Apple Fruit (Malus domestica Borkh.) Metabolic Response to Infestation by Invasive Brown Marmorated Stink Bug (Halyomorpha halys Stal.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Individual and Total Phenolics
2.2. Chemicals
2.3. Statistical Analysis
3. Results and Discussion
3.1. Visual Injury
3.2. Sugars
3.3. Organic Acids
3.4. Phenolics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FaoStat. Food and Agriculture Organization of the United Nations. Crops 2020. Available online: http://www.fao.org/faostat/en/?#data/QC (accessed on 26 June 2021).
- Nielsen, A.L.; Hamilton, G.C. Seasonal Occurrence and Impact of Halyomorpha halys (Hemiptera: Pentatomidae) in Tree Fruit. J. Econ. Entomol. 2009, 102, 1133–1140. [Google Scholar] [CrossRef]
- Damos, P.; Soulopoulou, P.; Thomidis, T. First record and current status of the brown marmorated sting bug Halyomorpha halys damaging peaches and olives in northern Greece. J. Plant Prot. Res. 2020, 60, 323–326. [Google Scholar] [CrossRef]
- Dieckhoff, C.; Tatman, K.; Hoelmer, K. Natural biological control of Halyomorpha halys by native egg parasitoids: A multi-year survey in northern Delaware. J. Pest Sci. 2017, 90, 1–16. [Google Scholar] [CrossRef]
- Nielsen, A.; Hamilton, G.; Matadha, D. Development rate estimation and life table analysis for Halyomorpha halys (Stål) (Hemiptera: Pentatomidae). Environ. Entomol. Environ. Entomol. Environ. Entomol. 2008, 37, 348–355. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium. Halyomorpha halys (Brown Marmorated Stink Bug). 2020. Available online: https://www.cabi.org/isc/datasheet/27377 (accessed on 25 June 2021).
- Wermelinger, B.; Wyniger, D.; Forster, B. First records of an invasive bug in Europe: Halyomorpha halys Stal (Heteroptera: Pentatomidae), a new pest on woody ornamentals and fruit trees? Mitt. Schweiz. Entomol. Ges. 2007, 81, 1. [Google Scholar]
- Khrimian, A.; Zhang, A.; Weber, D.C.; Ho, H.-Y.; Aldrich, J.R.; Vermillion, K.E.; Siegler, M.A.; Shirali, S.; Guzman, F.; Leskey, T.C. Discovery of the Aggregation Pheromone of the Brown Marmorated Stink Bug (Halyomorpha halys) through the Creation of Stereoisomeric Libraries of 1-Bisabolen-3-ols. J. Nat. Prod. 2014, 77, 1708–1717. [Google Scholar] [CrossRef]
- Candian, V.; Pansa, M.; Briano, R.; Cristiana, P.; Tedeschi, R.; Tavella, L. Exclusion nets: A promising tool to prevent Halyomorpha halys from damaging nectarines and apples in NW Italy. Bull. Insectol. 2018, 71, 21–30. [Google Scholar]
- Acebes-Doria, A.L.; Leskey, T.C.; Bergh, J.C. Injury to apples and peaches at harvest from feeding by Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) nymphs early and late in the season. Crop Prot. 2016, 89, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yang, M.; Shi, R.; Ye, M. Insecticidal Activity of Natural Capsaicinoids Against Several Agricultural Insects. Nat. Prod. Commun. 2019, 14, 1934578X19862695. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.; Sriti, J.; Bachrouch, O.; Msaada, K.; Khammassi, S.; Majdi, H.; Selmi, S.; Boushih, E.; Ouertani, M.; Hachani, N.; et al. Phenological stage effect on phenolic composition and repellent potential of Mentha pulegium against Tribolium castaneum and Lasioderma serricorne. Asian Pac. J. Trop. Biomed. 2018, 8, 207. [Google Scholar] [CrossRef]
- Zamljen, T.; Jakopič, J.; Hudina, M.; Veberič, R.; Slatnar, A. Influence of intra and inter species variation in chilies (Capsicum spp.) on metabolite composition of three fruit segments. Sci. Rep. 2021, 11, 4932. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Jakopic, J.; Zupan, A.; Schmitzer, V.; Stampar, F.; Veberic, R. Sugar and phenolics level dependent on the position of apple fruitlet in the cluster. Sci. Hortic. 2016, 201, 362–369. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Sagun, S.; Collins, E.; Martin, C.; Nolan, E.J.; Horzempa, J. Alarm Odor Compounds of the Brown Marmorated Stink Bug Exhibit Antibacterial Activity. J. Pharm. Nat. Prod. 2016, 2, 119. [Google Scholar] [CrossRef] [Green Version]
- United Nations. UNECE Standard FFV-50-Apple 2020 Edition; United Nations: Geneva, Switzerland, 2020; pp. 1–19. [Google Scholar]
- The Connecticut Agricultural Experiment Station. Insects and Their Injury to Plants. Available online: https://portal.ct.gov/CAES/Plant-Pest-Handbook/pph-Introductory/Insects-and-their-Injury-to-Plants (accessed on 25 June 2021).
