Fertilization of Pot-Grown Cichorium spinosum L.: How It Can Affect Plant Growth, Chemical Profile, and Bioactivities of Edible Parts?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Treatments, and Growing Conditions
2.2. Nutritional Profile
2.3. Organic Acids
2.4. Tocopherols
2.5. Free Sugars
2.6. Fatty Acids
2.7. Hydroethanolic and Aqueous Extracts Preparation
2.8. Phenolic Compounds
2.9. Antioxidant Activity
2.10. Antimicrobial Activity
2.11. Anti-Inflammatory Activity
2.12. Hepatotoxicity and Cytotoxicity Assays
2.13. Statistical Analysis
3. Results and Discussion
3.1. Growth Parameters
3.2. Nutritional Value
3.3. Organic Acids, Tocopherols, and Free Sugars Content
3.4. Fatty Acid Composition
3.5. Phenolic Compound Composition
3.6. Bioactive Properties
3.6.1. Antioxidant Activity
3.6.2. Antimicrobial Properties
3.6.3. Cytotoxic Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Detopoulou, P.; Nomikos, T.; Pliakis, E.; Panagiotakos, D.B.; Antonopoulou, S. Mediterranean wild plants reduce postprandial platelet aggregation in patients with metabolic syndrome. Metabolism 2012, 61, 325–334. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Barata, A.M. The Consumption of Wild Edible Plants. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Morales, P., Barros, L., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 159–198. ISBN 9781118944653. [Google Scholar]
- Morales, P.; Herrera, P.G.; González, M.C.M.; Hurtado, M.C.; de Cortes Sánchez Mata, M. Wild Greens as Source of Nutritive and Bioactive Compounds Over the World. In Wild Plants, Mushrooms Nuts; Wiley: Hoboken, NJ, USA, 2016; pp. 199–261. [Google Scholar]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Papafilippaki, A.; Paranychianakis, N.; Nikolaidis, N.P. Effects of soil type and municipal solid waste compost as soil amendment on Cichorium spinosum (spiny chicory) growth. Sci. Hortic. 2015, 195, 195–205. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Alkhaled, B.; Livieratos, I.; Stamatakis, A.; Ntatsi, G.; Savvas, D. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically. J. Sci. Food Agric. 2017, 98, 1615–1624. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Vasileios, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef]
- Cruz, L.R.O.; Fernandes, Â.; Di Gioia, F.; Petropoulos, S.A.; Polyzos, N.; Dias, M.I.; Pinela, J.; Kostíc, M.; Sokovíc, M.D.; Ferreira, I.C.F.R.; et al. The effect of nitrogen input on chemical profile and bioactive properties of green- and red-colored basil cultivars. Antioxidants 2020, 9, 36. [Google Scholar] [CrossRef]
- Chatzigianni, M.; Aliferis, K.A.; Ntatsi, G.; Savvas, D. Effect of N Supply Level and N Source Ratio on Cichorium spinosum L. Metabolism. Agronomy 2020, 10, 952. [Google Scholar] [CrossRef]
- Kumar Goudar, P.; Singh, S.; Vishweshwar Bhat, N. Influence of nitrogen fertilizers on wheat yield and wild-oat competition-A review. Ann. Agric. Res. New Ser. 2020, 41, 331–338. [Google Scholar]
- Di Gioia, F.; Gonnella, M.; Buono, V.; Ayala, O.; Santamaria, P. Agronomic, physiological and quality response of romaine and red oak-leaf lettuce to nitrogen input. Ital. J. Agron. 2017, 12, 47–58. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Xyrafis, E.; Polyzos, N.; Antoniadis, V.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. The optimization of nitrogen fertilization regulates crop performance and quality of processing tomato (Solanum lycopersicum L. cv. Heinz 3402). Agronomy 2020, 10, 715. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, D.; Kontaxakis, E.; Daliakopoulos, I.; Manios, T.; Savvas, D. Effect of N:K Ratio and Electrical Conductivity of Nutrient Solution on Growth and Yield of Hydroponically Grown Golden Thistle (Scolymus hispanicus L.). Proceedings 2020, 30, 87. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Calhelha, R.C.; Di Gioia, F.; Kolovou, P.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. J. Sci. Food Agric. 2019, 99, 6741–6750. [Google Scholar] [CrossRef] [PubMed]
