Development of High Yielding Cowpea [Vigna unguiculata (L.) Walp.] Lines with Improved Quality Seeds through Mutation and Pedigree Selection Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of New Cowpea Lines
2.2. Evaluation of Promising Cowpea Lines under Field Conditions
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timko, M.P.; Ehlers, J.D.; Roberts, P.A. Cowpea. In Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Pulses, Sugar and Tuber Crops; Springer: Berlin/Heidelberg, Germany, 2007; Volume 3. [Google Scholar]
- Foyer, C.; Lam, H.M.; Nguyen, H.; Kadambot, H.M.; Rajeev, K.V.; Timothy, D.C.; Wallace, C.; Helen, B.; Trevor, A.M.; Jonathan, M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Kay, D.E. Food Legumes; Tropical Development and Research Institute: London, UK, 1979; p. 32. [Google Scholar]
- Hector, V.; Jody, S. Cowpea, Sustainable Agriculture Green Manure Crops; Cooperative Extension Service, University of Hawaii: Honolulu, HI, USA, 2002; SA-GM-6. [Google Scholar]
- Dahmardeh, M.A.; Ghanbari, B.; Syahsar, A.; Ramrodi, M. The role of intercropping maize (Zea mays L.) and Cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afr. J. Agric. Res. 2010, 5, 631–636. [Google Scholar]
- Aikins, S.H.M.; Fuakwa, J.J.A. Growth and dry matter yield responses of cowpea to different sowing depths. J. Agric. Biol. Sci. 2008, 3, 50–54. [Google Scholar]
- Scheelbeek, P.F.; Frances, D.; Bird, A.; Tuomisto, H.L.; Rosemary, G.; Francesca, B.H.; Edward, J.; Joy, M.; Chalabi, Z.; Allen, E.; et al. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl. Acad. Sci. USA 2018, 115, 6804–6809. [Google Scholar] [CrossRef] [Green Version]
- Eric, B. Traditional Field Crops, (Peace Crops)-Appropedia: The Sustainability Wiki. 1981, p. 283. Available online: https://www.appropedia.org/Traditional_Field_Crops (accessed on 9 July 2021).
- Rubaihaya, P.; Radely, R.W.; Khan, T.N.; Mukubi, J.; Leakey, G.L.; Ashley, G.M. Nutritional Improvement of Food Legumes by Breeding; Protein Advisory Group of the United Nations System: New York, NY, USA, 1973; UN System. [Google Scholar]
- Eny, B.A.C. A spacing/time of planting trail with cowpea [Vigna unguiculata (L.) Walp.]. Exp. Agric. 1974, 10, 87–95. [Google Scholar]
- Ojehomon, O.O.; Bamiduro, T.A. The effect of plant density and pattern of plant arrangement on cowpea [Vigna unguiculata (L.) Walp.] using parallel row systematic spacing design. Field Crop. 1971, 27, 646. [Google Scholar]
- Metwally, E.I.; Hewedy, A.M.; Hafez, M.; Morsy, M.A. Kafr El-Sheikh-1 and Kaha-1 new cultivars of cowpea. J. Agric. Sci. Mansoura Univ. 1988, 23, 3887–3897. [Google Scholar]
