Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Condition
2.2. Sampling and Morphometric Measurements
2.3. Antioxidant Activity Measurements
2.4. Quantification of Chlorophylls, Catotenoids, and Total Ascorbic Acid
2.5. Analysis of Macro- and Micro-Minerals by ICP-OES
2.6. Analysis of Polyphenols by UHPLC-Q-Orbitrap HRMS
2.7. Statistical Analysis
3. Results
3.1. Morphometric and Yield Characteristics
3.2. Mineral Content
3.3. Radical Scavenging Activity
3.4. Ascorbic Acid, Chlorophyll, Lutein, and β-Carotene
3.5. Polyphenols
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, R.; Srivastava, V.; Singh, A. Multipurpose benefits of an underexplored species purslane (Portulaca oleracea L.): A critical review. Environ. Manag. 2021, 1–12. [Google Scholar] [CrossRef]
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I.C. Edible halophytes of the mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Morales, P.; Ferreira, I.C.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci. Tech. 2014, 55, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Adlercreutz, H. Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Investig. 1990, 50, 3–23. [Google Scholar] [CrossRef]
- Guarrera, P.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef]
- Torija-Isasa, M.E.; Matallana-González, M.C. A historical perspective of wild plant foods in the mediterranean area. In Mediterranean Wild Edible Plants; Springer: New York, NY, USA, 2016; pp. 3–13. [Google Scholar]
- Gonnella, M.; Charfeddine, M.; Conversa, G.; Santamaria, P. Purslane: A review of its potential for health and agricultural aspects. Eur. J. Plant Sci. Biotech. 2010, 4, 131–136. [Google Scholar]
- Dabbou, S.; Lahbib, K.; Pandino, G.; Dabbou, S.; Lombardo, S. Evaluation of pigments, phenolic and volatile compounds, and antioxidant activity of a spontaneous population of Portulaca oleracea L. grown in Tunisia. Agriculture 2020, 10, 353. [Google Scholar] [CrossRef]
- Sdouga, D.; Branca, F.; Kabtni, S.; Di Bella, M.C.; Trifi-Farah, N.; Marghali, S. Morphological traits and phenolic compounds in tunisian wild populations and cultivated varieties of Portulaca oleracea L. Agronomy 2020, 10, 948. [Google Scholar] [CrossRef]
- Ochoa, J.; Niñirola, D.; Conesa, E.; Lara, L.; López-Marín, J.; Fernández, J. Predicting Purslane (Portulaca oleracea L.) Harvest in a Hydroponic Floating System. In Proceedings of the V International Symposium on Seed, Transplant and Stand Establishment of Horticultural Crops 898, Murcia and Almería, Spain, 27 September–1 October 2009; ISHS: Leuven, Belgium, 2011; pp. 205–209. [Google Scholar]
- Alam, M.; Juraimi, A.S.; Rafii, M.; Hamid, A.A.; Aslani, F.; Hasan, M.; Zainudin, M.A.M.; Uddin, M. Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. BioMed. Res. Int. 2014, 2014, 296063. [Google Scholar] [CrossRef] [Green Version]
- Noonan, S.; Savage, G. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar] [PubMed]
- Corré, W.J.; Breimer, T. Nitrate and Nitrite in Vegetables; Pudoc: Wageningen, The Netherlands, 1979. [Google Scholar]
- Egea-Gilabert, C.; Ruiz-Hernández, M.V.; Parra, M.Á.; Fernández, J.A. Characterization of purslane (Portulaca oleracea L.) accessions: Suitability as ready-to-eat product. Sci. Hortic. 2014, 172, 73–81. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, S. Borago officinalis linn. An important medicinal plant of mediterranean region: A review. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 27–34. [Google Scholar]
