A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture
Abstract
:1. Introduction
2. Methodology
2.1. Review Protocol-PRISMA
2.2. Database Resources
2.3. Search Strategy
2.3.1. Search Strings Identification
2.3.2. Screening
2.3.3. Eligibility
2.4. Data Abstraction and Analysis
3. Results and Discussion
3.1. Hydrogel
3.1.1. Types of Hydrogel Bases
- Synthetic Hydrogels
- 2.
- Natural-Based Hydrogels
3.1.2. Hydrogel Characteristics
3.2. The Effects of Hydrogels on Planting Medium Properties
3.2.1. Physical Properties
- Bulk Density and Water Holding Capacity
- 2.
- Soil Water Content at Field Capacity
- 3.
- Soil Water Content at Permanent Wilting Point
3.2.2. Biological Properties
3.2.3. Chemical Properties
3.3. Potential as Planting Media
3.3.1. Plant Growth Performances
3.3.2. Water Retention Capacities
3.4. Potential as Carriers
3.4.1. Insecticides and Fungicides
3.4.2. Fertilisers Hydrogel
3.5. Negative Effects
3.6. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, A.K.; Sindhu, S.S.; Anand, P.; Singh, A.; Chauhan, V.B.S.; Verma, S.K. Vermi products and biodegradable superabsorbent polymer improve physiological activities and leaf nutrient contents of gerbera. Res. J. Biotechnol. 2018, 13, 8–18. [Google Scholar]
- Cristache, S.E.; Vuţă, M.; Marin, E.; Cioacă, S.I.; Vuţă, M. Organic versus conventional farming-a paradigm for the sustainable development of the European Countries. Sustainability 2018, 10, 4279. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Ullah, A.; Nadeem, F.; Farooq, M. Sustainable Nutrient Management. In Innovations in Sustainable Agriculture; Farooq, M., Pisante, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783030231699. [Google Scholar]
- Calcagnile, P.; Sibillano, T.; Giannini, C.; Sannino, A.; Demitri, C. Biodegradable poly(lactic acid)/cellulose-based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications. J. Appl. Polym. Sci. 2019, 136, 47546. [Google Scholar] [CrossRef]
- Abdallah, A.M. The effect of hydrogel particle size on water retention properties and availability under water stress. Int. Soil Water Conserv. Res. 2019, 7, 275–285. [Google Scholar] [CrossRef]
- Dhanalakshmi, A.; Vijayakumari, K.K.; Marimuthu, S.; Surendran, U. Evaluation of different soil textures in combination with growing media on growth, yield, and water productivity of Blackgram. Commun. Soil Sci. Plant Anal. 2020, 51, 2670–2682. [Google Scholar] [CrossRef]
- Hayati, N.; Lestari, M. The Influence of growing media and buds source on growth and result of strawberries (Fragaria Ananassa Duchesne). Int. J. Adv. Sci. Technol. 2020, 29, 4961–4967. [Google Scholar]
- Paradelo, R.; Basanta, R.; Barral, M.T. Water-holding capacity and plant growth in compost-based substrates modified with polyacrylamide, guar gum or bentonite. Sci. Hortic. 2019, 243, 344–349. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Habibzadeh, F.; Ataei, R.; Hemmati, P.; Ebrahimian, E. Zeolite and hydrogel improve yield of greenhouse cucumber in soil-less medium under water limitation. Rhizosphere 2018, 6, 7–10. [Google Scholar] [CrossRef]
- Nerlich, A.; Karlowsky, S.; Schwarz, D.; Förster, N.; Dannehl, D. Soilless tomato production: Effects of hemp fiber and rock wool growing media on yield, secondary metabolites, substrate characteristics and greenhouse gas emissions. Horticulturae 2022, 8, 272. [Google Scholar] [CrossRef]
- Kannan, B.; Thiyagarajan, G.; Manikandan, M. Media for Soilless. Biot. Res. 2020, 2, 686–689. [Google Scholar]