- Brieudes, V.; Angelis, A.; Vougogiannopoulos, K.; Pratsinis, H.; Kletsas, D.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L.A. Phytochemical analysis and antioxidant potential of the phytonutrient-rich decoction of Cichorium spinosum and C. intybus. Planta Med. 2016, 82, 1070–1078. [Google Scholar] [CrossRef]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Antoniadis, V.; Barros, L.; Ferreira, I. Nutrient solution composition and growing season affect yield and chemical composition of Cichorium spinosum plants. Sci. Hortic. 2018, 231, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Szalai, G.; Dai, N.; Danin, A.; Dudai, N.; Barazani, O. Effect of nitrogen source in the fertilizing solution on nutritional quality of three members of the Portulaca oleracea aggregate. J. Sci. Food Agric. 2010, 90, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Fontana, E.; Hoeberechts, J.; Nicola, S.; Cros, V.; Palmegiano, G.B.; Peiretti, P.G. Nitrogen concentration and nitrate ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. J. Sci. Food Agric. 2006, 86, 2417–2424. [Google Scholar] [CrossRef]
- Montoya-García, C.O.; Volke-Haller, V.H.; Trinidad-Santos, A.; Villanueva-Verduzco, C. Change in the contents of fatty acids and antioxidant capacity of purslane in relation to fertilization. Sci. Hortic. 2018, 234, 152–159. [Google Scholar] [CrossRef]
- Kaymak, H.C. Effect of nitrogen forms on growth, yield and nitrate accumulation of cultivated purslane (Portulaca oleracea L.). Bulg. J. Agric. Sci. 2013, 19, 444–449. [Google Scholar]
- Polyzos, N.; Paschoalinotto, B.; Compocholi, M.; Dias, M.I.; Barros, L.; Petropoulos, S.A. The Effects of Fertilization Regime on Growth Parameters and Bioactive Properties of Pot Grown Cichorium spinosum L. Biol. Life Sci. Forum 2022, 16, 6. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists International. In Official Methods of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2016; ISBN 0935584773. [Google Scholar]
- Pereira, C.G.; Prado, J.M.; Meireles, M.A.A. Economic Evaluation of Natural Product Extraction Processes. In Natural Product Extraction: Principles and Applications; RSC Green Chemistry: Cambridge, UK, 2013; pp. 442–471. [Google Scholar]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Santos, P.F.; Ferreira, I.C.F.R. Calluna vulgaris (L.) Hull: Chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Pinela, J.; Dias, M.I.; Giannoulis, K.D.; Kostić, M.; Soković, M.; Queijo, B.; Santos-Buelga, C.; Ferreira, I.C.F.R.; et al. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem. 2022, 369, 130875. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Inês, M.; Barros, L.; José, M.; Oliveira, M.B.P.P.; Santos-buelga, C.; Ferreira, I.C.F.R. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe ). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Int. 2014, 62, 684–693. [Google Scholar] [CrossRef]
- Petropoulos, S.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I. Nutritional profile and chemical composition of Cichorium spinosum ecotypes. LWT—Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Palaniswamy, U.R.; McAvoy, R.J.; Bible, B. Oxalic acid concentrations in purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hortic. 2004, 629, 299–305. [Google Scholar] [CrossRef]
- Zhang, Y.P.S.Y.; Lin, X.Y.; Zhang, Y.P.S.Y.; Zheng, S.J.; Du, S.T. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules 2020, 25, 3175. [Google Scholar] [CrossRef]
- Hussain, N.; Li, H.; Jiang, Y.; Jabeen, Z.; Shamsi, I.H.; Ali, E.; Jiang, L. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates. J. Zhejiang Univ. Sci. B 2014, 15, 181–193. [Google Scholar] [CrossRef]