- Asadi-Samani, M.; Bahmani, M.; Rafieian-Kopaei, M. The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review. Asia Pac. J. Trop. Med. 2014, 7, S22–S28. [Google Scholar] [CrossRef] [Green Version]
- Borowy, A.; Chwil, M.; Kapłan, M. Biologically active compounds and antioxidant activity of borage (Borago officinalis L.) flowers and leaves. Acta Sci. Pol. Hortorum Cultus 2017, 16, 169–180. [Google Scholar] [CrossRef]
- Abu-Qaoud, H.; Shawarb, N.; Hussen, F.; Jaradat, N.; Shtaya, M. Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from palestine. Pak. J. Pharm. Sci. 2018, 31, 953–959. [Google Scholar]
- Miceli, C.; Moncada, A.; Vetrano, F.; D’Anna, F.; Miceli, A. Suitability of Borago officinalis for minimal processing as fresh-cut produce. Horticulturae 2019, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Urrestarazu, M.; Gallegos-Cedillo, V.M.; Ferrón-Carrillo, F.; Guil-Guerrero, J.L.; Lao, M.T.; Álvaro, J.E. Effects of the electrical conductivity of a soilless culture system on gamma linolenic acid levels in borage seed oil. PLoS ONE 2019, 14, e0207106. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory attributes and consumer acceptability of 12 microgreens species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Pannico, A.; Graziani, G.; El-Nakhel, C.; Giordano, M.; Ritieni, A.; Kyriacou, M.C.; Rouphael, Y. Nutritional stress suppresses nitrate content and positively impacts ascorbic acid concentration and phenolic acids profile of lettuce microgreens. Italus Hortus 2020, 27, 41–52. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Tech. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The frap assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Minutolo, M.; Chiaiese, P.; Di Matteo, A.; Errico, A.; Corrado, G. Accumulation of ascorbic acid in tomato cell culture: Influence of the genotype, source explant and time of in vitro cultivation. Antioxidants 2020, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y.; et al. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volpe, M.G.; Nazzaro, M.; Di Stasio, M.; Siano, F.; Coppola, R.; De Marco, A. Content of micronutrients, mineral and trace elements in some mediterranean spontaneous edible herbs. Chem. Cent. J. 2015, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three brassica microgreens species grown in peat-based media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegretta, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5640. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and quality of basil, swiss chard, and rocket microgreens grown in a hydroponic system. N. Z. J. Crop. Hortic. Sci. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Viršilė, A.; Sirtautas, R. Light irradiance level for optimal growth and nutrient contents in borage microgreens. Rural. Dev. 2013, 8, 1241–1249. [Google Scholar]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (brassica rapa l.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Soteriou, G.A.; Graziani, G.; Kyratzis, A.; Antoniou, C.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Preharvest nutrient deprivation reconfigures nitrate, mineral, and phytochemical content of microgreens. Foods 2021, 10, 1333. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in sub-saharan africa. Int. J. Environ. Res. Public Heal. 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Giménez, A.; Martínez-Ballesta, M.d.C.; Egea-Gilabert, C.; Gómez, P.A.; Artés-Hernández, F.; Pennisi, G.; Orsini, F.; Crepaldi, A.; Fernández, J.A. Combined effect of salinity and led lights on the yield and quality of purslane (Portulaca oleracea L.) microgreens. Horticulturae 2021, 7, 180. [Google Scholar] [CrossRef]
