Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Tests Using the Universal Testing Machine
2.2. Vibrating and Comb-Brushing Harvesting Simulations Based on FEM
2.3. Parameter Optimization Experiments
3. Results
3.1. Establishing the Mechanical Models
3.1.1. Densities
3.1.2. Elastic Moduli
3.1.3. Shear Moduli
3.1.4. Poisson’s Ratios
3.2. Regression Analyses
3.3. Response Surface Analyses
3.4. Verification Using the Field Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, L.; Chen, J.; Wu, G.; Yuan, Q.; Ma, S.; Yu, C.; Duan, Z.; Xing, J.; Liu, X. Design and operating parameter optimization of comb brush vibratory harvesting device for wolfberry. Trans. CSAE 2018, 34, 75–82. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Liu, F.; Chen, Y.; Hu, G.; Zhang, E.; Chen, J. Parameter optimization of winnowing equipment for machine-harvested Lycium barbarum L. Span. J. Agric. Res. 2019, 17, e0203. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhao, J.; Chen, J. Recognition of the position of Chinese wolfberry branches under the artificial background. IFAC-PapersOnLine 2018, 51, 321–325. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W.; Qureshi, W.S.; Gao, C.; Zhang, C.; Li, W. Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control. Inf. Process. Agric. 2020, 8, 15–26. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Chen, Y.; Zhang, S.; Liu, F.; Bu, L.; Wang, Z.; Chen, J. FEM explicit dynamics simulation and NIR hyperspectral reflectance imaging for determination of impact bruises of Lycium barbarum L. Postharvest Biol. Technol. 2019, 155, 102–110. [Google Scholar] [CrossRef]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Wang, J.; Meng, S.; Xiao, H.; Zhao, Y.; Zhou, H. Research on Mechanized Harvesting Methods of Lycium barbarum Fruit. IFAC-PapersOnLine 2018, 51, 223–226. [Google Scholar] [CrossRef]
- Zhou, B.; He, J. Design of simulate hand wolfberry picking machine. Trans. CSAE 2010, 26 (Supp. 1), 13–17. [Google Scholar] [CrossRef]
- Zhao, J.; Tsuchikawa, S.; Ma, T.; Hu, G.; Chen, Y.; Wang, Z.; Chen, Q.; Gao, Z.; Chen, J. Modal Analysis and Experiment of a Lycium barbarum L. Shrub for Efficient Vibration Harvesting of Fruit. Agriculture 2021, 11, 519. [Google Scholar] [CrossRef]
- So, J.D. Vibration Characteristics of Boxthorn (Lycium chinense Mill) Branches. Appl. Eng. Agric. 2001, 17, 755–760. [Google Scholar] [CrossRef]
- So, J.D. Vibratory Harvesting Machine for Boxthorn (Lycium chinense Mill) Berries. Trans. ASAE 2003, 46, 211–221. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, H.; Ding, W.; Mei, S. Machanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode. Trans. CSAE 2015, 31, 20–28. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Zhang, J.; Li, W. Design and experiment of vibrating wolfberry harvester. Trans. CSAM 2018, 49, 97–102. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Han, B.; Chen, J. Research on laws of wolfberry dropping based on high-speed camera. J. Agric. Mech. Res. 2018, 40, 166–170. [Google Scholar] [CrossRef]
- Wang, Y. Research on Key Technology of Wolfberry Vibration Harvest. Master’s Thesis, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
- Zhao, J.; Chen, Y.; Wang, Y.; Chen, J. Experimental research on parameter optimization of portable vibrating and harvesting device of Chinese wolfberry. J. Agric. Mech. Res. 2019, 41, 176–182. [Google Scholar] [CrossRef]