- Allaa-Shaban, M.I. Application of Bio-Fertilizers to Fertilize Cowpea Plants under El-Arish Region Conditions. Master’s Thesis, Arish University, North Sinai, Egypt, 2018. [Google Scholar]
- Ndiaga, C. Genotype x row spacing and environment interaction of cowpea in semi-arid zones. Afr. Crop. Sci. J. 2000, 9, 359–367. [Google Scholar]
- Mawo, Y.M.; Mohammed, B.; Garko, M.S. Effect of phosphorus levels on growth, yield and development of cowpea (Vigna unguiculata (l.) Walp) varieties. Int. J. Sci. Eng. Appl. Sci. 2016, 2, 302–312. [Google Scholar]
- Oroka, F.O. Mineral fertilizer and inter-row spacing effects on vegetative growth, nodulation and dry matter yield of cowpea (Vigna unguiculata L. walp). Int. J. Agric. Rural. Dev. 2017, 20, 3066–3073. [Google Scholar]
- Van Zonneveld, M.; Rakha, M.; Tan, S.Y.; Chou, Y.-Y.; Chang, C.-H.; Yen, J.-Y.; Schafleitner, R.; Nair, R.; Naito, K.; Solberg, S. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 2020, 10, 2111. [Google Scholar] [CrossRef]
- Kilian, B.; Dempewolf, H.; Guarino, L.; Werner, P.; Coyne, C.; Warburton, M.L. Crop Science special issue: Adapting agriculture to climate change: A walk on the wild side. Crop Sci. 2021, 61, 32–36. [Google Scholar] [CrossRef]
- Arturo, G.; Jens, W.; Jan, P. Cowpea aphid performance and behaviour on two resistant cowpea lines. Entomol. Exp. Appl. 1988, 49, 259–264. [Google Scholar]
- Obisesan, I.O. Evaluation of pedigree and single seed descent selection methods for cultivar development in cowpea (Vigna unguiculata L. Walp). Plant Breed. 1992, 108, 162–168. [Google Scholar] [CrossRef]
- Poehlman, M.; Sleper, D.A. Breeding Field Crops; Iowa State University Press: Ames, IA, USA, 1995; p. 495. [Google Scholar]
- Carter, M.R. (Ed.) Soil Sampling and Methods of Analysis; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Duncan, B.D. Multiple range and multiple F test. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Aliyu, O.M.; Makinde, B.O. Phenotypic analysis of seed yield and yield components in cowpea [Vigna unguiculata (L.) Walp.]. Plant Breed. Biotechnol. 2016, 4, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, J.D.; Hall, A.H. Cowpea [Vigna unguiculata (L.) Walp.]. Field Crop. Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Njoku, D.N.; Muoneke, C.O. Effect of cowpea planting density on growth, yield and productivity of component crops in cowpea/cassava intercropping system. Agro-Science 2008, 7, 106–113. [Google Scholar] [CrossRef]
- El-Naim, A.M.; Jabereldar, A.A. Effect of plant density and cultivar on growth and yield of cowpea [Vigna unguiculata (L.) Walp.]. Aust. J. Basic Appl. Sci. 2010, 4, 3148–3153. [Google Scholar]
