Low Temperature Conditioning Reduced the Chilling Injury by Regulating Expression of the Dehydrin Genes in Postharvest Huangguan Pear (Pyrus bretschneideri Rehd. cv. Huangguan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Treatments
2.2. Cloning of PbDHN Genes
2.3. Multiple Sequence Alignment, Gene Structure Construction, and Phylogenetic Analysis
2.4. Prediction of Cis-Acting Elements in Promoter Region
2.5. Fruit Quality and Estimation of CI
2.6. Quantitative RT-PCR (qRT-PCR) Analysis
2.7. Statistical Analysis
3. Results
3.1. Identification and Classification of DHN Genes in ‘Huangguan’ Pear Fruit
3.2. Multiple Sequence Alignment, Structure, and Phylogenetic Analysis of PbDHNs
3.3. Comparison of Cis-Acting Elements in the Promoter Region of PbDHNs
3.4. The fruit Quality and CI Index
3.5. Expression Patterns of PbDHNs under Different Storage Temperatures
3.6. Expression Patterns of PbDHNs under LTC Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Cheng, Y.; Dong, Y.; Shang, Z.; Guan, J. Effects of low temperature conditioning on fruit quality and peel browning spot in ‘Huangguan’ pears during cold storage. Postharvest Biol. Technol. 2017, 13, 68–73. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, M.; Wang, J.; Jiang, C.; Wang, Q. Application of exogenous ethylene inhibits postharvest peel browning of ‘Huangguan’ pear. Front. Plant Sci. 2017, 7, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Ma, L.; Cheng, Y.; Guan, Y.; Guan, J. Exogenous ethylene alleviates chilling injury of ‘Huangguan’ pear by enhancing the proline content and antioxidant activity. Sci. Hortic. 2019, 257, 108671. [Google Scholar] [CrossRef]
- Allagulova, C.R.; Gimalov, F.R.; Shakirova, F.M.; Vakhitov, V.A. The plant dehydrins: Structure and putative functions. Biochemistry 2003, 68, 945–951. [Google Scholar]
- Eriksson, S.K.; Kutzer, M.; Procek, J.; Gröbner, G.; Harryson, P. Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 2011, 23, 2391–2404. [Google Scholar] [CrossRef] [Green Version]
- Hara, M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 2010, 5, 503–508. [Google Scholar] [CrossRef]
- Graether, S.P.; Boddington, K.F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 2014, 5, 576. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zhang, D.; Lu, X.; Zhang, L.; Yu, Z.; Lv, H.; Zhang, H. Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Mol. Biol. Rep. 2014, 32, 664–678. [Google Scholar] [CrossRef]
- Chen, R.; Jing, H.; Guo, W.; Wang, S.; Ma, F.; Pan, B.; Gong, Z. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Rep. 2015, 34, 2189–2200. [Google Scholar] [CrossRef]
- Liu, H.; Yu, C.; Li, H.; Ouyang, B.; Wang, T.; Zhang, J.; Wang, X.; Ye, Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 2015, 231, 198–211. [Google Scholar] [CrossRef]
- Lv, A.; Su, L.; Liu, X.; Xing, Q.; Huang, B.; An, Y.; Zhou, P. Characterization of dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC Plant Biol. 2018, 18, 299. [Google Scholar] [CrossRef]
- Luo, D.; Hou, X.; Zhang, Y.; Meng, Y.; Zhang, H.; Liu, S.; Wang, X.; Chen, R. CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. Int. J. Mol. Sci. 2019, 20, 1989. [Google Scholar] [CrossRef] [Green Version]
- Alsheikh, M.K.; Heyen, B.J.; Randall, S.K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 2003, 278, 40882–40889. [Google Scholar] [CrossRef] [Green Version]
- Close, T.J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 1996, 97, 795–803. [Google Scholar] [CrossRef]
- Close, T.J. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 1997, 100, 291–296. [Google Scholar] [CrossRef]
- Fernandez-Caballero, C.; Rosales, R.; Romero, I.; Escribano, M.I.; Merodio, C.; Sanchez-Ballesta, M.T. Unraveling the roles of CBF1, CBF4 and dehydrin 1 genes in the response of table grapes to high CO2 levels and low temperature. J. Plant Physiol. 2012, 169, 744–748. [Google Scholar] [CrossRef] [Green Version]