- He, M.; Kan, Z.; Li, C.; Wang, L.; Yang, L.; Wang, Z. Mechanism analysis and experiment on vibration harvesting of wolfberry. Trans. CSAE 2017, 33, 47–53. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Tan, Y.; Li, W. Optimal design and experiment on variable pacing combing brush picking device for Lycium barbarum. Trans. CSAM 2018, 49, 83–90. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Chen, Y.; Bu, L.; Hu, G.; Zhang, E. Design and experiment on vibrating and comb brushing harvester for Lycium barbarum. Trans. CSAM 2019, 50, 152–161. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, T.; Inagaki, T.; Chen, Q.; Gao, Z.; Sun, L.; Cai, H.; Chen, C.; Li, C.; Zhang, S.; et al. Finite Element Method Simulations and Experiments of Detachments of Lycium barbarum L. Forests 2021, 12, 699. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.; Tian, K.; Zhang, B.; Huang, J.; Chen, Q. Experimental analysis on mechanical model of ramie stalk. Trans. CSAE 2015, 31, 26–33. [Google Scholar] [CrossRef]
- Wang, Y. Abaqus Analysis User’s Guide: Materials Volume, 1st ed.; China Machine Press: Beijing, China, 2018; pp. 27–28. [Google Scholar]
- Shi, N. Peeling Method of Cotton Stalk and Development of Rubbing Peeling Machine. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
- Wu, J.; Huang, Y.; Wang, Y.; Wang, W. Study on axial compression properties of cotton stalks. J. Agric. Mech. Res. 2004, 26, 148–149, 152. [Google Scholar] [CrossRef]
- The State General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; China National Standardization Administration Commission. Test Method for Flexural Properties of Sandwich Constructions; National Standards of the People’s Republic of China: Beijing, China, 2005; pp. 1–9. [Google Scholar]
- Celik, H.K. Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biol. Technol. 2017, 128, 83–97. [Google Scholar] [CrossRef]
- Shen, C.; Chen, Q.; Li, X.; Zhang, B.; Huang, J.; Tian, K. Test and analysis of axial compressive mechanical properties for ramie stalk. Acta Agric. Univ. Zhejiangensis 2016, 28, 688–692. [Google Scholar] [CrossRef]
Codes | Rotating Speed (r/min) | Material | Amplitude (mm) |
---|---|---|---|
−1 | 120 | 1 | 10 |
0 | 180 | 2 | 20 |
1 | 240 | 3 | 30 |
No. | X1 | X2 | X3 | Y1 (%) | Y2 (%) | Y3 (%) |
---|---|---|---|---|---|---|
1 | −1 | −1 | 0 | 78.6 | 10.0 | 9.1 |
2 | 1 | −1 | 0 | 83.3 | 13.6 | 10.0 |
3 | −1 | 1 | 0 | 82.0 | 12.1 | 12.2 |
4 | 1 | 1 | 0 | 86.7 | 16.4 | 15.4 |
5 | −1 | 0 | −1 | 80.0 | 9.8 | 10.0 |
6 | 1 | 0 | −1 | 85.7 | 14.0 | 11.1 |
7 | −1 | 0 | 1 | 82.0 | 11.8 | 12.2 |
8 | 1 | 0 | 1 | 86.7 | 15.0 | 15.4 |
9 | 0 | −1 | −1 | 82.4 | 10.0 | 7.1 |
10 | 0 | 1 | −1 | 85.0 | 12.8 | 11.8 |
11 | 0 | −1 | 1 | 83.3 | 12.0 | 12.0 |
12 | 0 | 1 | 1 | 86.0 | 14.9 | 16.3 |
13 | 0 | 0 | 0 | 85.0 | 11.1 | 11.8 |
14 | 0 | 0 | 0 | 85.4 | 10.6 | 9.8 |
15 | 0 | 0 | 0 | 85.7 | 11.4 | 5.6 |
16 | 0 | 0 | 0 | 85.2 | 10.0 | 8.7 |
17 | 0 | 0 | 0 | 85.0 | 10.5 | 8.8 |
Item | Density (kg/m3) | Radial Elastic Modulus (MPa) | Axial Elastic Modulus (MPa) | Axial Shear Modulus (MPa) | Radial Shear Modulus (MPa) | Poisson’s Ratio in the XY Plane | Poisson’s Ratio in the YZ Plane | Poisson’s Ratio in the XZ Plane |