- Drewnowski, A.; Maillot, M.; Rehm, C. Reducing the sodium-potassium ratio in the us diet: A challenge for public health. Am. J. Clin. Nutr. 2012, 96, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannico, A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Soteriou, G.A.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes. Antioxidants 2020, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Choe, U.; Yu, L.L.; Wang, T.T. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef] [PubMed]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin c in plants: From functions to biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “baby leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Springer: New York, NY, USA, 2017; pp. 403–432. [Google Scholar]
- Van den Berg, H. Effect of lutein on beta-carotene absorption and cleavage. Int. J. Vitam. Nutr. Res. 1998, 68, 360–365. [Google Scholar] [PubMed]
- Uddin, M.; Juraimi, A.S.; Ali, M.; Ismail, M.R. Evaluation of antioxidant properties and mineral composition of purslane (Portulaca oleracea L.) at different growth stages. Int. J. Mol. Sci. 2012, 13, 10257–10267. [Google Scholar] [CrossRef]
- Frutos, M.J.; Rincón-Frutos, L.; Valero-Cases, E. Rutin. In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–117. [Google Scholar]
- Atanassova, M.; Bagdassarian, V. Rutin content in plant products. J. Univ. Chem. Techn. Metall. 2009, 44, 201–203. [Google Scholar]
- Azimova, S.S.; Vinogradova, V.I. Natural Compounds: Flavonoids; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadernowski, R.; Naczk, M.; Nowak-Polakowska, H. Phenolic acids of borage (Borago officinalis L.) and evening primrose (oenothera biennis l.). J. Am. Oil Chem. Soc. 2002, 79, 335–338. [Google Scholar] [CrossRef]
- Thompson, A.M.G.; Iancu, C.V.; Neet, K.E.; Dean, J.V.; Choe, J.-y. Differences in salicylic acid glucose conjugations by ugt74f1 and ugt74f2 from arabidopsis thaliana. Sci. Rep. 2017, 7, srep46629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon-Montano, J.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini-Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
Species | Yield | Dry Weight | Dry Matter | Hypocotyl Length |
---|---|---|---|---|
(kg fw m−2) | (g m−2) | (%) | (cm) | |
Borage | 6.44 ± 0.09 | 307.4 ± 5.93 | 4.77 ± 0.05 | 5.32 ± 0.11 |
Purslane | 1.19 ± 0.01 | 74.26 ± 0.68 | 6.23 ± 0.04 | 4.35 ± 0.07 |
t-test | *** | *** | *** | ** |
Species | P | K | Ca | Mg | Na | Mn | Fe | Zn | Cu |
(mg g−1 dw) | (mg g−1 dw) | (mg g−1 dw) | (mg g−1 dw) | (mg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | |
Borage | 11.95 ± 0.26 | 16.03 ± 0.15 | 11.51 ± 0.26 | 2.70 ± 0.07 | 1.72 ± 0.11 | 32.57 ± 0.06 | 27.42 ± 0.44 | 20.62 ± 0.49 | 3.95 ± 0.52 |
Purslane | 18.93 ± 0.60 | 36.43 ± 1.12 | 17.44 ± 0.49 | 5.34 ± 0.08 | 3.63 ± 0.11 | 76.03 ± 1.76 | 32.07 ± 0.88 | 81.86 ± 2.32 | nd |
t-test | *** | *** | *** | *** | *** | *** | ** | *** | - |
Species | Se | B | Cr | Mo | Ni | Al | Ba | Cd | Pb |
(μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | (μg g−1 dw) | |
