Organic Amendment and Mulching Enhanced the Growth and Fruit Quality of Squash Plants (Cucurbita pepo L.) Grown on Silty Loam Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design and Treatments
2.2. Plant Measurements and Crop Yield
2.3. Statistical Analysis
3. Results
3.1. Effect of Soil Mulching and Organic Amendments on Some Soil Chemical Properties
3.2. Effect of Soil Mulching and Organic Amendments on the Growth of Squash Plants
3.3. Effect of Soil Mulching and Organic Amendments on Nutrient Use Efficiencies
3.4. Effect of Soil Mulching and Organic Amendments on Fruit Yield Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomah, H.H.; Ahmed, M.M.; Abdalla, R.M.; Farghly, K.A.; Eissa, M.A. Utilization of some organic wastes as growing media for lettuce (Lactuca sativa L.) plants. J. Plant. Nutr. 2020, 43, 2092–2105. [Google Scholar] [CrossRef]
- Farghly, K.A.; Gomah, H.H.; Ahmed, M.M.; Abdalla, R.M.; Eissa, M.A. Corn wastes and peanut shell as growing media for production of red radish plants in soilless system. Commun. Soil Sci. Plant Anal. 2020, 51, 1799–1810. [Google Scholar] [CrossRef]
- Kheir, A.M.; Ali, E.F.; Ahmed, M.; Eissa, M.A.; Majrashi, A.; Ali, O.A. Biochar blended humate and vermicompost enhanced immobilization of heavy metals, improved wheat productivity, and minimized human health risks in different contaminated environments. J. Environ. Chem. Eng. 2021, 9, 105700. [Google Scholar] [CrossRef]
- Alharbi, S.; Majrashi, A.; Ghoneim, A.M.; Ali, E.F.; Modahish, A.S.; Hassan, F.A.; Eissa, M.A. A new method to recycle dairy waste for the nutrition of wheat plants. Agronomy 2021, 11, 840. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Till. Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Ye, Y.; Ma, Q.; Guan, Q.; Jones, D.L. Response of nitrogen fractions in the rhizosphere and bulk soil to organic mulching in an urban forest plantation. J. For. Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Dietrich, G.; Recous, S.; Pinheiro, P.L.; Weiler, D.A.; Schu, A.L.; Rambo, M.R.L.; Giacomini, S.J. Gradient of decomposition in sugarcane mulches of various thicknesses. Soil Till. Res. 2019, 66–75. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Y.; Ma, Q.; Guan, Q.; Jones, D.L. Variation in enzyme activities involved in carbon and nitrogen cycling in rhizosphere and bulk soil after organic mulching. Rhizosphere 2021, 19, 100376. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture: Review article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Rekaby, S.A.; Hegab, S.A.; Ragheb, H.M. Effect of deficit irrigation on drip-irrigated wheat grown in semi-arid conditions of Upper Egypt. J. Plant Nutr. 2018, 41, 1576–1586. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, A.; Lal, R.; Shrestha, R.K.; Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Develop. 2017, 28, 673–681. [Google Scholar] [CrossRef]
- Subedi, P.; Shrestha, J. Improving soil fertility through Azolla application in low land rice: A review. Azarian J. Agric. 2015, 2, 35–39. [Google Scholar]
- Subhan, A.; Khan, Q.U.; Mansoor, M.; Khan, M.J. Effect of organic and inorganic fertilizer on the water use efficiency and yield attributes of wheat under heavy textured soil. Sarhad J. Agric. 2017, 33, 582–590. [Google Scholar] [CrossRef]