- Kamara, A.Y.; Tofa, A.I.; Kyei-boahen, S.; Solomon, R.; Ajeigbe, H.A.; Kamai, N. Effects of plant density on the performance of cowpea in Nigerian savannas. Exp. Agric. 2018, 54, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Metwally, E.I.; Moustafa, S.M.; Mazrouh, A.Y.; Fayed, A.M. Effect of genotypes, plant density and fertilizer level on seed yield and its components of cowpea. J. Agric. Res. Tanta Univ. 1998, 24, 237–246. [Google Scholar]
- Metwally, E.I.; El-Waraky, Y.B.; Masoud, A.M.; Kasem, M.H. Developing and evaluation of some superior lines of cowpea. Alex. J. Agri. Res. 2012, 57, 273–280. [Google Scholar]
- Nielsen, S.S.; Brandt, W.E.; Singh, B.B. Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop. Sci. 1993, 33, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Boukar, O.; Fatokun, C.A.; Huynh, B.L.; Roberts, P.A.; Close, T.J. Genomic tools in cowpea breeding programs: Status and perspectives. Front. Plant Sci. 2016, 7, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdock, L.L.; Coulibaly, O.; Higgins, T.J.V.; Huesing, J.E.; Ishiyaku, M.; Sithole-Niang, I. Cowpea. In Compendium of Transgenic Crop Plants: Transgenic Legume Grains and Forages; Kole, C., Hall, T.C., Eds.; Blackwell Publishing: Oxford, UK, 2008; pp. 23–56. [Google Scholar]
- Prohens, J.; Pietro, G.; Mariola, P.; Hannes, D.; Benjamin, K.; Marıa, J.D.; Ana, F.; Francisco, J.H.; Salvador, S.; Sandra, K.; et al. Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 2017, 213, 158. [Google Scholar] [CrossRef]
- Raubach, S.; Kilian, B.; Dreher, K.; Amri, A.; Bassi, F.M.; Boukar, O.; Cook, D.; Cruickshank, A.; Fatokun, C.; El Haddad, N. From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop Sci. 2021. [Google Scholar] [CrossRef]
- Shaw, P.; Raubach, S.; Hearne, S.; Dreher, K.; Bryan, G.; McKenzie, G.; Milne, I.; Stephen, G.; Marshall, D. Germinate 3: Development of a Common Platform to Support the Distribution of Experimental Data on Crop Wild Relatives. Crop Sci. 2017, 57, 1259–1273. [Google Scholar] [CrossRef]
Year | Generation | Breeding and Selection Activities |
---|---|---|
2006 | F1 | Crosses between Kafr El-Sheikh-1 (female) and Kaha-1 (male) |
2007 | 80 F1 plants | Grow 80 F1 plants to generate F2 seeds |
2008 | 2000 F2 plants | Select best individual F2 plants |
2009 | 200 F3 plants | Grow F3 plants, select the best rows within selected families, and select best plants within selected rows |
2010 | 110 F4 families | Grow F4 lines, select the best rows within selected families, and select best plants within selected rows |
