Strawberry Production with Different Mulches and Wetted Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Area
2.2. Plant Material and Cultural Practices
2.3. Characterization of the Experimental Assay
2.4. Water Management
2.5. Evaluated Characteristics
2.6. Statistical Analysis
3. Results and Discussion
3.1. Wet Area
3.2. Water Consumption
3.3. Weeds
3.4. Agronomic Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samtani, J.B.; Rom, C.R.; Friedrich, H.; Fennimore, S.A.; Finn, C.E.; Petran, A.; Bergefurd, B. The status and future of the strawberry industry in the United States. HortTechnology 2019, 29, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Wurz, D.A.; Dubiela, R.C.; Nunes, H.F. Socioeconomic profile of strawberry producers in Canoinhas city-Santa Catarina state. Rev. Científica Rural. 2019, 21, 13–27. [Google Scholar] [CrossRef]
- Xue, J.; Guan, H.; Huo, Z.; Wang, F.; Huang, G.; Boll, J. Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater. Agric. Water Manag. 2017, 194, 78–89. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.M.S.; Pacifico, A.; Fracchiolla, M.; Al Chami, Z.; Lasorella, C.; Montemurro, P.; Mondelli, D. Soil management systems: Effects on soil properties and weed flora. S. Afr. J. Enol. Vitic. 2015, 36, 11–20. [Google Scholar] [CrossRef]
- Bedbabis, S.; Rouina, B.B.; Boukhris, M.; Ferrara, G. Effects of irrigation with treated wastewater on root and fruit mineral elements of chemlali olive cultivar. Sci. World J. 2014, 2014, 973638. [Google Scholar] [CrossRef]
- Boselli, M.; Bahouaoui, M.A.; Lachhab, N.; Sanzani, S.M.; Ferrara, G.; Ippolito, A. Protein hydrolysates effects on grapevine (Vitis vinifera L.; cv. Corvina) performance and water stress tolerance. Sci. Hortic. 2019, 258, 108784. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, A. Effect of various mulches on the growth and yield of strawberry cv. Chandler under tropical conditions on Punjab. Int. J. Recent Trends Sci. Technol. 2017, 25, 21–25. [Google Scholar] [CrossRef]
- Santin, A.; Villa, F.; Paulus, D.; Santin, J.; Piva, A.L.; Mezzalira, E.J.; Ritter, G. Plastic soil covers in vegetative development, production and quality of strawberries. Ceres 2020, 67, 272–280. [Google Scholar] [CrossRef]
- Silva, G.H.; Cunha, F.F.; Andrade, L.M.; Rodrigues, T.F.; Ferreira, T.S.; Freitas, A.R.J.; Souza, C.M. Biodegradable mulch of recycled paper reduces water consumption and crop coefficient of pak choi. Sci. Hortic. 2020, 267, 109315. [Google Scholar] [CrossRef]
- Horodytska, O.; Valdés, F.J.; Fullana, A. Plastic flexible films waste management: A state of art review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef]
- Yang, N.; Sun, Z.X.; Feng, L.S.; Zheng, M.Z.; Chi, D.C.; Meng, W.Z.; Hou, Z.Y.; Bai, W.; Li, K.Y. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Mater. Manuf. Process. 2015, 30, 143–154. [Google Scholar] [CrossRef]
- Gonzalez-Fuentes, J.A.; Shackel, K.; Lieth, J.H.; Albornoz, F.; Benavides-Mendoza, A.; Evans, R.Y. Diurnal root zone temperature variations affect strawberry water relations, growth, and fruit quality. Sci. Hortic. 2016, 203, 169–177. [Google Scholar] [CrossRef]
- Orde, K.M.; Marini, R.; Demchak, K.; Sideman, R. Albion strawberry responds to mulch treatments and low tunnels covered with photoselective films. HortScience 2021, 56, 1005–1014. [Google Scholar] [CrossRef]
- Jabran, K.; Chauhan, B.S. Weed control using ground cover systems. Non-Chem. Weet Control. 2018, 2018, 61–71. [Google Scholar] [CrossRef]
- Moreno, M.M.; González-Mora, S.; Villena, J.; Campos, J.A.; Moreno, C. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions. J. Environ. Manag. 2017, 200, 490–501. [Google Scholar] [CrossRef]
- Haapala, T.; Palonen, P.; Korpela, A.; Ahokas, J. Feasibility of paper mulches in crop production: A review. Agric. Food Sci. 2014, 23, 60–79. [Google Scholar] [CrossRef] [Green Version]
- Saglam, M.; Sintim, H.Y.; Bary, A.I.; Miles, C.A.; Ghimire, S.; Inglis, D.A.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Silva, G.H.; Cunha, F.F.; Morais, C.V.; Freitas, A.R.J.; Silva, D.J.H.; Souza, C.M. Mulching materials and wetted soil percentages on zucchini cultivation. Ciência e Agrotecnologia 2020, 44, e006720. [Google Scholar] [CrossRef]
