Calcium Carbonate Can Be Used to Manage Soilless Substrate pH for Blueberry Production
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konduru, S.; Evans, M.R.; Stamps, R.H. Coconut husk and processing effects on chemical and physical properties of coconut coir dust. HortScience 1999, 34, 88–90. [Google Scholar] [CrossRef]
- Abad, M.; Fornes, F.; Carrión, C.; Noguera, V.; Noguera, P.; Maquieira, A.; Puchades, R. Physical properties of various coconut coir dusts compared to peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B.C. Suitability of sphagnum moss, coir, and douglas fir bark as soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B.C. Influence of perlite in peat- and coir-based media on vegetative growth and mineral nutrition of highbush blueberry. HortScience 2020, 55, 658–663. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.H.; Silva, M.N.d.; Phillips, D.A.; Munoz, P.R. A review for southern highbush blueberry alternative production systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Kithome, M.; Paul, J.W.; Kannangara, T. Adsorption isotherms of ammonium on coir. Com. Soil Sci. Plant Anal. 1999, 30, 83–95. [Google Scholar] [CrossRef]
- Rippy, J.F.M.; Nelson, P.V. Cation exchange capacity and base saturation variation among Alberta, Canada, moss peats. HortScience 2007, 42, 349–352. [Google Scholar] [CrossRef]
- Ramirez, S.V.; Altland, J. Minding Your pHs and Qs. Grow. Talks 2018, 81, 68–69. [Google Scholar]
- Taylor, M.D.; Nelson, P.V.; Frantz, J.M. Substrate acidification by geranium: Light effects and phosphorus uptake. J. Am. Soc. Hort. Sci. 2008, 133, 515–520. [Google Scholar] [CrossRef]
- Nunez, G.H.; Olmstead, J.W.; Darnell, R.L. Rhizosphere acidification is not part of the strategy I iron deficiency response of Vaccinium arboreum and the Southern Highbush Blueberry. HortScience 2015, 50, 1064–1069. [Google Scholar] [CrossRef]
- Imler, C.S.; Arzola, C.I.; Nunez, G.H. Ammonium uptake is the main driver of rhizosphere pH in southern highbush blueberry. HortScience 2019, 54, 955–959. [Google Scholar] [CrossRef]
- Tamir, G.; Zilkah, S.; Dai, N.; Shawahna, R.; Cohen, S.; Bar-Tal, A. Combined effects of CaCO3 and the proportion of N-NH4+ among the total applied inorganic N on the growth and mineral uptake of Rabbiteye blueberry. J. Soil Sci. Plant Nutr. 2020, 21, 35–48. [Google Scholar] [CrossRef]
- Merhaut, D.J.; Darnell, R.L. Ammonium and nitrate accumulation in containerized southern highbush blueberry plants. HortScience 1995, 30, 1378–1381. [Google Scholar] [CrossRef]
- Altland, J.E.; Jeong, K.Y. Dolomitic lime amendment affects pine bark substrate pH, nutrient availability, and plant growth: A review. HortTechnology 2016, 26, 565–573. [Google Scholar] [CrossRef]
- Ownley, B.H.; Benson, D.M.; Bilderback, T.E. Physical properties of container media and relation to severity of Phytophthora root rot of rhododendron. J. Am. Soc. Hort. Sci. 1990, 115, 564–570. [Google Scholar] [CrossRef]
- Scagel, C.F.; Bi, G.; Fuchigami, L.H.; Regan, R.P. Nutrient uptake and loss by container-grown deciduous and evergreen Rhododendron nursery plants. HortScience 2011, 46, 296–305. [Google Scholar] [CrossRef]
- Finn, C.E.; Luby, J.J.; Rosen, C.J.; Ascher, P.D. Blueberry germplasm screening at several soil pH regimes. I. plant survival and growth. J. Am. Soc. Hort. Sci. 1993, 118, 377–382. [Google Scholar] [CrossRef]
- Finn, C.E.; Rosen, C.J.; Luby, J.J.; Ascher, P.D. Blueberry germplasm screening at several soil pH regimes. II. plant nutrient composition. J. Am. Soc. Hort. Sci. 1993, 118, 383–387. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, fruit yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef]
- Hart, J.; Strik, B.; White, L.; Yang, W. Nutrient management for blueberries in Oregon. Or. State Univ. Ext. Serv. 2006, EM8918. [Google Scholar]
- Nunez, G.H.; Rodríguez-Armenta, H.P.; Darnell, R.L.; Olmstead, J.W. Toward marker-assisted breeding for root architecture traits in southern highbush blueberry. J. Am. Soc. Hort. Sci. 2016, 141, 414–424. [Google Scholar] [CrossRef]
- Susko, A.Q.; Rinehart, T.A.; Bradeen, J.M.; Hokanson, S.C. An evaluation of two seedling phenotyping protocols to assess pH adaptability in deciduous azalea (Rhododendron sect. Pentanthera G. Don). HortScience 2018, 53, 268–274. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma—Mass Spectrometry; Office of Research and Development US Environmental Protection Agency: Cincinnati, OH, USA, 1994; pp. 200.8-1–200.8-51. [Google Scholar]
- Reganold, J.P.; Harsh J., B. Expressing cation exchange capacity in milliequivalents per 100 grams and in SI units. J. Agron. Educ. 1985, 14, 84–90. [Google Scholar] [CrossRef]