2011 | 64 F5 families | Grow F5 lines, select best rows within selected families, and select best plants within selected rows |
2012 | 35 F6 lines | Grow F6 lines, select the best families, and harvest best rows in bulk |
2013 | 20 F7 lines | Grow F7 lines, select the best families, and harvest best rows in bulk |
2014 | 13 F8 lines | Testing F8 lines and harvest best seed yield plots from one replication in bulk |
2015 | 13 F9 lines | Testing F9 lines and bulk best seed yield plots from one replication to initiate pure seed development |
2016 | 13 F10 lines | Testing F10 lines and bulk best seed yield plots from one replication to increase pure seed |
Variable | Trial | |
---|---|---|
2018 | 2019 | |
Mechanical analysis | ||
Sand% | 10.00 | 9.20 |
Silt% | 32.40 | 31.90 |
Clay% | 57.60 | 58.90 |
Textural class | Clay | Clay |
Chemical analysis | ||
pH | 7.80 | 8.00 |
EC dsm-1 | 3.31 | 3.30 |
Organic matter% | 1.93 | 1.80 |
Available N ppm | 17.60 | 19.00 |
Available P ppm | 7.60 | 7.70 |
Available K ppm | 280.00 | 265.00 |
Source of Variation | Degree of Freedom | Mean Squares | |||||
---|---|---|---|---|---|---|---|
Days to Maturity | Seed Yield (Kg/m2) | No. of Pods/Plant | No. of Seeds/Pod | Seed Index (g/100 Seeds) | Crude Protein (%) | ||
2018 Summer Season | |||||||
Replication | 3 | 0.5 | 29,614.47 | 4.092 | 0.519 | 5.811 | 0.005 |
Plant density (A) | 1 | 0.033ns | 830,003.30 ** | 0.044ns | 5.002ns | 24.3 ** | 0.442 ** |
Error | 3 | 1.92 | 8210.097 | 5.353 | 2.292 | 0.122 | 0.001 |
Genotype (B) | 14 | 179.8 ** | 150,088.57 ** | 171.636 ** | 12.807 ** | 61.508 ** | 8.158 ** |
A × B | 14 | 10.64 ** | 6973.59 ** | 3.523ns | 1.452ns | 1.889 ** | 0.692 ** |
Error | 84 | 0.735 | 1335.29 | 3.969 | 1.01 | 0.104 | 0.001 |
Grand Mean | 78.15 | 498.87 | 19.361 | 8.711 | 20.783 | 23.248 | |
CV (%) | 1.1 | 7.32 | 10.29 | 11.54 | 1.55 | 0.16 | |
2019 Summer Season | |||||||
Replication | 3 | 1.156 | 222.256 | 3.146 | 0.063 | 26 | 0.018 |
Plant density (A) | 1 | 2.133ns | 1,256,244.033 ** | 3.008ns | 4.219 ** | 6.533ns | 9.163 ** |
Error | 3 | 0.756 | 1874.522 | 2.521 | 0.173 | 16.044 | 0.011 |
Genotype (B) | 14 | 187.401 ** | 30,972.705 ** | 32.068 ** | 11.629 ** | 85.873 ** | 5.709 ** |
AB | 14 | 0.437ns | 5079.676 * | 2.182 * | 0.207 ** | 4.301 ** | 2.694 ** |
Error | 84 | 0.527 | 2827.841 | 1.281 | 0.09 | 2.004 | 0.011 |
Grand Mean | 80.633 | 483.383 | 18.2 | 8.232 | 19.433 | 23.104 | |
CV% | 0.9 | 11 | 6.22 | 3.65 | 7.29 | 0.46 |