- Lecompte, F.; Nicot, P.C.; Ripoll, J.; Abro, M.A.; Raimbault, A.K.; Lopez-Lauri, F.; Bertin, N. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. Ann. Bot. 2017, 119, 931–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morkunas, I.; Ratajczak, L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant. 2014, 36, 1607–1619. [Google Scholar] [CrossRef] [Green Version]
- Bolouri Moghaddam, M.R.; Van den Ende, W. Sugars and plant innate immunity. J. Exp. Bot. 2012, 63, 3989–3998. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Giusti, M.M.; Parker, J.; Salamanca, J.; Rodriguez-Saona, C. Frugivory by Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) Alters Blueberry Fruit Chemistry and Preference by Conspecifics. Environ. Entomol. 2016, 45, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- López-Bucio, J.; Nieto Jacobo, M.; Ramirez-Rodriguez, V.V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. Int. J. Exp. Plant Biol. 2001, 160, 1–13. [Google Scholar] [CrossRef]
- Weber, N.; Veberic, R.; Mikulic-Petkovsek, M.; Stampar, F.; Koron, D.; Munda, A.; Jakopic, J. Metabolite accumulation in strawberry (Fragaria × ananassa Duch.) fruits and runners in response to Colletotrichum nymphaeae infection. Physiol. Mol. Plant Pathol. 2015, 92, 119–129. [Google Scholar] [CrossRef]
- Chia, D.; Yoder, T.; Reiter, W.-D.; Gibson, S. Fumaric acid: An overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 2000, 211, 743–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selmar, D.; Kleinwächter, M. Stress Enhances the Synthesis of Secondary Plant Products: The Impact of Stress-Related Over-Reduction on the Accumulation of Natural Products. Plant Cell Physiol. 2013, 54, 817–826. [Google Scholar] [CrossRef]
- Tak, Y.; Kumar, M. Phenolics: A Key Defence Secondary Metabolite to Counter Biotic Stress. In Plant Phenolics in Sustainable Agriculture: Volume 1; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 309–329. [Google Scholar]
- Eleftherianos, I.; Vamvatsikos, P.; Ward, D.; Gravanis, F. Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. J. Appl. Entomol. 2005, 130, 15–19. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Biernat, A. The Content of Phenolic Compounds in Leaf Tissues of Aesculus glabra and Aesculus parviflora Walt. Molecules 2015, 20, 2176–2189. [Google Scholar] [CrossRef] [Green Version]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Stampar, F.; Veberic, R.; Koron, D. Changes in phenolic content induced by infection with Didymella applanata and Leptosphaeria coniothyrium, the causal agents of raspberry spur and cane blight. Plant Pathol. 2014, 63, 185–192. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [Green Version]
- Kundu, A.; Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. 2019, 21, 185–189. [Google Scholar] [CrossRef] [PubMed]
Treatment | Control | BMSB Injury Site | Uninjured Part of BMSB Apple |
---|---|---|---|
Sucrose | 43.2 ± 0.2 a z | 30.2 ± 0.2 b | 40.2 ± 0.5 ab |
Glucose | 30.4 ± 0.3 b | 40.6 ± 0.2 a | 36.2 ± 0.2 ab |
Fructose | 69.8 ± 0.3 b | 83.3 ± 0.3 a | 79.4 ± 0.2 ab |