- Tunc, T.; Sahin, U.; Evren, S.; Dasci, E.; Guney, E.; Aslantas, R. The deficit irrigation productivity and economy in strawberry in the different drip irrigation practices in a high plain with semi-arid climate. Sci. Hortic. 2019, 245, 47–56. [Google Scholar] [CrossRef]
- Araújo, W.F.; Prado, R.J.; Taveira, D.L.L.; Siqueira, R.H.S.; Chagas, E.A.; Nóbrega, S.L. Dimensions of wetted bulb in drip irrigation system in an area cultivated with sugar apples. Irriga 2019, 1, 81–85. [Google Scholar] [CrossRef]
- Santos, F.L.V.; Delmond, J.G.; Vidal, V.M.; Cunha, F.N.; Teixeira, M.B.; Soares, F.A.L.; Costa, R.A. Dimensões de bulbo molhado em sistema de irrigação por gotejamento. Water Resour. Irrig. Manag. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Keller, J.; Karmeli, D. Trickle irrigation design parameters. Trans. ASAE 1974, 17, 678–684. [Google Scholar] [CrossRef]
- Talens, J.A.M. Riego Localizado y Fertirrigación, 4th ed.; Mundi-Prensa: Madrid, Spain, 2009; p. 575. [Google Scholar]
- Tarjuelo, J.M.; Diaz, J.A.R.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Martínez-Ferri, E.; Soria, C.; Ariza, M.T.; Medina, J.J.; Miranda, L.; Domíguez, P.; Muriel, J.L. Water relations, growth and physiological response of seven strawberry cultivars (Fragaria x ananassa Duch.) to different water availability. Agric. Water Manag. 2016, 164, 73–82. [Google Scholar] [CrossRef]
- Lozano, D.; Ruiz, N.; Gavilán, P. Consumptive water use and irrigation performance of strawberries. Agric. Water Manag. 2016, 169, 44–51. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; López-Borrallo, D.; Miranda, L.; Medina, J.J.; Arriaga, J.; Muriel-Fernández, J.L.; Martínez-Ferri, E. Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters. Sci. Hortic. 2018, 231, 233–240. [Google Scholar] [CrossRef]
- Adak, N.; Gubbuk, H.; Tetik, N. Yield, quality and biochemical properties of various strawberry cultivars under water stress. J. Sci. Food Agric. 2017, 98, 304–311. [Google Scholar] [CrossRef]
- Khan, A.; Anwar, Y.; Hasan, M.; Iqbal, A.; Ali, M.; Alharby, H.; Hasanuzzaman, M. Attenuation of drought stress in brassica seedlings with exogenous application of Ca2+ and H2O2. Plants 2017, 6, 20. [Google Scholar] [CrossRef]
- Dehghanipoodeh, S.; Ghobadi, C.; Baninasab, B.; Gheysari, M.; Shiranibidabadi, S. Effect of silicon on growth and development of strawberry under water deficit conditions. Hortic. Plant J. 2018, 4, 226–232. [Google Scholar] [CrossRef]
- Embrapa-Empresa Brasileira de Pesquisa Agropecuária; Centro Nacional de Pesquisas de Solos. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; p. 356. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Pritts, M. Nutrient management practices in perennial strawberry are informed by understanding the relationships among carbohydrate status nitrogen availability and soil compaction. HortTechnology 2015, 25, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Nannetti, D.C.; Souza, R.J. Comissão de Fertilidade do Solo do Estado de Minas Gerais. In Recomendação para uso de Corretivos e Fertilizantes em Minas Gerais; Ribeiro, A.C., Guimarães, P.T.G., Alvarez, V., Viçosa, V.H., Eds.; Editora UFV: Viçosa, Brazil, 1999. [Google Scholar]
- Gonçalves, M.A.; Vignolo, G.K.; Antunes, L.E.C.; Reisser Junior, C. Produção de Morango Fora do Solo; Embrapa Clima Temperado: Pelotas, Brazil, 2016; p. 32. [Google Scholar]
- Anderson, H.C.; Rogers, M.A.; Hoover, E.E. Low tunnel covering and microclimate, fruit yield, and quality in an organic strawberry production system. HortTechnology 2019, 29, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Willden, S.A.; Cox, K.D.; Pritts, M.P.; Loeb, G.M. A comparison of weed, pathogen and insect pests between low tunnel and open-field grown strawberries in New York. Crop Prot. 2021, 139, 105388. [Google Scholar] [CrossRef]
- Battam, M.A.; Sutton, B.G.; Boughton, D.G. Soil pits as a simple aid for subsurface drip irrigation systems. Irrig. Sci. 2003, 22, 135–141. [Google Scholar] [CrossRef]
- Falker. Hidrofarm-Medidor eletrônico de umidade do solo. 2022. Available online: http://www.falker.com.br/produto-hidrofarm-medidor-umidade.php (accessed on 26 March 2022).