- Cocetta, G.; Casciani, D.; Bulgari, R.; Musante, F.; Kolton, A.; Rossi, M.; Ferrante, A. Light use efficiency for vegetables production in protected and indoor environments. Eur. Phys. J. Plus 2017, 132, 42. [Google Scholar] [CrossRef]
- Rosales, M.A.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.d.M.; Blasco, B.; Ríos, J.J.; Soriano, T.; Castilla, N.; Romero, L.; Ruiz, J.M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Fallovo, C.; Schreiner, M.; Schwarz, D.; Colla, G.; Krumbein, A. Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy brassica species. J. Agric. Food Chem. 2011, 59, 4198–4207. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, H.; Xia, X.; Zou, X.-G.; Li, J.; Zhu, X.-M.; Deng, Z.-Y. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. Int. J. Food Prop. 2015, 18, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Zeghichi, S.; Kallithraka, S.; Simopoulos, A.P. Nutritional composition of molokhia (Corchorus olitorius) and stamnagathi (Cichorium spinosum). World Rev. Nutr. Diet. 2003, 91, 1–21. [Google Scholar] [PubMed]
- Sinkovič, L.; Demšar, L.; Žnidarčič, D.; Vidrih, R.; Hribar, J.; Treutter, D. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem. 2015, 166, 507–513. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef]
- Otálora, G.; Carmen, M.; López-Marín, J.; Varó, P.; Francisco, M. Effects of foliar nitrogen fertilization on the phenolic, mineral, and amino acid composition of escarole (Cichorium endivia L. var. latifolium). Sci. Hortic. 2018, 239, 87–92. [Google Scholar] [CrossRef]
- Williams-Brand, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 30, 25–30. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Gür, M.; Verep, D.; Güney, K.; Güder, A.; Altuner, E.M. Determination of some flavonoids and antimicrobial behaviour of some plants’ extracts. Indian J. Pharm. Educ. Res. 2017, 51, S225–S229. [Google Scholar] [CrossRef]
- Rahman, H.; Khan, U.A.; Qasim, M.; Muhammad, N.; Khan, M.D.; Asif, M.; Azizullah, A.; Adnan, M.; Murad, W. Ethnomedicinal Cichorium intybus seed extracts: An impending preparation against multidrug resistant bacterial pathogens. Jundishapur J. Microbiol. 2016, 9, e35436. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, B.H.; Al-Saedi, F.; Salman, A.E. Effects of Cichorium intybus methanolicextracts on some clinical bacterial isolates. Indian J. Public Health Res. Dev. 2019, 10, 829–833. [Google Scholar] [CrossRef]
- Quave, C.L.; Plano, L.R.W.; Pantuso, T.; Bennett, B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008, 118, 418–428. [Google Scholar] [CrossRef]
- Rani, P.; Khullar, N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phyther. Res. 2004, 18, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, W.B. In vitro estimation of superfluid critical extracts of some plants for their antimicrobial potential, phytochemistry, and GC-MS analyses. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 29. [Google Scholar] [CrossRef]
- Shaikh, T.; Rub, R.A.; Sasikumar, S. Antimicrobial screening of Cichorium intybus seed extracts. Arab. J. Chem. 2016, 9, S1569–S1573. [Google Scholar] [CrossRef]
- Oskay, M.; Sari, D. Antimicrobial screening of some Turkish medicinal plants. Pharm. Biol. 2007, 45, 176–181. [Google Scholar] [CrossRef]
- Mehmood, N.; Zubair, M.; Rizwan, K.; Rasool, N.; Shahid, M.; Ahmad, V.U. Antioxidant, antimicrobial and phytochemical analysis of Cichorium intybus seeds extract and various organic fractions. Iran. J. Pharm. Res. 2012, 11, 1145–1151. [Google Scholar]
- Petropoulos, S.; Fernandes, Â.; Stojković, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Soković, M.; Barros, L.; Ferreira, I. Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. J. Clean. Prod. 2019, 240, 118254. [Google Scholar] [CrossRef]