Factors | 2018 Trial | 2019 Trial | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days to Maturity | Seed Yield (g/m2) | No. of Pods/Plant | No. of Seeds/Pod | Seed Index (g/100 Seeds) | Crude Protein % | Days to Maturity | Seed Yield (g/m2) | No. of Pods/Plant | No. of Seeds/Pod | Seed Index (g/100 Seeds) | Crude Protein % | |
Plant density | ||||||||||||
16 plants/m2 | 78.2 | 415.7 b | 19.4 | 8.9 | 21.3 a | 23.3 a | 80.5 | 381.1 b | 18.4 | 8.4 a | 19.7 | 22.3 b |
24 plants/m2 | 78.1 | 582.0 a | 19.3 | 8.5 | 20.4 b | 23.2 b | 80.8 | 585.7 a | 18.0 | 8.0 b | 19.2 | 22.8 a |
F-test | ns | ** | ns | ns | ** | ** | ns | ** | ns | ** | ns | ** |
1 | 80.0 c | 417.9 f | 14.7 j | 6.3 e | 24.4 b | 23.1 i | 79.6 b | 368.0 d | 20.7 a | 6.3 f | 23.5 ab | 21.8 i |
2 | 70.4 g | 542.4 d | 18.0 g–i | 8.2 b–d | 18.6 j | 23.1 i | 70.9 e | 461.5 c | 15.2 g | 8.9 b | 18.3 f | 22.0 gh |
3 | 77.3 e | 565.4 cd | 18.0 g–i | 7.3 d | 21.9 ef | 23.5 e | 79.9 b | 404.5 d | 18.7 cd | 9.7 a | 23.9 a | 22.1 g |
4 | 83.8 a | 430.9 f | 20.9 de | 8.1 cd | 20.1 i | 24.4 b | 82.1 a | 513.3 a–c | 15.9 g | 8.4 c | 19.5d–f | 23.6 b |
5 | 80.5 bc | 473.4 e | 18.3 f–h | 8.5 b–d | 25.0 a | 23.5 e | 80.0 b | 478.8 bc | 15.0 g | 7.8 e | 22.5 ab | 23.5 bc |
6 | 73.9 f | 647.7 a | 25.0 ab | 10.8 a | 20.9 h | 24.3 c | 73.5 d | 573.0 a | 16.2 fg | 9.7 a | 20.3 de | 22.7 f |
8 | 81.1 b | 550.8 cd | 23.3 bc | 8.0 cd | 15.5 m | 23.2 g | 79.8 b | 467.8 bc | 17.3 ef | 8.7 bc | 13.4 h | 23.2 cd |
9 | 81.0 b | 533.9 d | 20.3 ef | 8.5 bcd | 23.0 c | 23.5 e | 80.1 b | 526.0 ab | 18.4 c–e | 7.7 e | 22.0 bc | 22.9 e |
23 | 84.4 a | 565.9 cd | 20. efg | 8.6 bc | 22.1 de | 22.8 j | 82.5 a | 468.8 bc | 19.3 bc | 6.7 f | 20.0 de | 22.2 g |
28 | 67.1 h | 586.5 bc | 22.7 cd | 10.5 a | 21.5 g | 20.2 l | 65.4 f | 572.0 a | 18.0 de | 9.8 a | 20.8 cd | 21.2 j |
35 | 80.0 c | 570.7 cd | 22.7 cd | 9.3 b | 21.1 h | 23.2 h | 80.0 b | 526.5 ab | 20.3 ab | 6.5 f | 15.8 g | 21.9 hi |
53 | 76.6 e | 622.5 ab | 16.2 h–j | 8.5 bc | 16.3 l | 23.7 d | 73.5 d | 491.3 bc | 18.4 c–e | 8.1 d | 15.8 g | 22.2 g |
56 | 76.4 e | 554.6 cd | 26.4 a | 10.9 a | 22.4 d | 24.6 a | 76.0 c | 528.8 ab | 20.9 a | 9.9 a | 22.3 a–c | 24.3 a |
Kaha-1 | 78.9 d | 120.5 h | 8.0 k | 8.0 cd | 17.4 k | 22.5 k | 79.5 b | 378.3 d | 17.7 de | 7.6 e | 14.8 gh | 22.0 gh |
Kafr El-Sheikh-1 | 81.0 b | 300.0 g | 16.0 ij | 9.3 b | 21.6 fg | 23.4 f | 81.8 a | 492.5 bc | 20.9 a | 7.8 de | 19.0 ef | 23.0 de |
F-test | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Factors (Genotype x Plant Density (Plants no./m2) | 2018 Trial | 2019 trial | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days to Maturity | Seed Yield (g/m2) | No. of Pods/Plant | No. of Seeds/Pods | Seed Index (g/100 seeds) | Crude Protein (%) | Days to Maturity | Seed Yield (g/m2) | No. of Seeds/Pod | No. of Pods/Plant | Seed Index (g/100 Seeds) | Crude Protein (%) | |
