Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Plants and Greenhouse Conditions
2.2. Light Interception Characteristics
2.3. Plant Growth and Yield
2.4. Fruit Temperature
3. Results and Discussion
3.1. Light Interception Characteristics
3.2. Plant Growth and Yield
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rothan, C.; Diouf, I.; Causse, M. Trait discovery and editing in tomato. Plant J. 2019, 97, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 November 2021).
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar] [CrossRef]
- van Os, E.A.; van Zuijdam, R.P.; Hendrix, A.T.M.; Koch, V.J.M. A moving fruit vegetable crop. Acta Hortic. 1993, 342, 69–76. [Google Scholar] [CrossRef]
- Yoshida, H.; Yamamoto, S.; Hayashi, S.; Iwasaki, Y.; Urushiyama, Y. Development of a movable cultivation bench system for high-density of strawberries. J. Jpn. Soc. Agr. Mach. 2008, 70, 98–106. (In Japanese) [Google Scholar] [CrossRef]
- Hayashi, S.; Yoshida, H.; Yamamoto, S.; Iwasaki, Y.; Urushiyama, Y. Design of a strawberry factory using a movable bench. Acta Hortic. 2008, 801, 653–659. [Google Scholar] [CrossRef]
- Hayashi, S.; Saito, S.; Iwasaki, Y.; Yamamoto, S.; Nagoya, T.; Kano, K. Development of circulating-type movable bench system for strawberry cultivation. JARQ 2011, 45, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A.; Maruo, T. Responses of leaf photosynthesis, plant growth and fruit production to periodic alteration of plant density in winter produced single-truss tomatoes. Hortic. J. 2017, 86, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Okano, K.; Nakano, Y.; Watanabe, S. Single-truss tomato system—A labor-saving management system for tomato production. JARQ 2001, 35, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.P.; Ormrod, D.P. Plant spacing effects on growth and development of the greenhouse tomato. Can. J. Plant Sci. 1991, 71, 297–304. [Google Scholar] [CrossRef]
- Amundson, S.; Deyton, D.E.; Kopsell, D.A.; Hitch, W.; Moore, A.; Sams, C.E. Optimizing plant density and production systems to maximize yield of greenhouse-grown “Trust” tomatoes. HortTechnology 2012, 22, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.P.; Ormrod, D.P. Plant spacing effects on yield of the greenhouse tomato. Can. J. Plant Sci. 1990, 70, 565–573. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Pararajasingham, S. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): A review. Sci. Hortic. 1997, 69, 1–29. [Google Scholar] [CrossRef]
- Higashide, T. Review of dry matter production and light interception by plants for yield improvement of greenhouse tomatoes in Japan. Hortic. Res. 2018, 17, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Blanco, F.F.; Folegatti, M.V. A new method for estimating the leaf area index of cucumber and tomato plants. Hortic. Bras. 2003, 21, 666–669. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Fuentes, S.; Ortega-Farias, S.; Gonzalez-Talice, J.; Yuri, J.A. Digital cover photography for estimating Leaf area index (LAI) in apple trees using a variable light extinction coefficient. Sensors 2015, 15, 2860–2872. [Google Scholar] [CrossRef] [Green Version]
- Monsi, M.; Saeki, T. Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduktion. Jpn. J. Bot. 1953, 14, 22–52. [Google Scholar]
- Monsi, M.; Saeki, T.; Schortemeyer, M. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2005, 95, 549–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flénet, F.; Kiniry, J.R.; Board, J.E.; Westgate, M.E.; Reicosky, D.C. Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agron. J. 1996, 88, 185–190. [Google Scholar] [CrossRef]
- Yoshioka, H.; Takahashi, K.; Arai, K. Studies on the translocation and distribution of photosynthates in fruit vegetables. 9. Effects of temperature on translocation of 14C-photosynthates in tomato plants. Bull. Veg. Ornam. Crops Res. Sta. 1986, 14, 1–9. (In Japanese) [Google Scholar]
- Kaneko, S.; Higashide, T.; Yasuba, K.; Ohmori, H.; Nakano, A. Effects of planting stage and density of tomato seedlings on growth and yield component in low-truss cultivation. Hortic. Res. 2015, 14, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Ota, T.; Iwasaki, Y.; Yamane, H.; Sugeno, W.; Kurosaki, H.; Ito, M.; Goto, C. Automatic spacing-controlled movable bench system for tomato production. Eng. Agric. Environ. Food. 2016, 9, 179–186. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Ormrod, D.P. Plant spacing effects on light interception by greenhouse tomatoes. Can. J. Plant Sci. 1988, 68, 1197–1208. [Google Scholar] [CrossRef]
- Chitwood, D.H.; Kumar, R.; Ranjan, A.; Pelletier, J.M.; Townsley, B.T.; Ichihashi, Y.; Martinez, C.C.; Zumstein, K.; Harada, J.J.; Maloof, J.N.; et al. Light-induced indeterminacy alters shade-avoiding tomato leaf morphology. Plant Physiol. 2015, 169, 2030–2047. [Google Scholar] [CrossRef] [Green Version]
- Heuvelink, E.; Bakker, M.J.; Elings, A.; Kaarsemaker, R.; Marcelis, L.F.M. Effect of leaf area on tomato yield. Acta Hortic. 2005, 691, 43–50. [Google Scholar] [CrossRef]
Cultivation Period | Time | Integrated PPFD (mol m−2 d−1) | Air Temperature (°C) | CO2 Concentration (μ mol mol−1) | Relative Humidity (%) | Vapor Pressure Deficit (kPa) |
---|---|---|---|---|---|---|
10 July–9 September 2018 | 5:00–19:00 | 23.1 | 30.6 ± 3.9 | 370.5 ± 15.4 | 77.0 ± 10.3 | 0.78 ± 0.48 |
19:00–5:00 | 0.0 | 26.1 ± 2.3 | 376.7 ± 14.6 | 86.4 ± 6.6 | 0.34 ± 0.18 |
DAT | Treatment | Aboveground Dry Weight (g plant−1) | Dry Matter Ratio (%) | Leaf Area (cm2 plant−1) | Specific Leaf Weight (g m−2) |
---|---|---|---|---|---|
30 | F1.6 | 37.4 a | 12.5 | 2819.4 b | 74.6 a |
M | 43.7 a | 10.6 | 4351.8 a | 62.2 b | |
F1.0 | 36.1 a | 11.2 | 3330.8 b | 64.9 b | |
62 | F1.6 | 134.5 a | 11.0 | 5341.4 b | 105.3 a |
M | 119.1 a | 10.0 | 10255.1 a | 62.2 b | |
F1.0 | 106.3 a | 10.4 | 6784.6 b | 78.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohashi, Y.; Murai, M.; Ishigami, Y.; Goto, E. Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System. Horticulturae 2022, 8, 60. https://doi.org/10.3390/horticulturae8010060
Ohashi Y, Murai M, Ishigami Y, Goto E. Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System. Horticulturae. 2022; 8(1):60. https://doi.org/10.3390/horticulturae8010060
Chicago/Turabian StyleOhashi, Yuta, Misato Murai, Yasuhiro Ishigami, and Eiji Goto. 2022. "Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System" Horticulturae 8, no. 1: 60. https://doi.org/10.3390/horticulturae8010060
APA StyleOhashi, Y., Murai, M., Ishigami, Y., & Goto, E. (2022). Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System. Horticulturae, 8(1), 60. https://doi.org/10.3390/horticulturae8010060