- Moghaddam, N.S.; Ery, M.; Altanlar, N.; Ozlem, Y. Antimicrobial screening of some selected Turkish medicinal plants. Pak. J. Pharm. Sci. 2019, 32, 947–951. [Google Scholar] [PubMed]
- Rehman, A.; Ullah, N.; Ullah, H.; Ahmad, I. Antibacterial and antifungal study of Cichorium intybus. Asian Pac. J. Trop. Dis. 2014, 4, S943–S945. [Google Scholar] [CrossRef]
- Khatami, M.; Zafarnia, N.; Heydarpoor Bami, M.; Sharifi, I.; Singh, H. Antifungal and antibacterial activity of densely dispersed silver nanospheres with homogeneity size which synthesized using chicory: An in vitro study. J. Mycol. Med. 2018, 28, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. Effects of growing substrate and nitrogen fertilization on the chemical composition and bioactive properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy 2021, 11, 576. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef]
- Mirzahosseini, G.; Manayi, A.; Khanavi, M.; Safavi, M.; Salari, A.; Madjid Ansari, A.; San’ati, H.; Vazirian, M. Bio-guided isolation of Centaurea bruguierana subsp. belangerana cytotoxic components. Nat. Prod. Res. 2019, 33, 1687–1690. [Google Scholar] [CrossRef]
- Ostad, S.N.; Rajabi, A.; Khademi, R.; Farjadmand, F.; Eftekhari, M.; Hadjiakhoondi, A.; Khanavi, M. Cytotoxic potential of Centaurea bruguierana ssp. belangerana: The MTT assay. Acta Med. Iran. 2016, 54, 583–589. [Google Scholar]
Traits | ||||||
---|---|---|---|---|---|---|
Treatments | Number of Leaves/Plant | Weight of Leaves/Plant (g) | Dry Matter of Leaves (%) | SPAD Index | Leaf Area (cm2) | Specific Leaf Area (m2/kg) |
C0 | 29.5 ± 1.3 a | 11.5 ± 1.0 c | 8.3 ± 2.2 a | 94.8 ± 12.2 a | 297.1 ± 8.5 b | 27.1 ± 1.7 e |
C111 | 29.1 ± 1.1 a | 11.6 ± 1.2 c | 6.6 ± 1.0 e | 82.8 ± 7.8 bc | 282.8 ± 7.9 c | 31.2 ± 1.7 bc |
C211 | 24.2 ± 1.4 c | 12.9 ± 1.3 a | 6.7 ± 0.1 d | 74.2 ± 6.6 c | 324.7 ± 8.6 a | 28.2 ± 1.7 e |
C222 | 27.3 ± 0.7 b | 9.9 ± 1.1 e | 6.1 ± 1.2 e | 98.1 ± 13.1 a | 260.2 ± 11.4 d | 37.6 ± 2.0 a |
C311 | 27.3 ± 1.3 b | 12.0 ± 1.7 b | 5.6 ± 2.6 f | 62.1 ± 7.0 d | 250.4 ± 6.8 d | 39.2 ± 1.4 a |
C322 | 30.4 ± 1.7 a | 11.5 ± 1.3 c | 7.9 ± 1.0 b | 87.9 ± 7.2 ab | 278.4 ± 8.3 c | 30.8 ± 1.6 cd |
C333 | 29.7 ± 1.3 a | 10.8 ± 0.8 d | 6.9 ± 2.6 c | 76.1 ± 7.8 c | 255.8 ± 8.0 d | 29.8 ± 1.5 d |
C0 | C111 | C211 | C222 | C311 | C322 | C333 | |
---|---|---|---|---|---|---|---|
Total fat (g/100 g dw) | 5.3 ± 0.2 d | 5.6 ± 0.1 c | 6.1 ± 0.1 b | 6.8 ± 0.1 a | 4.8 ± 0.1 e | 5.6 ± 0.2 c | 5.6 ± 0.2 c |
Crude protein (g/100 g dw) | 22.24 ± 0.38 a | 20.49 ± 0.10 c | 20.23 ± 0.05 d | 19.29 ± 0.03 f | 22.09 ± 0.35 a | 19.75 ± 0.13 e | 21.58 ± 0.42 b |
Ash (g/100 g dw) | 13.99 ± 0.27 a | 13.37 ± 0.30 e | 13.51 ± 0.12 d | 13.04 ± 0.01 f | 13.48 ± 0.08 d | 12.59 ± 0.01 c | 13.69 ± 0.12 b |
Total fiber dietary (g/100 g dw) | 45.85 ± 0.28 b | 45.15 ± 0.04 c | 44.64 ± 0.30 d | 40.63 ± 0.17 f | 46.35 ± 0.87 a | 45.14 ± 0.12 c | 42.77 ± 0.52 e |
Carbohydrates (g/100 g dw) | 12.64 ± 0.44 f | 15.36 ± 0.08 d | 15.56 ± 0.26 d | 20.20 ± 0.07 a | 13.25 ± 0.84 e | 16.91 ± 0.33 b | 16.41 ± 0.15 c |
Energy (Kcal/100 g dw) | 278.72 ± 0.47c | 284.36 ± 0.97 b | 286.96 ± 1.12 b | 300.78 ± 0.66 a | 277.57 ± 1.81 c | 287.47 ± 0.50 b | 287.45 ± 0.41 b |
C0 | C111 | C211 | C222 | C311 | C322 | C333 | |
---|---|---|---|---|---|---|---|
Organic acids | (mg/100 g dw) | ||||||
Oxalic acid | 2.75 ± 0.01 a | 2.09 ± 0.02 c | 1.51 ± 0.01 e | 0.53 ± 0.01 g | 2.70 ± 0.02 b | 0.56 ± 0.01 f | 1.78 ± 0.01 d |
Quinic acid | 3.90 ± 0.14 a | 3.13 ± 0.02 d | 3.07 ± 0.1 c | 2.98 ± 0.12 e | 3.42 ± 0.02 b | 2.96 ± 0.01 e | 3.46 ± 0.04 b |
Malic acid | 2.22 ± 0.07 c | 2.13 ± 0.06 e | 2.12 ± 0.03 e | 1.82 ± 0.01 f | 2.56 ± 0.01 a | 2.52 ± 0.01 b | 2.17 ± 0.01 d |
Citric acid | 2.51 ± 0.05 c | 2.12 ± 0.02 e | 2.17 ± 0.01 d | 2.66 ± 0.02 b | 2.65 ± 0.03 b | 2.82 ± 0.02 a | 2.63 ± 0.03 b |