- Gava, R.; Silva, E.E.; Baio, F.H.R. Electronic moisture sensor calibration in different soil textures. Braz. J. Biosyst. Eng. 2016, 10, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, S.; Mantovani, E.C.; Silva, D.D.; Soares, A.A. Manual de Irrigação, 9th ed.; Editora UFV: Viçosa, Brazil, 2019; p. 545. [Google Scholar]
- PBMH e PIMo. Programa brasileiro para a modernização da horticultura e produção integrada de morango. In Normas de Classificação de Morango; CEAGESP: São Paulo, Brazil, 2009; p. 8. [Google Scholar]
- Costa, S.I.; Ferreira, L.V.; Benati, J.A.; Cantillano, R.F.F.; Antunes, L.E.C. Parâmetros qualitativos de morangueiros de dias neutros produzidos em cultivo sem solo. Eng. Na Agric. 2019, 27, 481–499. [Google Scholar] [CrossRef] [Green Version]
- Incaper. Boas Práticas de Colheita e de Pós-colheita: Qualidade Aproveitamento do Morango; Incaper: Vitória, Brazil, 2016; p. 23. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Gamage, D.N.V.; Biswas, A.; Strachan, I.B. Actively heated fiber optics method to monitor three-dimensional wetting patterns under drip irrigation. Agric. Water Manag. 2018, 210, 243–251. [Google Scholar] [CrossRef]
- Oliveira, R.M.; Cunha, F.F.; Silva, G.H.; Andrade, L.M.; Morais, C.V.; Ferreira, P.M.O.; Oliveira, R.A. Evapotranspiration and crop coefficients of Italian zucchini cultivated with recycled paper as mulch. PLoS ONE 2020, 15, e0232554. [Google Scholar] [CrossRef]
- Li, X.; Šimůnek, J.; Shi, H.; Yan, J.; Peng, Z.; Gong, X. Spatial distribution of soil water, soil temperature, and plant roots in a drip-irrigated intercropping field with plastic mulch. Eur. J. Agron. 2017, 83, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Gendron, L.; Letourneau, G.; Anderson, L.; Sauvageau, G.; Depardieu, C.; Paddock, E.; Caron, J. Real-time irrigation: Cost-effectiveness and benefits for water use and productivity of strawberries. Sci. Hortic. 2018, 240, 468–477. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Nakamura, K. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. Int. Soil Water Conserv. Res. 2017, 5, 302–308. [Google Scholar] [CrossRef]
- Saridaş, M.A.; Kapur, B.; Çeliktopuz, E.; Şahiner, Y.; Kargi, S.P. Land productivity, irrigation water use efficiency and fruit quality under various plastic mulch colors and irrigation regimes of strawberry in the eastern Mediterranean region of Turkey. Agric. Water Manag. 2021, 245, 106568. [Google Scholar] [CrossRef]
- Lewers, K.S.; Fleisher, D.H.; Daughtry, C.S.; Vinyard, B.T. Low-tunnel strawberry production: Comparison of cultivars and films. Int. J. Fruit Sci. 2020, 20, 705–732. [Google Scholar] [CrossRef]
- Temocico, G.; Sturzeanu, M.; Ion, V.; Cristea, S. Evaluation of strawberry fruit quality for new selections and cultivars. RomBiotechnolLett 2019, 24, 742–748. [Google Scholar] [CrossRef]
- Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and fruit quality of strawberry cultivars under different irrigation regimes. Agronomy 2021, 11, 261. [Google Scholar] [CrossRef]
- Gontijo, M.L.; Diotto, A.V.; Souza, F.S.; Gontijo, F.L. Water productivity and agronomic performance of strawberries with different leaching fractions application. Sci. Plena 2020, 16, 050201. [Google Scholar] [CrossRef]
- Létourneau, G.; Caron, J. Irrigation management scale and water application method to improve yield and water productivity of field-grown strawberries. Agronomy 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, R.D.; Samtani, J.B.; Manchester, M.A.; Romelczyk, S.; Johnson, C.S.; Lawrence, W.; Pattison, J. On-farm evaluation of strawberry cultivars in coastal Virginia. HortTechnology 2020, 1, 1–8. [Google Scholar] [CrossRef]
Layer | Ufc 1 | Uwp 2 | BD 3 | Clay | Silt | Sand | TexturalClassification 4 | |
---|---|---|---|---|---|---|---|---|
(cm) | -------- (g g−1) -------- | (g cm−3) | ----------------- (%) ---------------- | |||||
0–30 | 0.2499 | 0.1620 | 1.15 | 38.0 | 13.4 | 48.6 | Sandy clay | |
pH | P | K | Ca | Mg | Al | H+Al | Zn | Fe |
(H2O) | ----- (mg dm−3) ----- | ------------------ (cmolc dm−3) ------------------ | ----- (mg dm−3) ----- | |||||
6.7 | 242 | 187 | 4.1 | 0.8 | 0.0 | 1.4 | 13.2 | 43.8 |
Mn | Cu | B | S | SB 5 | t 6 | T 7 | V 8 | m 9 |
-------------------- (mg dm−3) -------------------- | ---------- (cmolc dm−3) ---------- | --------- (%) --------- | ||||||
47.3 | 7.4 | 1.0 | 1.4 | 5.4 | 5.4 | 6.8 | 79 | 0.0 |
Parameter | Unit | Value |
---|---|---|
Bicarbonate | mg HCO3 L−1 | 14.6 |
Calcium | mg Ca L−1 | 5.08 |
Carbonate | mg CO3 L−1 | <2 |
Iron | mg Fe L−1 | <0.01 |
Magnesium | mg Mg L−1 | 1.61 |
Manganese | mg Mn L−1 | <0.01 |
pH (In situ) | - | 6.52 |
Sodium | mg Na L−1 | 0.08 |
Sulfate | mg SO4 L−1 | 13.0 |
Total Dissolved Solids | mg TDS L−1 | 25.7 |
Total Suspended Solids | mg TSS L−1 | <5 |
--- CV (%) 1 --- | ------------ F Test 2 ------------ | WA(%) | Type of Mulch | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WA 3 | TM 4 | WA | TM | WA×TM | WHP | BLP | REP | NM | |||||
0.27 | 0.39 | <0.001 | <0.001 | <0.001 | 40 | 353 | Ad | 402 | Ac | 407 | Ab | 443 | Aa |
70 | 479 | Bd | 484 | Bc | 498 | Bb | 522 | Ba |
-- CV 1 (%) -- | ---------- F Test 2 ---------- | DAT 5 | WA (%) | Types of Mulch | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WA 3 | TM 4 | WA | TM | WAxTM | WHP | BLP | REP | NM | ||||||
41.5 | 39.4 | 0.231 | >0.001 | 0.320 | 28 | 40 | 6.54 | Ab | 7.76 | Ab | 6.70 | Ab | 15.30 | Aa |
70 | 9.00 | Ab | 8.36 | Ab | 9.23 | Ab | 37.55 | Aa | ||||||
42 | 40 | 9.23 | Ab | 9.57 | Ab | 5.58 | Ab | 17.05 | Aa | |||||