- Abd El-Latif, K.M.; Poraas, M.E.A.; Aboul El-Defan, T.A. Assessment of role of some compost and their residual effects on plants grown in sandy and/or calcareous soil. J. Soil Sci. Agric. Eng. 2010, 1, 65–76. [Google Scholar] [CrossRef]
- El Husieny, A.A.; Ahmed, B.M.; Elbaalawy, A.M. Efficiency of Azolla and biochar application on Rice (Oryza sativa L.) productivity in salt-affected soil. Egypt. J. Soil Sci. 2020, 60, 277–288. [Google Scholar] [CrossRef]
- Singh, T.B.; Ali, A.; Prasad, M.; Yadav, A.; Shrivastav, P.; Goyal, D.; Dantu, P.K. Role of Organic Fertilizers in Improving Soil Fertility; Naeem, M., Ansari, A., Gill, S., Eds.; Contaminants in Agriculture; Springer: Cham, Switzerland, 2020; pp. 61–77. [Google Scholar]
- Srivastava, P.K.; Singh, P.C.; Gupta, M.; Sinha, A.; Vaish, A.; Shukla, A.; Singh, N.; Tewari, S.K. Influence of earthworm culture on fertilization potential and biolog- ical activities of vermicomposts prepared from different plant wastes. J. Plant Nutr. Soil Sci. 2011, 174, 420–429. [Google Scholar] [CrossRef]
- El-Gizawy, E.S.A.; Atwa, A.A.I.; Talha, N.I.; Mostafa, R.A.I. Effect of compost and compost tea application on faba bean crop and some soil biological and chemical properties. J. Soil Sci. Agric. Eng. Mansoura Univ. 2013, 4, 863–874. [Google Scholar] [CrossRef]
- Awodun, M.A. Effect of Azolla (Azolla species) on physiomineral properties of the soil. World J. Agric. Sci. 2008, 4, 157–160. [Google Scholar]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dry land farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Sun, Z.; Wang, D.; Sun, Y. Analysis of antagomistic microorganism in vermicompost. Chin. J. Appl. Environ. Biol. 2004, 10, 99–103. [Google Scholar]
- Ali, M.; Hossain, M.; Rahman, M.; Islam, M. Effect of vermicompost on growth, yield, chemical composition and oil content of rapeseed (var. SAU SHARISHA-1). J. Expt. Biosci. 2012, 3, 91–963. [Google Scholar]
- Demir, Z. Effects of vermicompost on soil physicochemical properties and Lettuce (Lactuca sativa Var. Crispa) yield in greenhouse under different soil water regimes. Commun. Soil Sci. Plant Anal. 2019, 17, 2151–2168. [Google Scholar] [CrossRef]
- Fawzy, Z.F.; El-Bassiony, A.M.; Marzouk, N.M.; Zaki, M.F. Comparison of nitrogen fertilizer sources and rates on growth and productivity of squash plants. Inter. J. Pharm. Tech. Res. 2016, 9, 51–57. [Google Scholar]
- Kassem, A.H.M.; Abd El-Aal, A.M. Minimizing the effect of soil salinity on fennel plant using cyanobacteria and compost. J. Product. Dev. 2016, 21, 153–178. [Google Scholar]
- Yadav, R.K.; Abraham, G.; Singh, Y.V.; Singh, P.K. Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc. Indian Nan. Sci. Acad. 2014, 80, 301–316. [Google Scholar] [CrossRef]
- Asghar, W.; Iftikhar, F.; Latif, A.; Khan, I.A. Azolla bacteria promoting rice growth under saline condition. Agric. Res. Tech. J. 2018, 18, 556048. [Google Scholar]
- Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crop. Prod. 2020, 157, 11290–12903. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; IFA, IWMI, IPNI and IPI: Paris, France, 2015; p. 270. [Google Scholar]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zeng, K.; Zhang, B.; Zhao, M.; Yin, B. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crop. Res. 2018, 216, 158–164. [Google Scholar] [CrossRef]