Sum | 11.39 ± 0.12 a | 9.48 ± 0.01 c | 8.87 ± 0.14 d | 7.99 ± 0.14 e | 11.34 ± 0.07 a | 8.87 ± 0.01 d | 10.04 ± 0.02 b |
Tocopherols | (mg/100 g dw) | ||||||
α-Tocopherol | 1.19 ± 0.03 f | 3.37 ± 0.11 b | 1.83 ± 0.02 d | 3.32 ± 0.12 b | 1.39 ± 0.02 e | 3.56 ± 0.1 a | 2.10 ± 0.06 c |
β-Tocopherol | nd | 4.68 ± 0.07 a | 3.47 ± 0.04 b | 4.61 ± 0.28 a | nd | nd | nd |
γ-Tocopherol | 3.29 ± 0.11 c | nd | nd | nd | 2.45 ± 0.03 d | 5.55 ± 0.23 a | 4.39 ± 0.14 b |
Sum | 4.49 ± 0.14f | 8.05 ± 0.04 b | 5.30 ± 0.02 e | 7.94 ± 0.16 c | 3.84 ± 0.05 g | 9.11 ± 0.33 a | 6.49 ± 0.2 d |
Free sugars | (mg/100 g dw) | ||||||
Fructose | 2.74 ± 0.07 e | 3.50 ± 0.08 b | 2.14 ± 0.02 f | 2.86 ± 0.02 d | 2.88 ± 0.02 d | 3.72 ± 0.03 a | 3.01 ± 0.06 c |
Glucose | 3.27 ± 0.05 d | 3.96 ± 0.17 a | 2.71 ± 0.09 e | 2.60 ± 0.08 f | 2.62 ± 0.09 f | 3.71 ± 0.09 b | 3.67 ± 0.04 c |
Sucrose | 3.11 ± 0.04 b | 2.71 ± 0.11 c | 1.74 ± 0.08 e | 3.07 ± 0.11 b | 3.09 ± 0.11 b | 4.52 ± 0.06 a | 2.46 ± 0.08 d |
Trehalose | 0.77 ± 0.03 a | 0.42 ± 0.01 d | 0.41 ± 0.01 d | 0.69 ± 0.01 b | 0.69 ± 0.01 b | 0.56 ± 0.02 c | 0.68 ± 0.03 b |
Sum | 9.88 ± 0.04 c | 10.59 ± 0.04 b | 6.98 ± 0.01 e | 9.21 ± 0.05 d | 9.26 ± 0.03 d | 12.50 ± 0.16 a | 9.82 ± 0.15 c |
C0 | C111 | C211 | C222 | C311 | C322 | C333 | |
---|---|---|---|---|---|---|---|
Fatty acids | (Relative Percentage—%) | ||||||
C11:0 | nd | nd | 0.096 ± 0.001 | nd | nd | nd | nd |
C12:0 | 0.112 ± 0.004 e | 0.150 ± 0.003 c | 0.123 ± 0.002 d | 0.287 ± 0.008 a | 0.256 ± 0.006 b | nd | nd |
C13:0 | 0.769 ± 0.021 e | 1.092 ± 0.002 b | 0.966 ± 0.011 c | 1.434 ± 0.048 a | 0.788 ± 0.016 d | 0.624 ± 0.002 g | 0.737 ± 0.015 f |
C14:0 | 0.185 ± 0.009 g | 0.395 ± 0.001 c | 0.450 ± 0.013 b | 1.094 ± 0.010 a | 0.282 ± 0.004 d | 0.200 ± 0.001 f | 0.246 ± 0.007 e |
C14:1 | 0.292 ± 0.003 d | 0.452 ± 0.001 a | 0.421 ± 0.002 b | 0.333 ± 0.009 c | 0.262 ± 0.008 e | 0.213 ± 0.005 f | 0.337 ± 0.004 c |
C15:0 | nd | 0.159 ± 0.001 c | 0.288 ± 0.003 b | 0.478 ± 0.003 a | 0.088 ± 0.004 d | 0.075 ± 0.003 e | nd |
C15:1 | 0.221 ± 0.003 c | 0.244 ± 0.011 a | 0.210 ± 0.006 d | 0.227 ± 0.008 b | 0.233 ± 0.009 b | 0.150 ± 0.001 f | 0.194 ± 0.004 e |
C16:0 | 13.495 ± 0.537 e | 15.116 ± 0.002 a | 14.277 ± 0.249 c | 14.280 ± 0.067 c | 14.949 ± 0.062 b | 13.448 ± 0.204 f | 13.781 ± 0.334 d |
C16:1 | 1.138 ± 0.029 f | 1.627 ± 0.004 a | 1.431 ± 0.041 d | 1.589 ± 0.053 b | 1.040 ± 0.021 g | 1.501 ± 0.043 c | 1.317 ± 0.036 e |
C17:0 | 0.224 ± 0.222 d | 0.236 ± 0.001 c | 0.215 ± 0.007 e | 0.182 ± 0.006 f | 0.244 ± 0.019 b | 0.174 ± 0.005 g | 0.265 ± 0.001 a |
C17:1 | nd | 0.088 ± 0.004 b | 0.114 ± 0.006 a | 0.113 ± 0.001 a | nd | nd | nd |
C18:0 | 2.662 ± 0.021 c | 2.573 ± 0.037 c | 2.557 ± 0.068 c | 2.037 ± 0.036 d | 3.323 ± 0.023 a | 1.561 ± 0.068 e | 2.803 ± 0.094 b |
C18:1n9c | 2.384 ± 0.067 c | 2.546 ± 0.005 b | 1.162 ± 0.052 f | 1.496 ± 0.020 e | 3.436 ± 0.025 a | 1.091 ± 0.030 g | 2.277 ± 0.086 d |
C18:2n6c | 18.077 ± 0.127 c | 18.551 ± 0.044 a | 16.066 ± 0.234 g | 16.759 ± 0.231 f | 18.423 ± 0.028 b | 16.983 ± 0.180 e | 17.826 ± 0.623 d |
C18:3n3 | 58.616 ± 0.568 c | 54.677 ± 0.121 f | 59.586 ± 0.628 b | 57.601 ± 0.117 e | 54.185 ± 0.002 g | 62.116 ± 0.193 a | 58.236 ± 0.362 d |
C20:0 | 0.451 ± 0.004 c | 0.424 ± 0.001 d | 0.377 ± 0.013 f | 0.411 ± 0.006 e | 0.492 ± 0.006 a | 0.265 ± 0.010 g | 0.470 ± 0.011 b |
C20:1 | nd | nd | nd | nd | nd | nd | nd |
C20:2 | nd | nd | nd | nd | nd | nd | nd |
C21:0 | nd | 0.313 ± 0.001 b | nd | nd | 0.417 ± 0.018 a | nd | nd |
C20:4n6 | nd | nd | nd | nd | nd | nd | nd |
C22:0 | 0.363 ± 0.006 e | 0.374 ± 0.001 d | 0.449 ± 0.021 a | 0.412 ± 0.006 c | 0.428 ± 0.012 b | 0.359 ± 0.014 e | 0.443 ± 0.013 a |
C20:3n3 | nd | nd | 0.070 ± 0.001 | nd | nd | nd | nd |
C20:3n6 | nd | 0.083 ± 0.004 | nd | nd | nd | nd | nd |