- Banitalebi, G.; Mosaddeghi, M.R.; Shariatmadari, H. Feasibility of agricultural residues and their biochars for plant growing media: Physical and hydraulic properties. Waste Manag. 2019, 87, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Al Rohily, K.; El-Hamshary, H.; Ghoneim, A.; Modaihsh, A. Controlled release of phosphorus from superabsorbent phosphate-bound alginate-graft-polyacrylamide: Resistance to soil cations and release mechanism. ACS Omega 2021, 5, 32919–32929. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.D.J.; Rodrigues, G.A.; Santos, A.R.D.; Anjos, G.L.D.; Costa, F.M. Watermelon initial growth under different hydrogel concentrations and shading conditions. Rev. Caatinga 2019, 32, 915–923. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Wang, B.; Li, Z.; Wu, Z.; Zhang, M.; Sheng, N.; Liang, Q.; Wang, H.; Chen, S. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohydr. Polym. 2020, 238, 116207. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, H.; Wang, X. Synthesis and characterization of an injectable ε-polylysine/carboxymethyl chitosan hydrogel used in medical application. Mater. Chem. Phys. 2020, 248, 122902. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Salisu, M.A.; Fagbohun, I.K.; Haliru, B.S. Superabsorbent Polymer Hydrogels for Sustainable Agriculture: A Review. Horticulturae 2022, 8, 605. [Google Scholar] [CrossRef]
- Karagoz, İ.; Yücel, G. Use of super absorbent polymers with Euonymus plants (Euonymus japonicus ‘Aureomarginatus’) in ornamental plant cultivation. Tarim Bilim. Derg. 2020, 26, 201–211. [Google Scholar] [CrossRef]
- Mellelo, E.; Samuilova, E.O.; Denisov, T.S.; Martynova, D.M.; Olekhnovich, R.O. Influence of the bentonite-containing acrylic humectant composite on the soil microflora. Agron. Res. 2019, 17, 1960–1968. [Google Scholar] [CrossRef]
- Sousa, H.R.; Lima, I.S.; Neris, L.M.L.; Silva, A.S.; Nascimento, A.M.S.S.; Araújo, F.P.; Ratke, R.F.; Silva, D.A.; Osajima, J.A.; Bezerra, L.R.; et al. Superabsorbent hydrogels based to polyacrylamide/cashew tree gum for the controlled release of water and plant nutrients. Molecules 2021, 26, 2680. [Google Scholar] [CrossRef]
- Cao, L.; Li, N. Activated-carbon-filled agarose hydrogel as a natural medium for seed germination and seedling growth. Int. J. Biol. Macromol. 2021, 177, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, R.; Yang, Y.; Wu, S.; Cao, Y.; Lu, A.; Zhang, L. Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application. Chem. Eng. J. 2018, 331, 177–184. [Google Scholar] [CrossRef]
- Rashad, R.T. Silicon (Si) use efficiency in sandy soil amended by Si-loaded hydrogel. Commun. Soil Sci. Plant Anal. 2020, 51, 746–756. [Google Scholar] [CrossRef]
- Abou-Baker, N.H.; Ouis, M.; Abd-Eladl, M.; Ibrahim, M.M. Transformation of lignocellulosic biomass to cellulose-based hydrogel and agriglass to improve beans yield. Waste Biomass Valorization 2019, 11, 3537–3551. [Google Scholar] [CrossRef]
- Waly, A.I.; Shaban, A.M.; Bakry, A.B. Utilization of hydrogel for reducing water irrigation quantities on two wheat cultivars grown under sandy soil conditions field crops. Int. J. Water Resour. Arid Environ. 2019, 8, 15–22. [Google Scholar]
- Kumar, R. Standardization of plant species and growing medium for vertical garden system: A new urban horticulture concept. J. Hortic. Sci. 2018, 13, 108–115. [Google Scholar] [CrossRef]
- Giree, S.; Shrestha, G. Comparative study of marigolds in soil and soilless media. Nepal. J. Agric. Sci. 2018, 16, 73. [Google Scholar]
- Farzi, R.; Gholami, M.; Baninasab, B. Water-retention additives’ effects on plant water status and some physiological parameters of two olive cultivars under reduced irrigation regimes. Acta Physiol. Plant. 2017, 39, 126. [Google Scholar] [CrossRef]