Sorbitol | 4.5 ± 0.2 a | 5.7 ± 0.3 a | 6.4 ± 0.3 a |
Total sugars | 148.0 ± 10.2 b | 159.9 ± 13.7 a | 162.4 ± 14.8 a |
Treatment | Control | BMSB Injury Site | Uninjured Part of BMSB Apple |
---|---|---|---|
Citric acid (g/kg FW) | 1.9 ± 0.1 b z | 2.5 ± 0.1 a | 1.9 ± 0.1 b |
Malic acid (g/kg FW) | 9.2 ± 0.9 a | 7.3 ± 0.4 b | 8.3 ± 0.6 ab |
Shikimic acid (mg/kg FW) | 22.3 ± 1.5 a | 22.6 ± 2.0 a | 25.1 ± 3.0 a |
Fumaric acid (mg/kg FW) | 66.1 ± 2.2 a | 53.2 ± 1.9 b | 60.7 ± 5.1 a |
Total organic acids (g/kg FW) | 11.3 ± 2.3 a | 9.9 ± 2.2 b | 10.4 ± 2.7 ab |
Phenolic Compound | Control | BMSB Injury Site | Uninjured Part of BMSB Apple |
---|---|---|---|
Procyanidin B1 | 0.14 ± 0.02 b z | 1.09 ± 0.27 a | 0.23 ± 0.06 b |
Procyanidin B2 | 4.39 ± 0.30 b | 8.37 ± 1.40 a | 4.71 ± 0.44 b |
Catechin | 0.61 ± 0.10 b | 3.55 ± 0.62 a | 0.52 ± 0.06 b |
Epicatechin | 1.88 ± 0.09 a | 2.36 ± 0.35 a | 2.09 ± 0.16 a |
Flavanols | 7.03 ± 0.46 b | 15.39 ± 2.51 a | 7.56 ± 0.66 b |
Chlorogenic acid | 1.27 ± 0.07 b | 4.43 ± 0.41 a | 1.27 ± 0.09 b |
4-O-p-coumaroylquinic acid | 0.15 ± 0.02 b | 0.35 ± 0.06 a | 0.22 ± 0.06 ab |
Hydroxycinnamic acids | 1.42 ± 0.08 b | 4.79 ± 0.47 a | 1.50 ± 0.14 b |
Phloretin-2-O-xylosylglucoside | 0.80 ± 0.17 a | 0.78 ± 0.29 a | 0.64 ± 0.24 a |
Phloridzin | 0.38 ± 0.04 a | 0.66 ± 0.14 a | 0.36 ± 0.04 a |
Dihydrochalcones | 1.19 ± 0.19 a | 1.44 ± 0.39 a | 1.00 ± 0.28 a |
Quercetin-3-O-galactoside | 1.18 ± 0.27 a | 1.05 ± 0.39 a | 0.91 ± 0.35 a |
Quercetin-3-O-glucoside | 0.75 ± 0.12 a | 0.81 ± 0.33 a | 0.79 ± 0.31 a |
Quercetin-3-O-rhamnoside | 0.12 ± 0.03 a | 0.14 ± 0.03 a | 0.12 ± 0.03 a |
Flavonols | 2.06 ± 0.41 a | 2.01 ± 0.75 a | 1.83 ± 0.70 a |
Total analyzed phenolics | 11.71 ± 1.01 b | 23.63 ± 3.95 a | 11.90 ± 1.28 b |
Total phenolic contents | 0.96 ± 0.04 b | 1.55 ± 0.23 a | 1.02 ± 0.09 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamljen, T.; Medič, A.; Veberič, R.; Hudina, M.; Štampar, F.; Slatnar, A. Apple Fruit (Malus domestica Borkh.) Metabolic Response to Infestation by Invasive Brown Marmorated Stink Bug (Halyomorpha halys Stal.). Horticulturae 2021, 7, 212. https://doi.org/10.3390/horticulturae7080212
Zamljen T, Medič A, Veberič R, Hudina M, Štampar F, Slatnar A. Apple Fruit (Malus domestica Borkh.) Metabolic Response to Infestation by Invasive Brown Marmorated Stink Bug (Halyomorpha halys Stal.). Horticulturae. 2021; 7(8):212. https://doi.org/10.3390/horticulturae7080212
Chicago/Turabian StyleZamljen, Tilen, Aljaž Medič, Robert Veberič, Metka Hudina, Franci Štampar, and Ana Slatnar. 2021. "Apple Fruit (Malus domestica Borkh.) Metabolic Response to Infestation by Invasive Brown Marmorated Stink Bug (Halyomorpha halys Stal.)" Horticulturae 7, no. 8: 212. https://doi.org/10.3390/horticulturae7080212
APA StyleZamljen, T., Medič, A., Veberič, R., Hudina, M., Štampar, F., & Slatnar, A. (2021). Apple Fruit (Malus domestica Borkh.) Metabolic Response to Infestation by Invasive Brown Marmorated Stink Bug (Halyomorpha halys Stal.). Horticulturae, 7(8), 212. https://doi.org/10.3390/horticulturae7080212