- Abd El-All, H.M.; Ali, S.M.; Shahin, S.M. Improvement growth, yield and quality of squash (Cucurbita pepo L.) plant under salinity conditions by magnetized water, amino acids and selenium. J. Appl. Sci. Res. 2013, 9, 937–944. [Google Scholar]
- Tamer, C.E.; I˙ncedayi, B.; Parseker, A.S.; Yonak, S.; Copur, O.U. Evaluation of several quality criteria of low calorie pumpkin dessert. Not. Bot. Horti. Agrobot. Cluj-Napoca 2010, 38, 76–80. [Google Scholar] [CrossRef]
- Kumar, G.; Purty, R.S.; Sharma, M.P.S.; Singla-Pareek, L.; Pareek, A. Physiological responses among brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J. Plant Physiol. 2009, 166, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Mageeda, T.A.; Semida, W.M.; Abd El-Wahed, M.H. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agric. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 427–444. [Google Scholar]
- FAO. Guide to laboratory establishment for plant nutrient analysis. In Fertilizer and Plant Nutrition Bulletin; FAO: Rome, Italy, 2008; Volume 19. [Google Scholar]
- A.O.A.C. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Motsara, M.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2009. [Google Scholar]
- Eissa, M.A. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato Res. 2019, 62, 97–108. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, a Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Rekaby, S.A.; Awad, M.Y.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Eissa, M.A.; Nasralla, N.N.; Gomah, N.H.; Osman, D.M.; El-Derwy, Y.M. Evaluation of natural fertilizer extracted from expired dairy products as a soil amendment. J. Soil Sci. Plant Nutr. 2018, 18, 694–704. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Almaroai, Y.A. Phytoremediation capacity of some forage plants grown on a metals-contaminated soil. Soil Sediment. Contam. 2019, 28, 569–581. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Kheir, A.M.; Eissa, M.A. Effect of Biochar on CO2 Sequestration and productivity of pearl millet plants grown in saline sodic soils. J. Soil Sci. Plant Nutr. 2021, 2, 897–907. [Google Scholar] [CrossRef]
- Abeed, A.H.; Eissa, M.A.; Abdel-Wahab, D.A. Effect of exogenously applied jasmonic acid and kinetin on drought tolerance of wheat cultivars based on morpho-physiological evaluation. J. Soil Sci. Plant Nutr. 2021, 21, 131–144. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Ding, Z.; Liu, Q.; Xie, G.; Peng, J.; Rong, X.; Zhang, Y.; Yang, Y.; Eissa, M.A. Controlled-release N fertilizer to mitigate ammonia volatilization from double-cropping rice. Nut. Cycl. Agroecosyst. 2021, 119, 123–137. [Google Scholar] [CrossRef]
- Meena, R.S.; Gogaoi, N.; Kumar, S. Alarming issues on agricultural crop production and environmental stresses. J. Clean. Prod. 2017, 142, 3357–3359. [Google Scholar] [CrossRef]
- Yousef, A.F.; Youssef, M.A.; Ali, M.M.; Ibrahim, M.M.; Xu, Y.; Mauro, R.P. Improved growth and yield response of Jew’s Mallow (Corchorus olitorius L.) plants through biofertilization under semi-arid climate conditions in Egypt. Agronomy 2020, 10, 1801. [Google Scholar] [CrossRef]