70 | 7.21 | Ab | 10.02 | Ab | 7.98 | Ab | 21.16 | Aa | ||||||
56 | 40 | 6.68 | Ab | 9.85 | Ab | 7.85 | Ab | 12.01 | Aa | |||||
70 | 8.97 | Ab | 10.15 | Ab | 6.62 | Ab | 13.27 | Aa | ||||||
70 | 40 | 8.45 | Ab | 9.00 | Ab | 6.93 | Ab | 12.22 | Aa | |||||
70 | 9.00 | Ab | 8.11 | Ab | 7.77 | Ab | 13.57 | Aa |
Factor | -- CV 1 (%) -- | ---------- F Test 2 ---------- | WA (%) | Types of Mulch | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WA 3 | TM 4 | WA | TM | WAxTM | WHP | BLP | REP | NM | ||||||
NF 5 | 45.0 | 28.4 | 0.228 | 0.442 | 0.788 | 40 | 45.13 | Aa | 48.20 | Aa | 41.53 | Aa | 41.04 | Aa |
(fr pl−1) | 70 | 50.07 | Aa | 61.20 | Aa | 47.67 | Aa | 57.07 | Aa | |||||
FM 6 | 9.2 | 4.8 | 0.054 | 0.257 | 0.036 | 40 | 14.74 | Aab | 13.75 | Ab | 14.95 | Aa | 14.43 | Aab |
(g fr−1) | 70 | 13.05 | Ba | 13.42 | Aa | 13.15 | Ba | 13.90 | Aa | |||||
FL 7 | 18.2 | 12.1 | 0.662 | 0.352 | 0.545 | 40 | 3.91 | Aa | 3.86 | Aa | 3.92 | Aa | 3.86 | Aa |
(cm) | 70 | 4.23 | Aa | 3.72 | Aa | 4.26 | Aa | 3.77 | Aa | |||||
FED 8 | 2.1 | 2.9 | 0.006 | 0.905 | 0.329 | 40 | 2.95 | Aa | 2.91 | Aa | 2.97 | Aa | 2.94 | Aa |
(cm) | 70 | 2.81 | Ba | 2.87 | Ba | 2.81 | Ba | 2.87 | Ba | |||||
Y 9 | 42.8 | 28.6 | 0.344 | 0.550 | 0.493 | 40 | 6.05 | Aa | 5.93 | Aa | 5.54 | Aa | 5.29 | Aa |
(kg m−2) | 70 | 5.96 | Aa | 7.55 | Aa | 5.69 | Aa | 7.18 | Aa | |||||
WUP 10 | 45.9 | 28.5 | 0.618 | 0.279 | 0.387 | 40 | 17.16 | Aa | 14.78 | Aa | 13.78 | Aa | 11.95 | Aa |
(kg m−3) | 70 | 12.44 | Aa | 15.61 | Aa | 11.42 | Aa | 13.76 | Aa | |||||
Wst 11 | 48.1 | 35.7 | 0.177 | <0.001 | 0.935 | 40 | 0.40 | Ab | 0.35 | Ab | 0.79 | Aa | 0.65 | Aa |
(fr pl−1) | 70 | 0.48 | Ab | 0.52 | Ab | 0.99 | Aa | 0.77 | Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, J.P.; da Cunha, F.F.; da Silva Adão, A.; de Paula, L.B.; Ribeiro, M.C.; Costa Neto, J.R.R. Strawberry Production with Different Mulches and Wetted Areas. Horticulturae 2022, 8, 930. https://doi.org/10.3390/horticulturae8100930
Pinto JP, da Cunha FF, da Silva Adão A, de Paula LB, Ribeiro MC, Costa Neto JRR. Strawberry Production with Different Mulches and Wetted Areas. Horticulturae. 2022; 8(10):930. https://doi.org/10.3390/horticulturae8100930
Chicago/Turabian StylePinto, João Pedro, Fernando França da Cunha, Alexandre da Silva Adão, Laércio Boratto de Paula, Marcos Caldeira Ribeiro, and José Ricardo Resende Costa Neto. 2022. "Strawberry Production with Different Mulches and Wetted Areas" Horticulturae 8, no. 10: 930. https://doi.org/10.3390/horticulturae8100930
APA StylePinto, J. P., da Cunha, F. F., da Silva Adão, A., de Paula, L. B., Ribeiro, M. C., & Costa Neto, J. R. R. (2022). Strawberry Production with Different Mulches and Wetted Areas. Horticulturae, 8(10), 930. https://doi.org/10.3390/horticulturae8100930