---|---|---|---|---|---|---|---|---|
The fruit branch | 985.88 | 21.07 | 82.77 | 8.11 | 2.57 | 0.30 | 0.35 | 0.35 |
Item | Density (kg/m3) | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
Fruit stem [20] | 2461.80 | 8.21 | 0.38 |
Fruit [20] | 933.39 | 0.13 | 0.40 |
Wood rod | 91.80 | 104.33 | 0.30 |
Silica gel rod | 930.57 | 12.84 | 0.30 |
Polypropylene rod | 1159.46 | 1213.07 | 0.30 |
Sources | Sun of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 86.55 | 9 | 9.62 | 74.02 | 0.0001 |
X1 | 49.01 | 1 | 49.01 | 377.17 | 0.0001 |
X2 | 18.30 | 1 | 18.30 | 140.86 | 0.0001 |
X3 | 3.00 | 1 | 3.00 | 23.10 | 0.0020 |
X1X2 | 0.00 | 1 | 0.00 | 0.00 | 1.0000 |
X1X3 | 0.25 | 1 | 0.25 | 1.92 | 0.2080 |
X2X3 | 0.00 | 1 | 0.00 | 0.02 | 0.8936 |
X12 | 10.68 | 1 | 10.68 | 82.18 | 0.0001 |
X22 | 4.36 | 1 | 4.36 | 33.55 | 0.0007 |
X32 | 0.02 | 1 | 0.02 | 0.15 | 0.7122 |
Residual | 0.91 | 7 | 0.13 | ||
Lack-of-fit | 0.56 | 3 | 0.19 | 2.11 | 0.2415 |
Pure error | 0.35 | 4 | 0.09 | ||
Total | 87.46 | 16 |
Sources | Sun of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 64.55 | 9 | 7.17 | 34.61 | 0.0001 |
X1 | 29.26 | 1 | 29.26 | 141.21 | 0.0001 |
X2 | 14.05 | 1 | 14.05 | 67.78 | 0.0001 |
X3 | 6.30 | 1 | 6.30 | 30.41 | 0.0009 |
X1X2 | 0.12 | 1 | 0.12 | 0.59 | 0.4671 |
X1X3 | 0.25 | 1 | 0.25 | 1.21 | 0.3084 |
X2X3 | 0.00 | 1 | 0.00 | 0.01 | 0.9156 |
X12 | 6.74 | 1 | 6.74 | 32.52 | 0.0007 |
X22 | 4.55 | 1 | 4.55 | 21.98 | 0.0022 |
X32 | 1.86 | 1 | 1.86 | 8.99 | 0.0200 |
Residual | 1.45 | 7 | 0.21 | ||
Lack-of-fit | 0.26 | 3 | 0.09 | 0.29 | 0.8284 |
Pure error | 1.19 | 4 | 0.30 | ||
Total | 66.00 | 16 |
Sources | Sun of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 112.29 | 9 | 12.48 | 4.11 | 0.0378 |
X1 | 8.82 | 1 | 8.82 | 2.91 | 0.1320 |
X2 | 38.28 | 1 | 38.28 | 12.62 | 0.0093 |
X3 | 31.60 | 1 | 31.60 | 10.41 | 0.0145 |
X1X2 | 1.32 | 1 | 1.32 | 0.44 | 0.5302 |
X1X3 | 1.10 | 1 | 1.10 | 0.36 | 0.5657 |
X2X3 | 0.04 | 1 | 0.04 | 0.01 | 0.9118 |
X12 | 10.18 | 1 | 10.18 | 3.36 | 0.1097 |
X22 | 5.86 | 1 | 5.86 | 1.93 | 0.2071 |
X32 | 11.88 | 1 | 11.88 | 3.92 | 0.0883 |
Residual | 21.24 | 7 | 3.03 | ||
Lack-of-fit | 1.09 | 3 | 0.36 | 0.07 | 0.9719 |
Pure error | 20.15 | 4 | 5.04 | ||
Total | 133.52 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Ma, T.; Inagaki, T.; Chen, Y.; Hu, G.; Wang, Z.; Chen, Q.; Gao, Z.; Zhou, J.; Wang, M.; et al. Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM. Horticulturae 2021, 7, 286. https://doi.org/10.3390/horticulturae7090286
Zhao J, Ma T, Inagaki T, Chen Y, Hu G, Wang Z, Chen Q, Gao Z, Zhou J, Wang M, et al. Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM. Horticulturae. 2021; 7(9):286. https://doi.org/10.3390/horticulturae7090286
Chicago/Turabian StyleZhao, Jian, Te Ma, Tetsuya Inagaki, Yun Chen, Guangrui Hu, Zhiwei Wang, Qingyu Chen, Zening Gao, Jianguo Zhou, Miaohai Wang, and et al. 2021. "Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM" Horticulturae 7, no. 9: 286. https://doi.org/10.3390/horticulturae7090286
APA StyleZhao, J., Ma, T., Inagaki, T., Chen, Y., Hu, G., Wang, Z., Chen, Q., Gao, Z., Zhou, J., Wang, M., Tsuchikawa, S., & Chen, J. (2021). Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM. Horticulturae, 7(9), 286. https://doi.org/10.3390/horticulturae7090286