- Falavigna, V.S.; Miotto, Y.E.; Porto, D.D.; Anzanello, R.; dos Santos, H.P.; Fialho, F.B.; Margis-Pinheiro, M.; Pasquali, G.; Revers, L.F. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. Physiol. Plant. 2015, 155, 315–329. [Google Scholar] [CrossRef] [Green Version]
- Bao, F.; Du, D.; An, Y.; Yang, W.; Wang, J.; Cheng, T.; Zhang, Q. Overexpression of prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front. Plant Sci. 2017, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.X.; Li, X.Y.; Xu, C.J.; Chen, J.W. Overexpression of loquat dehydrin gene EjDHN1 promotes cold tolerance in transgenic tobacco. Russ. J. Plant Physiol. 2018, 65, 69–77. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, L.; Wang, X.; Wang, X.; Zhang, M.; Zhu, J. Overexpression of saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS ONE 2019, 14, e0225090. [Google Scholar] [CrossRef]
- Puhakainen, T.; Hess, M.W.; Makela, P.; Svensson, J.; Heino, P.; Palva, E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 2004, 54, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Hundertmark, M.; Hincha, D.K. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom. 2008, 9, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Xia, H.; Wu, S.; Ma, F.W. Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol. Biol. Rep. 2012, 39, 10759–10768. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Z.; He, M.Y.; Zhu, Z.G.; Li, S.X.; Xu, Y.; Zhang, C.H.; Singer, S.D.; Wang, Y.J. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 2012, 12, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.X.; Yang, Y.; Li, X.; Li, X.Y.; Feng, C.; Chen, J.W.; Xu, C.J. Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica). PLoS ONE 2014, 9, e87575. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Terashima, S.; Fukaya, T.; Kuboi, T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 2003, 217, 290–298. [Google Scholar] [CrossRef]
- Gasic, K.; Hernandez, A.; Korban, S.S. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol. Biol. Rep. 2004, 22, 437–438. [Google Scholar] [CrossRef]
- Layton, B.E.; Boyd, M.B.; Tripepi, M.S.; Bitonti, B.M.; Dollahon, M.N.; Balsamo, R.A. Dehydration-induced expression of a 31-k Da dehydrin in polypodium polypodioides (polypodiaceae) may enable large, reversible deformation of cell walls. Am. J. Bot. 2010, 97, 535–544. [Google Scholar] [CrossRef]
- Wei, H.; Yang, Y.; Himmel, M.E.; Tucker, M.P.; Ding, S.; Yang, S.; Arora, R. Identification and characterization of five cold stress-related rhododendron dehydrin genes: Spotlight on a FSK-Type dehydrin with multiple F-Segments. Front. Bioeng. Biotech. 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.; Graether, S.P. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci. 2011, 20, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Nassuth, A. Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep. 2006, 25, 968–977. [Google Scholar] [CrossRef]
- Jiang, C.; Iu, B.; Singh, J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassicanapus. Plant Mol. Biol. 1996, 30, 679–684. [Google Scholar] [CrossRef]
- Busk, P.K.; Jensen, A.B.; Pages, M. 1Acting elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J. 1997, 11, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
- Nylander, M.; Svensson, J.; Palva, E.T.; Welin, B.V. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 2001, 45, 263–279. [Google Scholar] [CrossRef]
- Abe, H.; Urao, T.; Ito, T.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003, 15, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, M.; Hao, Y.; Kapoor, A.; Dong, C.; Fujii, H.; Zheng, X.; Zhu, J. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 2006, 281, 37636–37645. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Organization of cis-acting elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci. 2005, 10, 88–94. [Google Scholar] [CrossRef]
