Thermoascus Crustaceus: Production and Industrial Potential. An. Acad. Bras. Cienc. 2021, 93, e20191349. [Google Scholar] [CrossRef]
- Bacon, C.W.; Porter, J.K.; Norred, W.P.; Leslie, J.F. Production of Fusaric Acid by Fusarium Species. Appl. Environ. Microbiol. 1996, 62, 4039–4043. [Google Scholar] [CrossRef] [PubMed]
- Giriraju, A.; Yunus, G.Y. Assessment of Antimicrobial Potential of 10% Ginger Extract Against Streptococcus mutans, Candida albicans, and Enterococcus faecalis: An in vitro study. Indian J. Dent. Res. 2013, 24, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Makhuvele, R.; Naidu, K.; Gbashi, S.; Thipe, V.C.; Adebo, O.A.; Njobeh, P.B. The Use of Plant Extracts and Their Phytochemicals for Control of Toxigenic Fungi and Mycotoxins. Heliyon 2020, 6, e05291. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, R.D.; Betts, G.; Hoskins, N.; Edwards, M.; Mauriello, G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef]
- Mengal, H.S.; Abro, M.A.; Jatoi, G.H.; Nawab, L.; Poussio, G.B.; Ahmed, N.; Zehri, A.Q.; Ali, A. Efficacy of Different Fungicides, Botanical Extracts and Bio-Control Agents against Cladosporium Cladosporioides, the Causal Agent of Cladosporium Rot in Grapes. Acta Ecol. Sinica 2020, 40, 300–305. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Śniadowska, M.; Otlewska, A.; Żyżelewicz, D. Antibacterial Mechanisms of Aronia Melanocarpa (Michx.), Chaenomeles Superba Lindl. and Cornus Mas L. Leaf Extracts. Food Chem. 2021, 350, 129218. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Gong, H.J.; Yin, J.L. Role of Silicon in Mediating Salt Tolerance in Plants: A Review. Plants 2019, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential Oils of Origanum Compactum Increase Membrane Permeability, Disturb Cell Membrane Integrity, and Suppress Quorum-Sensing Phenotype in Bacteria. J. Pharm Anal. 2019, 9, 301–311. [Google Scholar] [CrossRef]
- Morales, J.; Mendoza, L.; Cotoras, M. Alteration of Oxidative Phosphorylation as a Possible Mechanism of the Antifungal Action of p -Coumaric Acid against Botrytis Cinerea. J. Appl. Microbiol. 2017, 123, 969–976. [Google Scholar] [CrossRef]
- Wei, L.; Chen, C.; Chen, J.; Lin, L.; Wan, C. Possible Fungicidal Effect of Citral on Kiwifruit Pathogens and Their Mechanisms of Actions. Physiol. Mol. Plant Pathol. 2021, 114, 101631. [Google Scholar] [CrossRef]
- Chen, C.; Qi, W.; Peng, X.; Chen, J.; Wan, C. Inhibitory Effect of 7-Demethoxytylophorine on Penicillium Italicum and Its Possible Mechanism. Microorganisms 2019, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.A.; Villanueva, J.R. Lack of Pectic Enzyme Production by Non-Pathogenic Species of Verticillium. Nature 1962, 195, 1328–1329. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, C.; Guo, L.; Hu, G.; Luo, Q.; Liu, J.; Nielsen, J.; Chen, J.; Liu, L. DCEO Biotechnology: Tools to Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem. Rev. 2018, 118, 4–72. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Chen, Y.H.; Chen, J.Y. Antifungal Mechanism of Cynanchum Atratum Bunge Extracts on Penicillium Italicum and Control Effect on Blue Mold of Navel Orange. Acta Phytopathol. Sinica 2017, 47, 398–405. [Google Scholar] [CrossRef]
- Bacon, C.W.; Hinton, D.M.; Hinton, A. Growth-Inhibiting Effects of Concentrations of Fusaric Acid on the Growth of Bacillus Mojavensis and Other Biocontrol Bacillus Species. J. Appl. Microbiol. 2006, 100, 185–194. [Google Scholar] [CrossRef]
- Chen, L.H.; Cui, Y.Q.; Yang, X.M.; Zhao, D.K.; Shen, Q.R. An Antifungal Compound from Trichoderma Harzianum SQR-T037 Effectively Controls Fusarium Wilt of Cucumber in Continuously Cropped Soil. Australas. Plant Pathol. 2012, 41, 239–245. [Google Scholar] [CrossRef]
- Li, H.L.; Wu, L.; Dong, Z.; Jiang, Y.; Jiang, S.; Xing, H.; Li, Q.; Liu, G.; Tian, S.; Wu, Z.; et al. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Hortic Res. 2021, 8, 189. [Google Scholar] [CrossRef]
- Li, J.; Huang, S.Y.; Deng, Q.; Li, G.; Su, G.; Liu, J.; David Wang, H.M. Extraction and Characterization of Phenolic Compounds with Antioxidant and Antimicrobial Activities from Pickled Radish. Food Chem. Toxicol. 2020, 136, 111050. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Furkan Turker Saricaoglu and Sadettin Turhan. Antimicrobial Activity and Antioxidant Capacity of Thyme, Rosemary and Clove Essential Oils and Their Mixtures. J. Innov. Sci. Eng. 2018, 2, 25–33. [Google Scholar] [CrossRef]
- Souiy, Z.; Elaissi, A.; Jlassi, I.; Sghair, W.; Allouch, N.; Mastouri, M.; Krifia, B. Application of Simplex-Centroid Design Methodologies to Optimize the Anti-bacterial and Anti-candidal Activity of the Mixture of Menthapulegium, Pituranthos chloranthus and Thymus algeriensis Essential Oils. Med. Aromat. Plants 2021, 10, 365. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, K.-Y.; Xiong, S.-J.; Li, G.; Guo, C.-Q.; Zhou, J.; Ma, J.-W.; Yin, J.-L.; Liu, Y.-Q.; Zhu, Y.-X. Antifungal Activity of Ginger Rhizome Extract against Fusarium solani. Horticulturae 2022, 8, 983. https://doi.org/10.3390/horticulturae8110983
Xi K-Y, Xiong S-J, Li G, Guo C-Q, Zhou J, Ma J-W, Yin J-L, Liu Y-Q, Zhu Y-X. Antifungal Activity of Ginger Rhizome Extract against Fusarium solani. Horticulturae. 2022; 8(11):983. https://doi.org/10.3390/horticulturae8110983
Chicago/Turabian StyleXi, Ke-Yong, Shi-Jie Xiong, Gang Li, Chang-Quan Guo, Jie Zhou, Jia-Wei Ma, Jun-Liang Yin, Yi-Qing Liu, and Yong-Xing Zhu. 2022. "Antifungal Activity of Ginger Rhizome Extract against Fusarium solani" Horticulturae 8, no. 11: 983. https://doi.org/10.3390/horticulturae8110983
APA StyleXi, K. -Y., Xiong, S. -J., Li, G., Guo, C. -Q., Zhou, J., Ma, J. -W., Yin, J. -L., Liu, Y. -Q., & Zhu, Y. -X. (2022). Antifungal Activity of Ginger Rhizome Extract against Fusarium solani. Horticulturae, 8(11), 983. https://doi.org/10.3390/horticulturae8110983