C22:2 | 0.083 ± 0.002 f | 0.127 ± 0.001 c | 0.189 ± 0.001 a | 0.194 ± 0.006 a | 0.122 ± 0.001 d | 0.114 ± 0.003 e | 0.149 ± 0.007 b |
C23:0 | 0.172 ± 0.006 d | 0.172 ± 0.035 d | 0.237 ± 0.003 b | 0.293 ± 0.007 a | 0.214 ± 0.006 c | 0.212 ± 0.008 c | 0.209 ± 0.005 c |
C24:0 | 0.760 ± 0.021 d | 0.609 ± 0.001 f | 0.719 ± 0.013 e | 0.785 ± 0.026 c | 0.824 ± 0.013 b | 0.917 ± 0.041 a | 0.715 ± 0.020 e |
SFA | 19.19 ± 0.60 e | 21.61 ± 0.07 b | 20.75 ± 0.39c | 21.69 ± 0.18 b | 22.30 ± 0.03 a | 17.83 ± 0.05 f | 19.67 ± 0.20 d |
MUFA | 4.03 ± 0.10 c | 4.87 ± 0.01 b | 3.22 ± 0.01e | 3.64 ± 0.07 d | 4.97 ± 0.06 a | 2.95 ± 0.07 f | 4.12 ± 0.05 c |
PUFA | 76.8 ± 0.7 b | 73.4 ± 0.1 e | 75.9 ± 0.4c | 74.6 ± 0.1 d | 72.7 ± 0.01 f | 79.2 ± 0.02 a | 76.2 ± 0.3 b |
Peak | Rt | λmax | [M-H]− | MS2 | Tentative Identification |
---|---|---|---|---|---|
1 | 8.51 | 292 | 337 | 191(100),173(12),163(71),155(3),119(34) | 3-O-p-Coumaroylquinic acid |
2 | 10.64 | 292 | 337 | 191(5),173(100),163(39),155(10),119(23) | 4-O-p-Coumaroylquinic acid |
3 | 17.24 | 352 | 477 | 301(100) | Quercetin-O-hexuronoside |
4 | 17.82 | 345 | 461 | 285(100) | Luteolin-O-hexuronoside |
5 | 18.97 | 342 | 505 | 463(24),301(100) | Quercetin-O-acetylhexoside |
6 | 20.71 | 342 | 461 | 285(100) | Kaempherol-O-hexuronoside |
7 | 22.07 | 340 | 491 | 315(100) | Isorhamnetin-O-hexuronoside |
8 | 23.19 | 343 | 489 | 285(100) | Kaempherol-O-acetylhexoside |
9 | 24.48 | 344 | 519 | 315(100) | Isorhamnetin-O-acetylhexoside |
Hydroethanolic Extracts (mg/g Extract) | |||||||
---|---|---|---|---|---|---|---|
Peak | C0 | C111 | C211 | C222 | C311 | C322 | C333 |
1 | 0.541 ± 0.003 a | 0.471 ± 0.002 c | 0.459 ± 0.003 d | 0.453 ± 0.001 d | 0.518 ± 0.003 b | 0.315 ± 0.001 e | 0.468 ± 0.002 c |
2 | 0.864 ± 0.004 d | 0.938 ± 0.008 b | 0.813 ± 0.001 f | 0.893 ± 0.016 c | 0.845 ± 0.004 e | 0.696 ± 0.001 g | 1.016 ± 0.005 a |
3 | 0.496 ± 0.001 b | 0.461 ± 0.003 e | 0.459 ± 0.001 e | 0.465 ± 0.002 d | 0.533 ± 0.001 a | 0.497 ± 0.004 b | 0.484 ± 0.002 c |
4 | 0.541 ± 0.007 c | 0.530 ± 0.006 d | 0.510 ± 0.003 e | 0.497 ± 0.001 f | 0.610 ± 0.001 b | 0.532 ± 0.001 d | 0.631 ± 0.002 a |
5 | 0.481 ± 0.002 c | 0.447 ± 0.003 e | 0.409 ± 0.003 f | 0.46 ± 0.001 d | 0.508 ± 0.001 a | 0.497 ± 0.004 b | 0.441 ± 0.001 e |
6 | 0.580 ± 0.004 c | 0.558 ± 0.001 d | 0.555 ± 0.003 d | 0.518 ± 0.005 e | 0.63 ± 0.001 a | 0.581 ± 0.004 c | 0.588 ± 0.001 b |
7 | 0.673 ± 0.001 c | 0.637 ± 0.004 d | 0.588 ± 0.004 e | 0.588 ± 0.001 e | 0.695 ± 0.003 b | 0.672 ± 0.0004 c | 0.737 ± 0.007 a |
8 | 0.443 ± 0.003 e | 0.472 ± 0.001 c | 0.434 ± 0.001 f | 0.470 ± 0.005 c | 0.508 ± 0.001 a | 0.503 ± 0.002 b | 0.455 ± 0.001 d |
9 | 0.465 ± 0.001 c | 0.430 ± 0.001 f | 0.454 ± 0.005 d | 0.449 ± 0.007 e | 0.491 ± 0.001 a | 0.472 ± 0.004 b | 0.416 ± 0.001 g |
TPA | 1.404 ± 0.002 b | 1.409 ± 0.01 b | 1.272 ± 0.002 e | 1.346 ± 0.015 d | 1.362 ± 0.006 c | 1.010 ± 0.002 f | 1.484 ± 0.002 a |
TF | 3.678 ± 0.002 c | 3.536 ± 0.003 d | 3.410 ± 0.001 f | 3.447 ± 0.001 e | 3.975 ± 0.005 a | 3.754 ± 0.001 b | 3.753 ± 0.001 b |
TPC | 5.082 ± 0.002 c | 4.945 ± 0.013 d | 4.682 ± 0.003 g | 4.794 ± 0.015 e | 5.338 ± 0.007 a | 4.764 ± 0.001 f | 5.237 ± 0.003 b |
Aqueous Extracts (mg/g Extract) | |||||||
Peak | C0 | C111 | C211 | C222 | C311 | C322 | C333 |
1 | 0.4625 ± 0.0001 b | 0.385 ± 0.001 d | 0.371 ± 0.004 e | 0.3403 ± 0.005 f | 0.447 ± 0.003 c | 0.384 ± 0.011 d | 0.521 ± 0.01 a |
2 | 0.573 ± 0.006 f | 0.584 ± 0.001 e | 0.591 ± 0.001 d | 0.662 ± 0.002 c | 0.659 ± 0.014 c | 0.684 ± 0.007 b | 0.821 ± 0.001 a |
3 | 0.534 ± 0.002 c | nd | 0.497 ± 0.001 d | 0.608 ± 0.001 a | 0.537 ± 0.001 c | 0.496 ± 0.001 d | 0.563 ± 0.001 b |
4 | 0.595 ± 0.001 c | 0.521 ± 0.001 f | 0.54 ± 0.000 e | 0.636 ± 0.001 b | nd | 0.567 ± 0.001 d | 0.668 ± 0.01 a |
5 | nd | nd | nd | nd | 0.565 ± 0.001 | nd | nd |
6 | 0.639 ± 0.001 c | 0.489 ± 0.003 f | 0.605 ± 0.001 e | 0.666 ± 0.001 b | 0.665 ± 0.008 b | 0.624 ± 0.009 d | 0.678 ± 0.002 a |