- Beigi, S.; Azizi, M.; Iriti, M. Application of super absorbent polymer and plant mucilage improved essential oil quantity and quality of Ocimum basilicum var. Keshkeni. Molecules 2020, 25, 2503. [Google Scholar] [CrossRef]
- Satriani, A.; Catalano, M.; Scalcione, E. The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: A case-study in Southern Italy. Agric. Water Manag. 2018, 195, 114–119. [Google Scholar] [CrossRef]
- Mostafazadeh-Fard, S.; Samani, Z.; Bandini, P.; Shukla, M. Effect of liquid organic fertilizer and zeolite on plant available water content of sand and growth of perennial Ryegrass (Lolium perenne). J. Soil Sci. Plant Nutr. 2021, 21, 513–522. [Google Scholar] [CrossRef]
- Coello, J.; Ameztegui, A.; Rovira, P.; Fuentes, C.; Piqué, M. Innovative soil conditioners and mulches for forest restoration in semiarid conditions in northeast Spain. Ecol. Eng. 2018, 118, 52–65. [Google Scholar] [CrossRef]
- Singh, I.; Verma, R.R.; Srivastava, T.K. Growth, yield, irrigation water use efficiency, juice quality and economics of sugarcane in Pusa hydrogel application under different irrigation scheduling. Sugar Tech 2018, 20, 29–35. [Google Scholar] [CrossRef]
- Mazloom, N.; Khorassani, R.; Zohuri, G.H.; Emami, H.; Whalen, J. Development and characterization of lignin-based hydrogel foruse in agricultural soils: Preliminary evidence. Clean Soil Air Water 2019, 47, 1900101. [Google Scholar] [CrossRef]
- Zhou, Z.; Xing, J.; Zhao, J.; Liu, L.; Gu, L.; Lan, H. The ecological roles of seed mucilage on germination of Lepidium perfoliatum, a desert herb with typical myxospermy in Xinjiang. Plant Growth Regul. 2021, 97, 185–201. [Google Scholar] [CrossRef]
- Robinson, P.; Lowe, J. Literature reviews vs systematic reviews. Aust. N. Z. J. Public Health 2015, 39, 103. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Davina Ghersi, A.L.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Jpn. Pharmacol. Ther. 2019, 47, 1177–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nightingale, A. A guide to systematic literature reviews. Surgery 2009, 27, 381–384. [Google Scholar] [CrossRef]
- Shaffril, H.A.M.; Ahmad, N.; Farid, S.; Abu, A.; Ernawati, M. Systematic literature review on adaptation towards climate change impacts among indigenous people in the Asia Paci fi c regions. J. Clean. Prod. 2020, 258, 120595. [Google Scholar] [CrossRef]
- Petrosino, A.; Boruch, R.F.; Soydan, H.; Duggan, L.; Sanchez-Meca, J. Meeting Challenges Policy: Campbell. Ann. AAPSS 2001, 578, 14–34. [Google Scholar] [CrossRef]
- Xu, H.; Yeum, K.J.; Yoon, Y.H.; Ju, J.H. Effect of hydrophilic polymer in three green roof substrates on growth, flower development, and overwintering of Agastache rugosa (Korean mint) without irrigation. Appl. Ecol. Environ. Res. 2018, 16, 5503–5516. [Google Scholar] [CrossRef]
- Iftime, M.M.; Ailiesei, G.L.; Ungureanu, E.; Marin, L. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydr. Polym. 2019, 223, 115040. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.K.; Zhu, J.; Lim, J.Y.; Gao, Z.; Loh, C.S.; Li, J.; Ong, C.N. Use of okara-derived hydrogel for enhancing growth of plants by minimizing leaching and locking nutrients and water in growing substrate. Ecol. Eng. 2021, 159, 106122. [Google Scholar] [CrossRef]
- Lockwood, C.; Munn, Z.; Porritt, K. Qualitative research synthesis: Methodological guidance for systematic reviewers utilizing meta-aggregation. Int. J. Evid. Based Healthc. 2015, 13, 179–187. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 89. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision techniques and agriculture 4.0 technologies to promote sustainability in the coffee sector: State of the art, challenges and future trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Stevinson, C.; Lawlor, D.A. Searching multiple databases for systematic reviews: Added value or diminishing returns? Complement. Ther. Med. 2004, 12, 228–232. [Google Scholar] [CrossRef]