- Bassett, C.L.; Fisher, K.M.; Farrell, R.E., Jr. The complete peach dehydrin family: Characterization of three recently recognized genes. Tree Genet. Genomes 2015, 11, 126. [Google Scholar] [CrossRef]
- Agarwal, T.; Upadhyaya, G.; Halder, T.; Mukherjee, A.; Majumder, A.L.; Ray, S. Different dehydrins perform separate functions in Physcomitrella patens. Planta 2017, 245, 101–118. [Google Scholar] [CrossRef]
- Halder, T.; Upadhyaya, G.; Basak, C.; Das, A.; Chakraborty, C.; Ray, S. Dehydrins impart protection against oxidative stress in transgenic tobacco plants. Front. Plant Sci. 2018, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Nam, K.H. Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep. 2010, 29, 203–209. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
PbDHN1 | 5′-TCAGTTTGAAACAATGGCGC-3′ | 5′-GTTCACACAGTCACGCCAAG-3′ |
PbDHN2 | 5′-AGAAAATGGCGCATTTACAAAATC-3′ | 5′-GCTCACACCTAGAGGCACCAG-3′ |
PbDHN3 | 5′-TATCCAAACTTCCAGACTCAAATTG-3′ | 5′-ACCGTTACTCGAACGAGCAC-3′ |
PbDHN4 | 5′-TTTGAAATATGGCGAATTATGGT-3′ | 5′-AGACGATGATCTACTTCTTGTGGC-3′ |
PbDHN5 | 5′-CAACATTTCATTTGCTCTCTTCAC-3′ | 5′-TTCTTTCCGAACACAAGACAAGA-3′ |
PbDHN6 | 5′-CAGTTTCATTTGTTTGTTTATCTTTTG-3′ | 5′-ACCGAGGTCAGACCAGACAC-3′ |
Gene | Forward Primer | Reverse Primer |
---|---|---|
PbDHN1 | 5′-TACTCATCTCATACGACCTCCA-3′ | 5′-GGTGTCCACCGGGAAGTT-3′ |
PbDHN2 | 5′-ACTTGGCCATCACGGTGC-3′ | 5′-CTGCTGTGGTGGCAGCAT-3′ |
PbDHN3 | 5′-TACTACAGGTGCCACCACCG-3′ | 5′-GAGCACACCAGTGACACCAT-3′ |
PbDHN4 | 5′-TCAACACAGTCGGACTGATA-3′ | 5′-CCATGACGTCCAACAATCAC-3′ |
PbDHN5 | 5′-GAAGGGTATGACGGACAAGA-3′ | 5′-GGTCATCCCTATTCCCACCT-3′ |
PbDHN6 | 5′-AAGCTGCCAGGTGGGAAT-3′ | 5′-TCTCCTGTGCGCCCTGT |
PbACT2 | 5′-GGACATTCAACCCCTCGTCT-3′ | 5′-ATCCTTCTGACCCATACCAACC-3′ |
Gene | Access No | Length of CDS/bp | Number of Amino Acid | Pfam | Molecular Weight/kDa | Isoelectric Points | Chromosome Localization |
---|---|---|---|---|---|---|---|
PbDHN1 | XM_009347774.2 | 603 | 200 | PF00257 | 21.27 | 6.86 | chr2: 6074631−6074029 |
PbDHN2 | XM_009347776.2 | 651 | 216 | PF00257 | 22.88 | 7.38 | chr2: 6054467−6052893 |
PbDHN3 | XM_009347778.1 | 564 | 187 | PF00257 | 19.77 | 7.98 | chr2: 6057707−6056344 |
PbDHN4 | XM_009347773.1 | 1245 | 474 | PF00257 | 50.33 | 7.43 | chr2: 6071938−6070037 |
PbDHN5 | XM_009336070.1 | 861 | 286 | PF00257 | 33.08 | 5.25 | chr15: 116768−118339 |
PbDHN6 | XM_009347771.2 | 586 | 194 | PF00257 | 20.26 | 6.92 | chr2: 6062552−6061487 |
Treatments | Firmness (N) | SSC (%) | TA (%) |
---|---|---|---|
20 °C | 57.66 ± 3.77 b | 12.04 ± 0.39 a | 0.138 ± 0.002 b |
10 °C | 67.63±0.77 a | 12.53 ± 0.59 a | 0.144 ± 0.002 b |
0 °C | 66.09 ± 2.43 a | 12.00 ± 0.31 a | 0.165 ± 0.002 a |
LTC | 66.13 ± 2.00 a | 12.34 ± 0.40 a | 0.158 ± 0.005 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; He, J.; Feng, Y.; Zhao, J.; Guan, J. Low Temperature Conditioning Reduced the Chilling Injury by Regulating Expression of the Dehydrin Genes in Postharvest Huangguan Pear (Pyrus bretschneideri Rehd. cv. Huangguan). Horticulturae 2022, 8, 1022. https://doi.org/10.3390/horticulturae8111022
Cheng Y, He J, Feng Y, Zhao J, Guan J. Low Temperature Conditioning Reduced the Chilling Injury by Regulating Expression of the Dehydrin Genes in Postharvest Huangguan Pear (Pyrus bretschneideri Rehd. cv. Huangguan). Horticulturae. 2022; 8(11):1022. https://doi.org/10.3390/horticulturae8111022
Chicago/Turabian StyleCheng, Yudou, Jingang He, Yunxiao Feng, Jiangli Zhao, and Junfeng Guan. 2022. "Low Temperature Conditioning Reduced the Chilling Injury by Regulating Expression of the Dehydrin Genes in Postharvest Huangguan Pear (Pyrus bretschneideri Rehd. cv. Huangguan)" Horticulturae 8, no. 11: 1022. https://doi.org/10.3390/horticulturae8111022
APA StyleCheng, Y., He, J., Feng, Y., Zhao, J., & Guan, J. (2022). Low Temperature Conditioning Reduced the Chilling Injury by Regulating Expression of the Dehydrin Genes in Postharvest Huangguan Pear (Pyrus bretschneideri Rehd. cv. Huangguan). Horticulturae, 8(11), 1022. https://doi.org/10.3390/horticulturae8111022