Borage | 0.89 ± 0.05 | 35.06 ± 0.31 | 0.08 ± 0.01 | 0.13 ± 0.03 | 0.48 ± 0.04 | 2.52 ± 0.08 | 23.23 ± 1.10 | 0.07 ± 0.002 | 0.10 ± 0.02 |
Purslane | 0.68 ± 0.04 | 32.16 ± 1.32 | 0.15 ± 0.02 | 0.73 ± 0.03 | 0.72 ± 0.03 | 2.78 ± 0.17 | 67.28 ± 0.64 | 0.15 ± 0.001 | 0.10 ± 0.03 |
t-test | * | ns | * | *** | ** | ns | *** | *** | ns |
Species | DPPH | ABTS | FRAP |
---|---|---|---|
(mmol Trolox eq. kg−1 dw) | (mmol Trolox eq. kg−1 dw) | (mmol Trolox eq. kg−1 dw) | |
Borage | 31.09 ± 1.59 | 62.60 ± 1.17 | 31.09 ± 1.59 |
Purslane | 45.40 ± 1.70 | 82.83 ± 0.82 | 45.40 ± 1.70 |
t-test | ** | *** | ** |
Species | Total Ascorbic Acid | Total Chlorophyll | Lutein | β-Carotene |
---|---|---|---|---|
(mg Ascorbate 100 g−1 fw) | (mg kg−1 fw) | (µg g−1 dw) | (µg g−1 dw) | |
Borage | 85.27 ± 3.97 | 612.0 ± 7.11 | 23.67 ± 1.22 | 132.0 ± 15.6 |
Purslane | 276.9 ± 19.6 | 635.9 ± 17.5 | 25.99 ± 2.83 | 197.4 ± 26.4 |
t-test | *** | ns | ns | ns |
Species | Phenolic Acids | ||||||||||
Caffeic Acid | Caffeoyl Feruloyl Tartaric Acid | Caffeoyl Quinic Acid | Dihydroferulic Acid | Ferulic Acid | Feruloyl Hexoside | Feruloyl Quinic Acid | Rosmarinic Acid | Salicylic Acid Glucoside | Sinapinic Acid Hexose | Vanillic Acid | |
(µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | |
Borage | 313.1 ± 14.6 | nd | 4.43 ± 0.42 | 5.27 ± 0.81 | 1124 ± 95.9 | nd | nd | 257.3 ± 12.2 | 1218 ± 73.4 | 1.06 ± 0.06 | 102.4 ± 11.3 |
Purslane | 2.26 ± 0.17 | 701.7 ± 26.5 | 4926 ± 43.6 | nd | 284.4 ± 8.69 | 862.0 ± 23.4 | 17.98 ± 0.85 | nd | nd | 16.85 ± 0.21 | nd |
t-test | *** | - | *** | - | *** | - | - | - | - | *** | - |
Species | Flavonoids | SUMS | |||||||||
Catechin-Glucoside | Kaempferol Trimethyl Ether | Kaempferol-3-glucoside | Luteolin trimethyl eher | Luteolin-7-O-glucoside | Quercetin rhamnoside | Rutin | Total Phenolic Acids | Total Flavonoids | Total Phenols | ||
(µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | (µg g−1 dw) | ||
Borage | 2.47 ± 0.11 | 7.66 ± 0.16 | 3.27 ± 0.17 | 7.50 ± 0.16 | 3.67 ± 0.16 | 3.72 ± 0.17 | nd | 3026 ± 183 | 28.28 ± 0.39 | 3054 ± 183 | |
Purslane | nd | nd | 0.25 ± 0.02 | nd | 0.28 ± 0.02 | 0.31 ± 0.03 | 721.2 ± 29.9 | 6812 ± 49.6 | 722.1 ± 29.9 | 7534 ± 36.6 | |
t-test | - | - | *** | - | *** | *** | - | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, G.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Zarrelli, A.; Giannini, P.; Ritieni, A.; De Pascale, S.; Kyriacou, M.C.; Rouphael, Y. Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae 2021, 7, 211. https://doi.org/10.3390/horticulturae7080211
Corrado G, El-Nakhel C, Graziani G, Pannico A, Zarrelli A, Giannini P, Ritieni A, De Pascale S, Kyriacou MC, Rouphael Y. Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae. 2021; 7(8):211. https://doi.org/10.3390/horticulturae7080211
Chicago/Turabian StyleCorrado, Giandomenico, Christophe El-Nakhel, Giulia Graziani, Antonio Pannico, Armando Zarrelli, Paola Giannini, Alberto Ritieni, Stefania De Pascale, Marios C. Kyriacou, and Youssef Rouphael. 2021. "Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production" Horticulturae 7, no. 8: 211. https://doi.org/10.3390/horticulturae7080211
APA StyleCorrado, G., El-Nakhel, C., Graziani, G., Pannico, A., Zarrelli, A., Giannini, P., Ritieni, A., De Pascale, S., Kyriacou, M. C., & Rouphael, Y. (2021). Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae, 7(8), 211. https://doi.org/10.3390/horticulturae7080211