- Younger, P. Using Google Scholar to conduct a literature search. Nurs. Stand. 2010, 24, 40–46. [Google Scholar] [CrossRef]
- Shaffril, H.A.M.; Krauss, S.E.; Samsuddin, S.F. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci. Total Environ. 2018, 644, 683–695. [Google Scholar] [CrossRef]
- Flemming, K.; Booth, A.; Garside, R.; Tunçalp, Ö.; Noyes, J. Qualitative evidence synthesis for complex interventions and guideline development: Clarification of the purpose, designs and relevant methods. BMJ Glob. Health 2019, 4, e000882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Shen, C.; Zeng, S.; Jin, Y. Revealing soil-borne hydrogel effects on soil hydraulic properties using a roughness-triangular pore space model. Vadose Zone J. 2020, 19, e20071. [Google Scholar] [CrossRef]
- Singh, P.; Baisthakur, P.; Yemul, O.S. Synthesis, characterization and application of crosslinked alginate as green packaging material. Heliyon 2020, 6, e03026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Velázquez, J.C.; Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Qui-Zapata, J.A.; García-Morales, S.; Navarro-López, D.E.; Luna-Bárcenas, G.; Vassallo-Brigneti, E.C.; García-Carvajal, Z.Y. Gelatin–chitosan–PVA hydrogels and their application in agriculture. J. Chem. Technol. Biotechnol. 2019, 94, 3495–3504. [Google Scholar] [CrossRef]
- Chang, L.; Xu, L.; Liu, Y.; Qiu, D. Superabsorbent polymers used for agricultural water retention. Polym. Test. 2021, 94, 107021. [Google Scholar] [CrossRef]
- Klinpituksa, P.; Kosaiyakanon, P. Superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization. Int. J. Polym. Sci. 2017, 2017, 3476921. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Cámara-Zapata, J.M.; García-Sánchez, F.; da Silva, R.C.P.; et al. Bell pepper production under saline stress and fertigation with different k+/ca2+ ratios in a protected environment. Agric. Water Manag. 2008, 9, 227–232. [Google Scholar] [CrossRef]
- Tiwari, O.N.; Sasmal, S.; Kataria, A.K.; Devi, I. Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech 2020, 10, 221. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: The case of phosphorus nanofertilizer. 3 Biotech 2021, 11, 357. [Google Scholar] [CrossRef]
- Guilherme, M.R.; Aouada, F.A.; Fajardo, A.R.; Martins, A.F.; Paulino, A.T.; Davi, M.F.T.; Rubira, A.F.; Muniz, E.C. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef] [Green Version]
- Verma, K.K.; Anas, M.; Chen, Z.; Rajput, V.D.; Malviya, M.K.; Verma, C.L.; Singh, R.K.; Singh, P.; Song, X.P.; Li, Y.R. Silicon supply improves leaf gas exchange, antioxidant defense system and growth in Saccharum officinarum responsive to water limitation. Plants 2020, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, M.; Luan, Q.; Tang, H.; Huang, F.; Xiang, X.; Yang, C.; Bao, Y. Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. J. Agric. Food Chem. 2017, 65, 3785–3791. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Ahmed, M.A.; Benard, P.; Brown, L.K.; George, T.S.; Bengough, A.G.; Roose, T.; Koebernick, N.; Hallett, P.D. Surface tension, rheology and hydrophobicity of rhizodeposits and seed mucilage influence soil water retention and hysteresis. Plant Soil 2019, 437, 65–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Hiltpold, I.; Jaffuel, G.; Sbaiti, I.; Hibbard, B.E.; Turlings, T.C.J. Calcium-alginate beads as a formulation for the application of entomopathogenic nematodes to control rootworms. J. Pest Sci. 2021, 94, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Aguirre Calvo, T.R.; Santagapita, P.R. Encapsulation of a free-solvent extract of lycopene in alginate-Ca(II) beads containing sugars and biopolymers. Chem. Biol. Technol. Agric. 2017, 4, 4–11. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef]