1 × 16 | 80.5 b–d | 348.0 k | 13.8 | 6.3 | 24.3 b | 22.7 q | 79.5 | 286.0 kl | 6.3 op | 21.6 a | 23.0 ab | 21.1 n |
2 × 16 | 70.0 i | 472.8 gh | 18.5 | 8.8 | 18.5 jk | 23.3 m | 70.8 | 380.0 h–j | 9.0 de | 14.9 k | 19.5 ef | 21.7 lm |
3 × 16 | 80.3 b–d | 464.8 gh | 18.7 | 7.8 | 22.5 d | 23.1 n | 79.8 | 335.0 j–l | 10.1 a | 18.9 b–f | 23.5 ab | 22.2 i–k |
4 × 16 | 83.3 e | 390.8 jk | 20.2 | 8.5 | 20.8 gh | 24.5 c | 81.8 | 419.0 f-j | 8.6 e–g | 16.6 g–k | 19.5 ef | 23.4 de |
5 × 16 | 80.8 bc | 400.8 i–k | 18.9 | 9.6 | 25.8 a | 23.6 i | 79.8 | 389.0 g-j | 7.8 i–m | 15.1 k | 21.5 b-e | 22.5 hi |
6 × 16 | 73.3 h | 534.0 ef | 25.5 | 11.0 | 21.3 fg | 24.1 f | 73.5 | 480.0 ef | 10.0 a | 16.3 h–k | 20.0 d–f | 22.5 hi |
8 × 16 | 80.8 bc | 439.2 h–j | 22.7 | 8.3 | 16.3 m | 23.6 i | 79.3 | 361.0 h-k | 8.9 def | 16.5 g–k | 13.5 i | 22.3 i–k |
9 × 16 | 80.8 | 451.6 g–i | 19.6 | 9.3 | 23.3 c | 23.5 j | 79.8 | 446.0 f-i | 8.0 i–l | 18.9 b–f | 21.5 b–e | 22.4 ij |
23 × 16 | 84.3 a | 468.8 gh | 20.5 | 8.9 | 22.5 d | 23.3 m | 82.5 | 357.0 i–k | 7.3 n | 19.3 b–e | 20.0 d–f | 23.0 fg |
28 × 16 | 68.0 j | 478.8 f–h | 23.1 | 10.4 | 21.3 fg | 20.2 u | 65.3 | 430.0 f-i | 10.0 a | 17.3 f–j | 21.5 b–e | 21.6 m |
35 × 16 | 80.5 b–d | 465.2 gh | 21.5 | 9.0 | 20.8 gh | 23.5 j | 80.3 | 384.0 h–j | 6.7 o | 19.9 a–d | 16.5 gh | 20.7 o |
53 × 16 | 75.5 g | 512.4 e–g | 16.6 | 8.4 | 17.0 l | 23.8 g | 73.0 | 396.0 f-j | 8.1 g-j | 18.6 c–f | 16.5 gh | 22.3 i–k |
56 × 16 | 74.0 h | 455.2 g–i | 27.0 | 10.8 | 23.5 c | 25.0 a | 76.0 | 375.0 h–j | 10.0 a | 21.6 a | 22.5 a–c | 24.8 a |
Kaha-1 × 16 | 79.3 de | 104.8 m | 8.4 | 7.7 | 18.3 k | 22.4 s | 79.8 | 275.0 l | 8.1 h–k | 21.6 a | 16.5 gh | 22.0 kl |
Kafr El-Sheikh-1 × 16 | 81.5 b | 248.4 l | 15.8 | 9.1 | 22.8 d | 23.1 n | 81.8 | 403.0 f-j | 7.7 j–n | 18.1 d–h | 19.5 ef | 22.8 gh |
1 × 24 | 79.5 c–e | 487.8 f–h | 15.5 | 6.2 | 24.5 b | 23.5 j | 79.8 | 450.0 f–h | 6.4 op | 19.8 b–e | 24.0 a | 22.5 hi |
2 × 24 | 70.8 i | 612.0 d | 17.5 | 7.6 | 18.8 j | 22.9 o | 71.0 | 543.0 de | 8.7 ef | 15.6 jk | 17.0 gh | 22.4 ij |
3 × 24 | 74.3 gh | 666.0 cd | 17.4 | 6.9 | 21.3 fg | 23.8 g | 80.0 | 474.0 e–g | 9.3 cd | 18.6 c–f | 24.3 a | 22.1 jk |
4 × 24 | 84.3 a | 471.0 gh | 21.5 | 7.8 | 19.5 i | 24.2 d | 82.5 | 607.5 b–d | 8.3 g–i | 15.3 k | 19.5 ef | 23.8 c |
5 × 24 | 80.3 b–d | 546.0 e | 17.7 | 7.3 | 24.3 b | 23.3 l | 80.3 | 568.5 d | 7.8 j-m | 14.9 k | 23.5 ab | 24.4 b |
6 × 24 | 74.5 gh | 761.4 a | 24.5 | 10.7 | 20.5 h | 24.5 b | 73.5 | 666.0 a–c | 9.5 bc | 16.1 i–k | 20.5 c–f | 22.9 fg |