- De, P.; Chakravarti, A.K.; Chakraborty, P.K.; Chakraborty, A. Study on the efficacy of some bio resources as mulch for soil moisture conservation and yield of rain fed groundnut (Arachis hypogaea). Arch. Agron. Soil Sci. 2005, 51, 247–252. [Google Scholar] [CrossRef]
- Teame, G.; Tsegay, A.; Abrha, B. Effect of organic mulching on soil moisture, yield, and yield contributing components of sesame (Sesamum indicum L.). Int. J. Agron. 2017, 4767509. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.M.; Eissa, M.A.; Ibrahim, O.H. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Abou-Zaid, E.A.; Eissa, M.A. Thompson seedless grapevines growth and quality as affected by glutamic acid, vitamin b, and algae. J. Soil Sci. Plant Nutr. 2019, 19, 725–733. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Eissa, M.A. Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [Atriplex nummularia Lindl]. Soil Sediment Contam. Int. J. 2019, 28, 135–147. [Google Scholar] [CrossRef]
- Eissa, M.A.; Abeed, A.H. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S.Wats) under Cd stress. Environ. Sci. Pollut. Res. 2019, 26, 628–635. [Google Scholar] [CrossRef]
- Al-Sayed, H.; Hegab, S.A.; Youssef, M.; Khalafalla, M.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Eissa, M.A. Phytoextraction of nickel, lead and cadmium from metal contaminated soils using different field. World Appl. Sci. J. 2014, 32, 1045–1052. [Google Scholar] [CrossRef]
- Eissa, M.A.; Nafady, M.; Ragheb, H.; Attia, K. Effect of soil moisture and forms of phosphorus fertilizers on corn production under sandy calcareous soil. World Appl. Sci. J. 2013, 26, 540–547. [Google Scholar] [CrossRef]
- Eissa, M.A. Performance of river saltbush (Atriplex amnicola) grown on contaminated soils as affected by organic fertilization. World Appl. Sci. J. 2014, 30, 1877–1881. [Google Scholar]
Property | Unit | Value |
---|---|---|
Particle size distribution | ||
Sand | (g kg−1) | 467 ± 15 |
Silt | (g kg−1) | 327 ± 22 |
Clay | (g kg−1) | 206 ± 21 |
Texture | Silty loam | |
Bulk density | (g cm−3) | 1.45 ± 0.03 |
CaCO3 | (g kg−1) | 33 ± 5 |
EC (1:2.5) | (dS m−1) | 0.63 ± 0.10 |
pH (1:2.5) | --- | 7.91 ± 0.05 |
Organic matter | (g kg−1) | 14.4 ± 2.0 |
Available–N | (mg kg−1) | 52 ± 3 |
Available–P | (mg kg−1) | 23 ± 4 |
Extractable–K | (mg kg−1) | 422 ± 18 |
Characteristics | Unit | Compost | Vermicompost | Dry Azolla |
---|---|---|---|---|
EC (1:5) extract | (dSm−1) | 5.47 ± 0.55 | 4.90 ± 0.45 | 2.15 ± 0.61 |
pH (1:5) | -------- | 7.43 ± 0.08 | 7.60 ± 0.05 | 6.90 ± 0.08 |
Organic matter | (g kg−1) | 332 ± 9 | 440 ± 27 | 673 ± 32 |
Total N | (g kg−1) | 15.3 ± 1.3 | 15.6 ± 2.0 | 30.0 ± 2.5 |
Total P | (g kg−1) | 6.3 ± 0.4 | 11. 7 ± 1.84 | 16.8 ± 1.9 |
Total K | (g kg−1) | 12.7 ± 1.4 | 8.9 ± 0.69 | 29.0 ± 1.28 |
Total Fe | (mg kg−1) | 220 ± 11 | 235 ± 12 | 250 ± 14 |
Total Mn | (mg kg−1) | 120 ± 6 | 130 ± 7 | 140 ± 7 |
Total Zn | (mg kg−1) | 128 ± 5 | 150 ± 6 | 125 ± 5 |
Total Cu | (mg kg−1) | 36 ± 3 | 40 ± 2 | 38 ± 4 |
Treatment | pH | EC (dSm−1) | O. M (g kg−1) | Available (mg kg−1) | |||
---|---|---|---|---|---|---|---|
Mulching | Fertilizers | N | P | K | |||
No-mulch | CO | 7.81 ± 0.01 abc | 0.344 ± 0.01 c | 10.09 ± 0.63 cd | 49.37 ± 0.31 h | 20.77 ± 0.97 d | 413 ± 5.51 e |
CF | 7.83 ± 0.01 a | 0.464 ± 0.02 bc | 9.75 ± 0.97 d | 54.53 ± 0.33 g | 27.71 ± 0.57 bcd | 552 ± 12.74 cd | |