- Shankarappa, S.K.; Muniyandi, S.J.; Chandrashekar, A.B.; Singh, A.K.; Nagabhushanaradhya, P.; Shivashankar, B.; El-Ansary, D.O.; Wani, S.H.; Elansary, H.O. Standardizing the hydrogel application rates and foliar nutrition for enhancing yield of lentil (Lens culinaris). Processes 2020, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, M.W.; Eisenman, S.W. Influence of biochar amendment on herb growth in a green roof substrate. Hortic. Environ. Biotechnol. 2017, 58, 406–413. [Google Scholar] [CrossRef]
- Mariyono, J.; Dewi, H.A.; Daroini, P.B.; Latifah, E.; Zakariya, A.Z.; Afari-Sefa, V. Marketing Aspects of Vegetables: Comparative Study of Four Regions in East Java and Bali. Agriekonomika 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Sindhu, S.S.; Singh, A.; Kumar, A.; Singh, A.; Chauhan, V.B.S. Conditioning effects of biodegradable superabsorbent polymer and vermi-products on media properties and growth of gerbera. Ecol. Eng. 2019, 132, 23–30. [Google Scholar] [CrossRef]
- Olubanjo, O.O.; Yessoufou, M.A. Effect of soil compaction on the growth and nutrient uptake of Zea Mays L. Sustain. Agric. Res. 2019, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Jeyabaskaran, K.J.; Shirgure, P.S.; Pandey, V.; Srivastava, A.K.; Uma, S. Fertigation in Horticulture: A Guarantee to Economized Quality Production. Indian J. Fertil. 2021, 17, 364–383. [Google Scholar]
- Ma, L.; Shi, Y.; Siemianowski, O.; Yuan, B.; Egner, T.K.; Mirnezami, S.V.; Lind, K.R.; Ganapathysubramanian, B.; Venditti, V.; Cademartiri, L. Hydrogel-based transparent soils for root phenotyping in vivo. Proc. Natl. Acad. Sci. USA 2019, 166, 11063–11068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandenay, G.L.; Arianna Renau-Pruñonosa, I.M.; Esteller, M.V. Effects of different amendments (organic matter and hydrogel) on the actual evapotranspiration and crop coefficient of turf grass under field conditions. Irrig. Drain. 2020, 70, 293–305. [Google Scholar] [CrossRef]
- El-Basha, S.; Abdel-Aziz, A.; Bedair, O.; Akl, M. Mathematical model to predict the distribution of soil moisture in the root zone of turf landscape. Arab Univ. J. Agric. Sci. 2019, 27, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Hehab, H.; Tekaya, M.; Mechri, B.; Jemai, A.; Guiaa, M.; Mahjoub, Z.; Boujnah, D.; Laamari, S.; Chihaoui, B.; Zakhama, H.; et al. Effect of the super absorbent polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia. Agric. Water Manag. 2017, 192, 221–231. [Google Scholar] [CrossRef]
- Sharma, R.; Bajpai, J.; Bajpai, A.K.; Acharya, S.; Kumar, B.; Singh, R.K. Assessment of water retention performance of pectin-based nanocarriers for controlled irrigation in agriculture. Agric. Res. 2017, 6, 139–149. [Google Scholar] [CrossRef]
- Kale, S.; Arican, B. Salinity effects on sweet corn yield and water use efficiency under different hydrogel doses. Sci. Pap. Ser. A Agron. S 2018, 61, 263–266. [Google Scholar] [CrossRef]
- Danilova, T.N.; Tabynbayeva, L.K. Polymer gels to manage water availability for wheat (Triticum aestivum L.) Under various environment conditions. Sel’skokhozyaistvennaya Biol. 2019, 54, 76–83. [Google Scholar] [CrossRef]