7 | 0.716 ± 0.005 e | 0.541 ± 0.002 g | 0.674 ± 0.006 f | 0.795 ± 0.003 b | 0.777 ± 0.001 d | 0.758 ± 0.007 c | 0.829 ± 0.005 a |
8 | 0.554 ± 0.001 b | nd | 0.499 ± 0.001 e | 0.569 ± 0.001 a | 0.504 ± 0.001 d | 0.504 ± 0.001 d | 0.539 ± 0.001 c |
9 | nd | nd | nd | nd | nd | nd | nd |
TPA | 1.036 ± 0.006 d | 0.969 ± 0.001 e | 0.962 ± 0.003 e | 1.003 ± 0.007 d | 1.106 ± 0.018 b | 1.068 ± 0.005 c | 1.342 ± 0.009 a |
TF | 3.038 ± 0.008 c | 1.551 ± 0.005 f | 2.816 ± 0.003 e | 3.273 ± 0.001 a | 3.049 ± 0.01 b | 2.949 ± 0.001 d | 3.277 ± 0.008 a |
TPC | 4.074 ± 0.002 d | 2.520 ± 0.005 g | 3.778 ± 0.002 f | 4.275 ± 0.008 b | 4.155 ± 0.027 c | 4.017 ± 0.005 e | 4.619 ± 0.001 a |
C0 | C111 | C211 | C222 | C311 | C322 | C333 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antioxidant activity IC50 values (µg/mL) A | ||||||||||||||
OxHLIA Δt = 60 | 322 ± 20 b | 53 ± 3 g | 339 ± 18 a | 61 ± 2 f | 65 ± 2 e | 103 ± 4 d | 123 ± 7 c | |||||||
TBARS inhibition | 479 ± 9 b | 411 ± 15 d | 408 ± 6 d | 363 ± 16 e | 151 ± 6 f | 465 ± 15 c | 547 ± 27 a | |||||||
Antimicrobial activity (mg/mL) B–G Food borne bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | ||||||||||||||
Enterobacter cloacae | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Escherichia coli | 10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 |
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Salmonella enterocolitica | 10 | >10 | 5 | >10 | 5 | >10 | >10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 |
Yersinia enterocolitica | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 |
Gram-positive bacteria | ||||||||||||||
Bacillus cereus | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 |
Listeria monocytogenes | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 |
Staphylococcus aureus | 10 | >10 | 5 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 |
Clinical bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | ||||||||||||||
Escherichia coli | 0.3 | >10 | 5 | >10 | 0.6 | >10 | 1.25 | >10 | 0.6 | >10 | 2.5 | >10 | 5 | >10 |
Klebsiella pneumoniae | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | >10 | >10 |
Morganella morganii | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Proteus mirabilis | 10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 |
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Gram-positive bacteria | ||||||||||||||
Enterococcus faecalis | 10 | >10 | 5 | >10 | 5 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 10 | >10 |
Listeria monocytogenes | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
MRSA | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 |
Fungal strains (mg/mL) | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC |
Aspergillus brasiliensis | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 |
Aspergillus fumigatus | 5 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 | 10 | >10 |
Anti-inflammatory activity H | ||||||||||||||
RAW 264,7 | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
Hepatotoxicity (GI50 values ug/mL) I | ||||||||||||||
PLP2 | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
Cytotoxicity activity (GI50 values ug/mL) I | ||||||||||||||
AGS | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
CaCo2 | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
VERO | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
MCF7 | >400 | >400 | >400 | >400 | >400 | >400 | >400 |
C0 | C111 | C211 | C222 | C311 | C322 | C333 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antioxidant activity IC50 values (µg/mL) A | ||||||||||||||
OxHLIA Δt = 60 | 131 ± 5 c | 97 ± 5 d | 25 ± 2 e | 20 ± 1 f | 207 ± 12 b | 278 ± 9 a | 207 ± 13 b | |||||||
TBARS inhibition | 357 ± 11 a | 143 ± 2 e | 167 ± 6 c | 116 ± 5 f | 225 ± 8 b | 163 ± 8 c,d | 159 ± 7 d | |||||||