CT | 7.71 ± 0.01 e | 0.513 ± 0.03 abc | 15.91 ± 0.37 a | 65.11 ± 0.14 d | 23.24 ± 1.18 cd | 866 ± 20.84 a | |
VC | 7.77 ± 0.01 dc | 0.410 ± 0.02 c | 12.77 ± 1.14 b | 62.41 ± 0.28 e | 25.54 ± 1.21 bcd | 530 ± 20.58 cd | |
DA | 7.78 ± 0.00 abcd | 0.405 ± 0.02 c | 12.39 ± 0.16 bc | 72.85 ± 0.44 b | 31.43 ± 0.90 bc | 505 ± 9.43 d | |
Wheat straw mulch | CO | 7.78 ± 0.01 bcd | 0.412 ± 0.01 c | 11.88 ± 0.92 bcd | 60.24 ± 0.55 f | 24.66 ± 2.58 bcd | 430 ± 4.04 e |
CF | 7.82 ± 0.01 ab | 0.589 ± 0.11 ab | 11.65 ± 0.18 bcd | 61.55 ± 0.70 ef | 33.14 ± 2.45 ab | 781 ± 5.05 b | |
CT | 7.70 ± 0.01 e | 0.648 ± 0.07 a | 16.32 ± 0.33 a | 72.35 ± 0.68 b | 26.79 ± 1.79 bcd | 572 ± 9.02 c | |
VC | 7.76 ± 0.02 d | 0.480 ± 0.03 bc | 14.23 ± 0.51 ab | 67.44 ± 0.38 c | 27.83 ± 1.87 bcd | 775 ± 22.49 b | |
DA | 7.77 ± 0.00 dc | 0.429 ± 0.05 bc | 14.00 ± 0.60 ab | 77.41 ± 0.33 a | 40.24 ± 4.44 a | 913 ± 1.68 a | |
Source of variance | (p-value) | ||||||
Mulching | ns | ns | * | ** | ** | * | |
Fertilizers | ns | * | * | ** | ** | * | |
Mulching × Fertilizers | * | * | ** | ** | ** | ** |
Treatment | Fruit Number (Fruit Plant−1) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Weight (g Fruit−1) | |
---|---|---|---|---|---|
Mulching | Fertilizers | ||||
No-mulch | CO | 6.67 ± 0.27 b | 8.37 ± 0.18 d | 2.57 ± 0.03 d | 35.60 ± 1.60 a |
CF | 7.67 ± 0.27 ab | 10.50 ± 0.54 ab | 2.83 ± 0.03 cd | 35.81 ± 1.45 a | |
CT | 8.33 ± 0.26 ab | 9.43 ± 0.72 abcd | 2.70 ± 0.08 cd | 36.72 ± 1.02 a | |
VC | 7.33 ± 0.26 ab | 9.10 ± 0.19 bcd | 2.63 ± 0.03 cd | 35.68 ± 1.25 a | |
DA | 8.00 ± 0.82 ab | 10.47 ± 0.53 ab | 2.80 ± 0.19 cd | 37.14 ± 2.04 a | |
Wheat straw mulch | CO | 7.00 ± 0.82 b | 8.87 ± 0.35 cd | 2.77 ± 0.17 cd | 36.69 ± 5.16 a |
CF | 9.00 ± 0.82 ab | 10.93 ± 0.47 a | 3.63 ± 0.07 a | 37.24 ± 3.00 a | |
CT | 9.33 ± 1.09 ab | 10.10 ± 0.36 abc | 3.17 ± 0.19 abc | 41.16 ± 5.04 a | |
VC | 7.67 ± 0.27 ab | 9.80 ± 0.33 abcd | 3.00 ± 0.17 bcd | 40.01 ± 1.39 a | |
DA | 10.33 ± 1.52 a | 10.90 ± 0.46 a | 3.50 ± 0.17 ab | 43.39 ± 4.48 a | |
Source of variance | (p-value) | ||||
Mulching | * | ** | * | * | |
Fertilizers | * | ** | * | ** | |
Mulching × Fertilizers | * | * | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, M.A.; AL-Huqail, A.A.; Ali, E.F.; Majrashi, A. Organic Amendment and Mulching Enhanced the Growth and Fruit Quality of Squash Plants (Cucurbita pepo L.) Grown on Silty Loam Soils. Horticulturae 2021, 7, 269. https://doi.org/10.3390/horticulturae7090269
Youssef MA, AL-Huqail AA, Ali EF, Majrashi A. Organic Amendment and Mulching Enhanced the Growth and Fruit Quality of Squash Plants (Cucurbita pepo L.) Grown on Silty Loam Soils. Horticulturae. 2021; 7(9):269. https://doi.org/10.3390/horticulturae7090269
Chicago/Turabian StyleYoussef, Mohamed Ahmed, Arwa Abdulkreem AL-Huqail, Esmat F. Ali, and Ali Majrashi. 2021. "Organic Amendment and Mulching Enhanced the Growth and Fruit Quality of Squash Plants (Cucurbita pepo L.) Grown on Silty Loam Soils" Horticulturae 7, no. 9: 269. https://doi.org/10.3390/horticulturae7090269
APA StyleYoussef, M. A., AL-Huqail, A. A., Ali, E. F., & Majrashi, A. (2021). Organic Amendment and Mulching Enhanced the Growth and Fruit Quality of Squash Plants (Cucurbita pepo L.) Grown on Silty Loam Soils. Horticulturae, 7(9), 269. https://doi.org/10.3390/horticulturae7090269