8 × 24 | 81.5 d | 662.4 cd | 24.0 | 7.8 | 14.8 o | 22.8 p | 80.3 | 574.5 d | 8.5 f–h | 18.1 d–h | 13.3 i | 24.2 b |
9 × 24 | 81.3 b | 616.2 d | 21.0 | 7.6 | 22.8 d | 23.4 k | 80.5 | 606.0 b–d | 7.5 l–n | 17.9 e–i | 22.5 a–c | 23.6 cd |
23 × 24 | 84.5 a | 663.0 cd | 19.4 | 8.2 | 21.8 e | 22.2 t | 82.5 | 580.5 d | 6.0 b | 19.3 b–e | 20.0 d–f | 21.3 mn |
28 × 24 | 66.3 k | 694.2 bc | 22.2 | 10.6 | 21.8 e | 20.2 u | 65.5 | 714.0 a | 9.6 a–c | 18.6 c–f | 20.0 d–f | 20.7 o |
35 × 24 | 79.5 c–e | 676.2 c | 23.9 | 9.7 | 21.5 ef | 22.8 p | 79.8 | 669.0 a–c | 6.3 op | 20.7 ab | 15.0 hi | 23.1 e–g |
53 × 24 | 77.8 f | 732.6 ab | 15.8 | 8.7 | 15.5 m | 23.5 j | 74.0 | 586.5 cd | 8.1 h–j | 18.2 d–f | 15.0 hi | 22.2 i–k |
56 × 24 | 78.8 ef | 654.0 cd | 25.9 | 10.9 | 21.3 fg | 24.1 e | 76.0 | 682.5 ab | 9.8 ab | 20.2 abc | 22.0 a-d | 23.8 c |
Kaha-1 × 24 | 78.5 ef | 136.2 m | 7.6 | 8.3 | 16.5 m | 22.7 q | 79.3 | 481.5 ef | 7.6 k-n | 17.4 f–j | 13.0 i | 22.0 kl |
Kafr El-Sheikh-1 × 24 | 80.5 b–d | 351.6 k | 16.2 | 9.5 | 20.5 h | 81.8 | 582.0 d | 7.5 mn | 20.2 a–c f–j | 18.5 fg | 23.3 ef | |
F-test | ** | ** | ns | ns | ** | ** | ns | * | * | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwally, E.; Sharshar, M.; Masoud, A.; Kilian, B.; Sharma, S.; Masry, A.; Shaw, P.D.; Raubach, S.; Fiad, A.; Rakha, M. Development of High Yielding Cowpea [Vigna unguiculata (L.) Walp.] Lines with Improved Quality Seeds through Mutation and Pedigree Selection Methods. Horticulturae 2021, 7, 271. https://doi.org/10.3390/horticulturae7090271
Metwally E, Sharshar M, Masoud A, Kilian B, Sharma S, Masry A, Shaw PD, Raubach S, Fiad A, Rakha M. Development of High Yielding Cowpea [Vigna unguiculata (L.) Walp.] Lines with Improved Quality Seeds through Mutation and Pedigree Selection Methods. Horticulturae. 2021; 7(9):271. https://doi.org/10.3390/horticulturae7090271
Chicago/Turabian StyleMetwally, Elmahdy, Mohamed Sharshar, Ali Masoud, Benjamin Kilian, Shivali Sharma, Ali Masry, Paul D. Shaw, Sebastian Raubach, Atef Fiad, and Mohamed Rakha. 2021. "Development of High Yielding Cowpea [Vigna unguiculata (L.) Walp.] Lines with Improved Quality Seeds through Mutation and Pedigree Selection Methods" Horticulturae 7, no. 9: 271. https://doi.org/10.3390/horticulturae7090271
APA StyleMetwally, E., Sharshar, M., Masoud, A., Kilian, B., Sharma, S., Masry, A., Shaw, P. D., Raubach, S., Fiad, A., & Rakha, M. (2021). Development of High Yielding Cowpea [Vigna unguiculata (L.) Walp.] Lines with Improved Quality Seeds through Mutation and Pedigree Selection Methods. Horticulturae, 7(9), 271. https://doi.org/10.3390/horticulturae7090271