- Sasse, J.; Kosina, S.M.; de Raad, M.; Jordan, J.S.; Whiting, K.; Zhalnina, K.; Northen, T.R. Root morphology and exudate availability are shaped by particle size and chemistry in Brachypodium distachyon. Plant Direct 2020, 4, e00207. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Bacteria and soil enzymes supporting the valorization of forested soils. Materials 2022, 15, 3287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guan, Y. Microbial investigations of new hydrogel-biochar composites as soil amendments for simultaneous nitrogen-use improvement and heavy metal immobilization. J. Hazard. Mater. 2022, 424, 127154. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.; Hyväluoma, J.; Heikkinen, J.; Keskinen, R.; Kaseva, J.; Hannula, M.; Rasa, K. Quantifying the pore structure of different biochars and their impacts on the water retention properties of Sphagnum moss growing media. Biosyst. Eng. 2020, 191, 96–106. [Google Scholar] [CrossRef]
- Dion, P.P.; Jeanne, T.; Thériault, M.; Hogue, R.; Pepin, S.; Dorais, M. Nitrogen release from five organic fertilizers commonly used in greenhouse organic horticulture with contrasting effects on bacterial communities. Can. J. Soil Sci. 2020, 100, 120–135. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Massa, D. The Tripartite of Soilless Systems, Growing Media, and Plants through an Intensive Crop Production Scheme. Agronomy 2022, 12, 1896. [Google Scholar] [CrossRef]
- Prity, S.A.; Sajib, S.A.; Das, U.; Rahman, M.M.; Haider, S.A.; Kabir, A.H. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Protoplasma 2020, 257, 1373–1385. [Google Scholar] [CrossRef]
- Shahhoseini, R.; Saeidi, K.; Babaahmadi, H.; Ebadi, M.T. Effect of Fertilizers and Superabsorbent Hydrogel on the Yield, Essential Oil Content and Composition of Lemon verbena (Lippia citriodora Kunth.) Cultivated in Iran. J. Essent. Oil-Bear. Plants 2018, 21, 230–236. [Google Scholar] [CrossRef]
- Chiorescu, E. Research on the influence of hydrogels stockosorb and terracottem on the development of some agricultural plants. Lucr. Ştiinţifice Ser. Agron. 2019, 62, 29–32. [Google Scholar]
- M’barki, N.; Chehab, H.; Aissaoui, F.; Dabbaghi, O.; Attia, F.; Mahjoub, Z.; Laamari, S.; Chihaoui, B.; del Giudice, T.; Jemai, A.; et al. Effects of mycorrhizal fungi inoculation and soil amendment with hydrogel on leaf anatomy, growth and physiology performance of olive plantlets under two contrasting water regimes. Acta Physiol. Plant. 2018, 40, 116. [Google Scholar] [CrossRef]
- Suresh, R.; Prasher, S.O.; Patel, R.M.; Qi, Z.; Elsayed, E.; Schwinghamer, T.; Ehsan, A.M. Super absorbent polymer and irrigation regime effects on growth and water use efficiency of container-grown cherry tomatoes. Trans. ASABE 2018, 61, 523–531. [Google Scholar] [CrossRef]
- Azizi, B. Sustainability of soil moisture and reduce fertilizer soaking using nature-friendly hydrogels to improve and promote cultivating. Amaz. Investig. 2018, 7, 243–252. [Google Scholar]
- Khodadadi Dehkordi, D. Effect of superabsorbent polymer on salt and drought resistance of Eucalyptus globulus. Appl. Ecol. Environ. Res. 2017, 15, 1791–1802. [Google Scholar] [CrossRef]
- Diógenes, M.F.S.; Mendonça, V.; De Medeiros Mendonça, L.F.; De Moura, E.A.; Da Silva Lima Reges, K.; De Oliveira, L.M.; De Oliveira, A.M.F. Use of hydrogel in the irrigation management of white pitaya (Hylocereus undatus) seedlings: Biometrics and accumulation of organic and inorganic solutes. Semin. Agrar. 2022, 43, 491–508. [Google Scholar] [CrossRef]
- Wang, Z.; Geng, Y.; Liang, T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Sci. Total Environ. 2020, 713, 136439. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- McCalla, K.A.; Tay, J.W.; Mulchandani, A.; Choe, D.H.; Hoddle, M.S. Biodegradable alginate hydrogel bait delivery system effectively controls high-density populations of Argentine ant in commercial citrus. J. Pest Sci. 2020, 93, 1031–1042. [Google Scholar] [CrossRef]