- Schofield, R.K.; Taylor, A.W. The measurement of soil pH. Soil Sci. Soc. Am. J. 1955, 19, 164–167. [Google Scholar] [CrossRef]
- Cavins, T.J.; Whipker, B.E.; Fonteno, W.C.; Harden, B.; McCall, I.; Gibson, J.L. Monitoring and Managing Ph and Ec Using the Pourthru Extraction Method; Horticulture Information Leaflet, No. 590; North Carolina State University: Raleigh, NC, USA, 2000. [Google Scholar]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Available online: https://www.cran.r-project.org/web/packages/agricolae/index.html. (accessed on 7 June 2020).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 7 June 2020).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Dordrecth, The Netherlands, 2016. [Google Scholar]
- Demasi, S.; Caser, M.; Handa, T.; Kobayashi, N.; De Pascale, S.; Scariot, V. Adaptation to iron deficiency and high pH in evergreen azaleas (Rhododendron spp.): Potential resources for breeding. Euphytica 2017, 213, 148. [Google Scholar] [CrossRef]
- Turner, A.J.; Arzola, C.I.; Nunez, G.H. High pH Stress Affects Root Morphology and Nutritional Status of Hydroponically Grown Rhododendron (Rhododendron spp.). Plants 2020, 9, 1019. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Schecher, W.D. The chemistry of aluminum in the environment. Environ. Geochem. Health 1990, 12, 28–49. [Google Scholar] [CrossRef]
- Carcamo, M.P.; Reyes-Díaz, M.; Rengel, Z.; Alberdi, M.; Omena-Garcia, R.P.; Nunes-Nesi, A.; Inostroza-Blancheteau, C. Aluminum stress differentially affects physiological performance and metabolic compounds in cultivars of highbush blueberry. Sci. Rep. 2019, 9, 11275. [Google Scholar] [CrossRef] [PubMed]
- Bush, A.L. Construction materials: Lightweight aggregates. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Oxford, UK, 2001. [Google Scholar] [CrossRef]
- Brito, L.M.; Monteiro, J.M.; Mourão, I.; Coutinho, J. Organic lettuce growth and nutrient uptake response to lime, compost and rock phosphate. J. Plant Nutr. 2014, 37, 1002–1011. [Google Scholar] [CrossRef][Green Version]
- Smith, E.; Porter, W.; Hawkins, G.; Harris, G., Jr. Blueberry Irrigation Water Quality; University of Georgia Cooperative Extension: Athens, GA, USA, 2016. [Google Scholar]
- Bryla, D.R.; Strik, B.C. Nutrient requirements, leaf tissue standards, and new options for fertigation of northern highbush blueberry. HortTechnology 2015, 25, 464–470. [Google Scholar] [CrossRef]
Amendment | pH | Cation Exchange Capacity (meq·100 g−1 Substrate) | Base Saturation (%) | Ca (mg·Kg−1) | Mg (mg·Kg−1) | K (mg·Kg−1) |
---|---|---|---|---|---|---|
CaCO3 | 6.4 | 9.50 | 71.77 | 932.17 | 158.67 | 325.67 |
Calexin | 4.4 | 10.97 | 57.27 | 1089.00 | 43.84 | 194.00 |
p value z | <0.001 | 0.084 | 0.021 | 0.283 | <0.001 | 0.009 |
Treatment | Substrate pH | Cation Exchange Capacity (meq·100 g−1 Substrate) | Base Saturation (%) | Ca (mg·Kg−1) | Mg (mg·Kg−1) | K (mg·Kg−1) |
---|---|---|---|---|---|---|
CaCO3 | 4.9 | 8.05 | 57.38 | 1298.33 | 307.50 | 99.17 |
Calexin | 4.7 | 6.73 | 34.60 | 601.83 | 169.67 | 95.83 |
p value z | 0.094 | 0.009 | <0.001 | <0.001 | 0.003 | 0.596 |
pH 6.5 | 4.8 | 7.30 | 48.95 | 958.33 | 248.67 | 164.67 |
pH 4.5 | 4.8 | 7.48 | 43.03 | 941.83 | 228.50 | 30.33 |
p value | 0.999 | 0.643 | 0.144 | 0.901 | 0.563 | <0.001 |
Amendment | Fertigation pH | Root Dry Weight (g) | Cane Dry Weight (g) | Leaf Dry Weight (g) | Total Dry Weight (g) |
---|---|---|---|---|---|
CaCO3 | 6.5 | 2.38 a | 3.40 ab | 5.06 ab | 10.84 ab |
4.5 | 2.38 a | 4.91 a | 6.99 a | 14.32 a | |
Calexin | 6.5 | 1.16 b | 2.33 bc | 4.01 bc | 7.50 bc |
4.5 | 0.58 b | 1.33 c | 2.59 c | 4.2 c | |
Effect z | |||||
Amendment | <0.001 | <0.001 | <0.001 | <0.001 | |
Fertigation pH | 0.272 | 0.574 | 0.672 | 0.947 | |
Amendment x pH | 0.208 | 0.009 | 0.008 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiber, M.J.; Nunez, G.H. Calcium Carbonate Can Be Used to Manage Soilless Substrate pH for Blueberry Production. Horticulturae 2021, 7, 74. https://doi.org/10.3390/horticulturae7040074
Schreiber MJ, Nunez GH. Calcium Carbonate Can Be Used to Manage Soilless Substrate pH for Blueberry Production. Horticulturae. 2021; 7(4):74. https://doi.org/10.3390/horticulturae7040074
Chicago/Turabian StyleSchreiber, Michael J., and Gerardo H. Nunez. 2021. "Calcium Carbonate Can Be Used to Manage Soilless Substrate pH for Blueberry Production" Horticulturae 7, no. 4: 74. https://doi.org/10.3390/horticulturae7040074
APA StyleSchreiber, M. J., & Nunez, G. H. (2021). Calcium Carbonate Can Be Used to Manage Soilless Substrate pH for Blueberry Production. Horticulturae, 7(4), 74. https://doi.org/10.3390/horticulturae7040074