Antimicrobial activity (mg/mL) B–G Food borne bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | ||||||||||||||
Enterobacter cloacae | >10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | >10 | >10 | 10 | >10 | 10 | >10 |
Escherichia coli | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Salmonella enterocolitica | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Yersinia enterocolitica | 10 | >10 | 5 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 |
Gram-positive bacteria | ||||||||||||||
Bacillus cereus | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Listeria monocytogenes | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Staphylococcus aureus | 5 | >10 | 5 | >10 | 5 | >10 | 2.5 | >10 | 5 | >10 | 10 | >10 | 10 | >10 |
Clinical bacteria | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | ||||||||||||||
Escherichia coli | 2.5 | >10 | 5 | >10 | 2.5 | >10 | 2.5 | >10 | 5 | >10 | 2.5 | >10 | 2.5 | >10 |
Klebsiella pneumoniae | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 |
Morganella morganii | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 |
Proteus mirabilis | >10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Gram-positive bacteria | ||||||||||||||
Enterococcus faecalis | 5 | 10 | 10 | >10 | 5 | >10 | 5 | >10 | 5 | >10 | 10 | >10 | 10 | >10 |
Listeria monocytogenes | 10 | 10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
MRSA | 5 | 5 | 5 | >10 | 5 | >10 | 10 | >10 | 5 | >10 | 5 | >10 | >10 | >10 |
Fungal strains (mg/mL) | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC |
Aspergillus brasiliensis | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 5 | >10 | 10 | >10 |
Aspergillus fumigatus | 5 | >10 | 5 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | 10 |
Anti-inflammatory activity (IC50 values µg/mL) H | ||||||||||||||
RAW 264.7 | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
Hepatotoxicity (GI50 values µg/mL) I | ||||||||||||||
PLP2 | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
Cytotoxicity activity (GI50 values µg/mL) I | ||||||||||||||
AGS | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
CaCo2 | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
VERO | >400 | >400 | >400 | >400 | >400 | >400 | >400 | |||||||
MCF7 | >400 | >400 | >400 | >400 | >400 | >400 | >400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyzos, N.; Paschoalinotto, B.H.; Compocholi, M.; Pinela, J.; Heleno, S.A.; Calhelha, R.C.; Dias, M.I.; Barros, L.; Petropoulos, S.A. Fertilization of Pot-Grown Cichorium spinosum L.: How It Can Affect Plant Growth, Chemical Profile, and Bioactivities of Edible Parts? Horticulturae 2022, 8, 890. https://doi.org/10.3390/horticulturae8100890
Polyzos N, Paschoalinotto BH, Compocholi M, Pinela J, Heleno SA, Calhelha RC, Dias MI, Barros L, Petropoulos SA. Fertilization of Pot-Grown Cichorium spinosum L.: How It Can Affect Plant Growth, Chemical Profile, and Bioactivities of Edible Parts? Horticulturae. 2022; 8(10):890. https://doi.org/10.3390/horticulturae8100890
Chicago/Turabian StylePolyzos, Nikolaos, Beatriz H. Paschoalinotto, Maria Compocholi, José Pinela, Sandrina A. Heleno, Ricardo C. Calhelha, Maria Inês Dias, Lillian Barros, and Spyridon A. Petropoulos. 2022. "Fertilization of Pot-Grown Cichorium spinosum L.: How It Can Affect Plant Growth, Chemical Profile, and Bioactivities of Edible Parts?" Horticulturae 8, no. 10: 890. https://doi.org/10.3390/horticulturae8100890
APA StylePolyzos, N., Paschoalinotto, B. H., Compocholi, M., Pinela, J., Heleno, S. A., Calhelha, R. C., Dias, M. I., Barros, L., & Petropoulos, S. A. (2022). Fertilization of Pot-Grown Cichorium spinosum L.: How It Can Affect Plant Growth, Chemical Profile, and Bioactivities of Edible Parts? Horticulturae, 8(10), 890. https://doi.org/10.3390/horticulturae8100890