- Wróblewska, K.; Chohura, P.; Dębicz, R.; Lejcuś, K.; Dąbrowska, J. Water absorbing geocomposite: A novel method improving water and fertilizer efficiency in Brunnera macrophylla cultivation. Part I. Plant growth. Acta Sci. Pol. Hortorum Cultus 2018, 17, 49–56. [Google Scholar] [CrossRef]
- Stefan, D.S.; Zainescu, G.; Manea-Saghin, A.M.; Triantaphyllidou, I.E.; Tzoumani, I.; Tatoulis, T.I.; Syriopoulos, G.T.; Meghea, A. Collagen-based hydrogels composites from hide waste to produce smart fertilizers. Materials 2020, 13, 4396. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Hosny, A.; Saad-Allah, K. Reducing nitrogen leaching while enhancing growth, yield performance and physiological traits of rice by the application of controlled-release urea fertilizer. Paddy Water Environ. 2021, 19, 173–188. [Google Scholar] [CrossRef]
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Wu, Y.; Ullah, H.; Xiao, X.; Chen, B. Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Abdel Raouf, M.E.; El Saeed, S.M.; Zaki, E.G.; Al Sabagh, A.M. Green chemistry approach for preparation of hydrogels for agriculture applications through modification of natural polymers and investigating their swelling properties. Egypt. J. Pet. 2018, 27, 1345–1355. [Google Scholar] [CrossRef]
- Chen, X.; Huang, L.; Mao, X.; Liao, Z.; He, Z. A comparative study of the cellular microscopic characteristics and mechanisms of maize seedling damage from superabsorbent polymers. Pedosphere 2017, 27, 274–282. [Google Scholar] [CrossRef]
- Wróblewska, K.; Chohura, P.; Lejcuś, K.; Dąbrowska, J.; Bąbelewski, P. Water absorbing geocomposite: A novel method improving water and fertilizer efficiency in Brunnera macrophylla cultivation. Part II. Properties of the medium and macroelement uptake efficiency. Acta Sci. Pol. Hortorum Cultus 2018, 17, 57–63. [Google Scholar] [CrossRef]
- Ali, A.N.A.; Bolong, N.; Taha, N.A.T. A review on the application of granular filter media and the utilization of agroindustrial wastes for stormwater quality improvement. J. Teknol. 2021, 83, 75–90. [Google Scholar] [CrossRef]
- ASYB. ASEAN Statistical Yearbook 2020; ASEAN Secretariat: Jakarta, Indonesia, 2020; Volume 18, ISBN 9786236945049. [Google Scholar]
Database | Search Strings |
---|---|
Web of Sciences (WoS) | (((hydrogel*) AND (plant*) AND (med*) AND (soil* OR fertigation*) AND (agr* OR cultiv*))) |
Scopus | TITLE-ABS-KEY (((hydrogel*) AND (plant*) AND (med*) AND (soil* OR fertigation*) AND (agr* OR cultiv*))) |
Criteria | Inclusion | Exclusion |
---|---|---|
Document type | Articles with empirical data | Reviews, conference papers, book chapters, editorials, short surveys, and notes |
Language | English | Non-English |
Timeline | 2018–2022 | <2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahmat, S.S.; Rafii, M.Y.; Oladosu, Y.; Jusoh, M.; Hakiman, M.; Mohidin, H. A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture. Horticulturae 2022, 8, 1026. https://doi.org/10.3390/horticulturae8111026
Sahmat SS, Rafii MY, Oladosu Y, Jusoh M, Hakiman M, Mohidin H. A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture. Horticulturae. 2022; 8(11):1026. https://doi.org/10.3390/horticulturae8111026
Chicago/Turabian StyleSahmat, Siti Sahmsiah, Mohd Y. Rafii, Yusuff Oladosu, Mashitah Jusoh, Mansor Hakiman, and Hasmah Mohidin. 2022. "A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture" Horticulturae 8, no. 11: 1026. https://doi.org/10.3390/horticulturae8111026
APA StyleSahmat, S. S., Rafii, M. Y., Oladosu, Y., Jusoh, M., Hakiman, M., & Mohidin, H. (2022). A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture. Horticulturae, 8(11), 1026. https://doi.org/10.3390/horticulturae8111026